JP5088535B2 - Fuel gasification equipment - Google Patents

Fuel gasification equipment Download PDF

Info

Publication number
JP5088535B2
JP5088535B2 JP2007048726A JP2007048726A JP5088535B2 JP 5088535 B2 JP5088535 B2 JP 5088535B2 JP 2007048726 A JP2007048726 A JP 2007048726A JP 2007048726 A JP2007048726 A JP 2007048726A JP 5088535 B2 JP5088535 B2 JP 5088535B2
Authority
JP
Japan
Prior art keywords
gas
gasification
fuel
separator
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007048726A
Other languages
Japanese (ja)
Other versions
JP2008208297A (en
Inventor
高広 村上
さと子 青木
俊之 須田
秀久 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007048726A priority Critical patent/JP5088535B2/en
Publication of JP2008208297A publication Critical patent/JP2008208297A/en
Application granted granted Critical
Publication of JP5088535B2 publication Critical patent/JP5088535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、燃料ガス化設備に関するものである。   The present invention relates to a fuel gasification facility.

従来より、燃料として、石炭、バイオマス、廃プラスチック、或いは各種の含水廃棄物等の固体燃料を用い、ガス化ガスを生成する燃料ガス化設備の開発が進められている。   2. Description of the Related Art Conventionally, development of a fuel gasification facility that generates a gasification gas using a solid fuel such as coal, biomass, waste plastic, or various hydrated wastes as a fuel has been advanced.

図6及び図7は従来の燃料ガス化設備の一例を示すものであって、該燃料ガス化設備は、蒸気、及び空気又は酸素等の流動用反応ガスにより流動媒体(硅砂、石灰石等)の流動層1を形成して投入される固体燃料(石炭、バイオマス等)のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉2と、該ガス化炉2で生成された可燃性固形分が流動媒体と共に導入管3から導入され且つ流動用反応ガスにより流動層4を形成して前記可燃性固形分の燃焼を行う燃焼炉5と、該燃焼炉5から排ガス管6を介して導入される排ガスより流動媒体を分離し該分離した流動媒体をダウンカマー7を介して前記ガス化炉2に供給するホットサイクロン等の媒体分離装置8と、前記ガス化炉2で生成されたガス化ガスより流動媒体を分離するホットサイクロン等の媒体分離装置9と、該媒体分離装置9で分離された流動媒体を回収する回収容器10とを備えてなる構成を有している。   6 and 7 show an example of a conventional fuel gasification facility. The fuel gasification facility has a fluid medium (eg, sand, limestone, etc.) using steam and a reaction gas for flow such as air or oxygen. A gasification furnace 2 that generates gasified gas and combustible solids by gasifying solid fuel (coal, biomass, etc.) that is input after forming the fluidized bed 1, and is generated in the gasifier 2. Combustion furnace 5 in which a combustible solid content is introduced from an introduction pipe 3 together with a fluid medium and a fluidized bed 4 is formed by a reaction gas for flow to burn the combustible solid content. Generated in the gasification furnace 2, and a medium separation device 8 such as a hot cyclone that separates the fluidized medium from the exhaust gas introduced through the exhaust gas and supplies the separated fluidized medium to the gasification furnace 2 through the downcomer 7. Hot separating the fluidized medium from the gasified gas A medium separating device 9, such as a cyclone, has provided comprising constituting a collecting container 10 for collecting the fluidized medium separated by said medium separating device 9.

尚、図6及び図7中、11は前記ガス化炉2の底部へ導入される蒸気及び流動用反応ガスを流動層1内へ均一に吹き込むための分散板、12は前記ガス化炉2内部における導入管3が接続される部分を下方のみが開放されるように覆うことにより流動層1内の流動媒体が導入管3へ直接流出することを防止するための仕切壁、13は前記燃焼炉5の底部へ導入される流動用反応ガスを流動層4内へ均一に吹き込むための分散板、14は前記固体燃料が貯留されるホッパ、15はホッパ14に貯留された固体燃料を切り出すスクリューフィーダ、16はスクリューフィーダ15によって切り出された固体燃料が導かれ且つ前記ガス化炉2側面における流動層1上面より高い位置に接続された燃料供給管である。   In FIGS. 6 and 7, 11 is a dispersion plate for uniformly blowing steam introduced into the bottom of the gasification furnace 2 and flowing reaction gas into the fluidized bed 1, and 12 is the inside of the gasification furnace 2. A partition wall for preventing the fluid medium in the fluidized bed 1 from flowing out directly to the introduction pipe 3 by covering the part to which the introduction pipe 3 is connected in such a way that only the lower part is opened; 5 is a dispersion plate for uniformly blowing the flowing reaction gas into the fluidized bed 4, 14 is a hopper for storing the solid fuel, and 15 is a screw feeder for cutting out the solid fuel stored in the hopper 14. , 16 is a fuel supply pipe to which the solid fuel cut out by the screw feeder 15 is guided and connected to a position higher than the upper surface of the fluidized bed 1 on the side surface of the gasification furnace 2.

前述の如き燃料ガス化設備においては、ガス化炉2において、蒸気、及び空気又は酸素等の流動用反応ガスにより流動層1が形成されており、ここにホッパ14に貯留された石炭、バイオマス等の固体燃料をスクリューフィーダ15によって切り出して燃料供給管16から投入すると、該固体燃料は部分酸化してガス化され、ガス化ガスと可燃性固形分とが生成され、前記ガス化炉2で生成された可燃性固形分は流動媒体と共に導入管3から、流動用反応ガスにより流動層4が形成されている燃焼炉5へ導入され、該可燃性固形分の燃焼が行われ、該燃焼炉5からの排ガスは、排ガス管6を介してホットサイクロン等の媒体分離装置8へ導入され、該媒体分離装置8において、前記排ガスより流動媒体が分離され、該分離された流動媒体はダウンカマー7を介して前記ガス化炉2に戻され、循環される。   In the fuel gasification facility as described above, in the gasification furnace 2, the fluidized bed 1 is formed by the reaction gas for flow such as steam and air or oxygen, and the coal, biomass, etc. stored in the hopper 14 here. When the solid fuel is cut out by the screw feeder 15 and introduced from the fuel supply pipe 16, the solid fuel is partially oxidized and gasified to generate gasified gas and combustible solids, which are generated in the gasifier 2. The combustible solid content is introduced from the introduction pipe 3 together with the fluid medium into the combustion furnace 5 in which the fluidized bed 4 is formed by the flow reaction gas, and the combustible solid content is combusted. The exhaust gas from the exhaust gas is introduced into a medium separator 8 such as a hot cyclone through an exhaust gas pipe 6. In the medium separator 8, the fluid medium is separated from the exhaust gas, and the separated fluid medium is Returned to the gasification furnace 2 through a Nkama 7, it is circulated.

ここで、前記ガス化炉2の内部では、ガス化炉2の底部へ供給される蒸気や固体燃料自体から蒸発する水分の存在下で高温が保持されると共に、固体燃料の熱分解によって生成したガスや、その残渣燃料が蒸気と反応することによって、水性ガス化反応[C+H2O=H2+CO]や水素転換反応[CO+H2O=H2+CO2]が起こり、H2やCO等の可燃性のガス化ガスが生成される。 Here, the inside of the gasification furnace 2 is maintained at a high temperature in the presence of steam supplied to the bottom of the gasification furnace 2 or moisture evaporated from the solid fuel itself, and is generated by pyrolysis of the solid fuel. When gas or its residual fuel reacts with steam, water gasification reaction [C + H 2 O = H 2 + CO] or hydrogen conversion reaction [CO + H 2 O = H 2 + CO 2 ] occurs, and H 2 , CO, etc. A combustible gasification gas is produced.

前記ガス化炉2で生成されたガス化ガスは、ホットサイクロン等の媒体分離装置9で流動媒体が分離され、該媒体分離装置9で分離された流動媒体は、回収容器10に回収される。   The gasified gas generated in the gasification furnace 2 is separated into a fluid medium by a medium separator 9 such as a hot cyclone, and the fluid medium separated by the medium separator 9 is recovered in a recovery container 10.

尚、図6及び図7に示される燃料ガス化設備と類似した装置構成を有するものとしては、例えば、特許文献1がある。
特開2006−207947号公報
For example, Patent Document 1 discloses an apparatus configuration similar to the fuel gasification facility shown in FIGS. 6 and 7.
JP 2006-207947 A

ところで、前述の如き従来の燃料ガス化設備において、前記ガス化炉2で生成されたガス化ガス中にはCO2も含まれており、該ガス化ガス中に含まれるCO2については、製品となるH2やCO等の可燃性ガスから最終的に分離されるものの、必ずしも充分に有効活用されているとは言えないのが現状であった。 Incidentally, in the conventional fuel gasification system such as described above, wherein the gasification gas generated in the gasification furnace 2 also contains CO 2, the CO 2 contained in the gasification gas, the product Although it is finally separated from flammable gases such as H 2 and CO, it has not been said that it has been fully utilized effectively.

本発明は、斯かる実情に鑑み、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉への供給用として有効活用し得、固体燃料をガス化炉へ安定して供給し得る燃料ガス化設備を提供しようとするものである。 In view of such circumstances, the present invention can effectively utilize CO 2 gas finally separated from combustible gas such as H 2 and CO as a product for supplying solid fuel to a gasifier, An object of the present invention is to provide a fuel gasification facility that can stably supply fuel to a gasification furnace.

本発明は、流動用反応ガスにより流動媒体の流動層を形成して投入されるバイオマスを含む固体燃料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉と、
空気をО2とN2とに分離するО2分離器と、
前記ガス化炉で生成されたガス化ガスに対し前記O2分離器で分離されたО2を混合してタール及び低級炭化水素の改質を行う高温改質炉と、
前記高温改質炉の下流でガス化ガス中からCO2ガスを分離して前記固体燃料のガス化炉への供給系統へ導くCO2ガス分離循環手段と、を備えた燃料ガス化設備であって、
前記CO2ガス分離循環手段を、ガス化ガス中のH2を前記О2分離器で分離したN2と混合してアンモニアを製造するアンモニア合成器の前段に設けられるCO2分離器によって構成し
前記ガス化炉の側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、前記流動用ガス管に対し前記CO 2 分離器で分離されたCO 2 ガスを、前記バイオマスを含む固体燃料が前記燃料供給管の接続部に溶融化して固着しないように安定して流動層内へ供給するための流動ガスとして導入するよう構成したことを特徴とする燃料ガス化設備にかかるものである。
The present invention comprises a gasification furnace that gasifies a solid fuel containing biomass that is input by forming a fluidized bed of a fluidized medium with a fluidizing reaction gas and generates gasified gas and combustible solids,
An O 2 separator that separates air into O 2 and N 2 ;
High temperature reformer for performing reforming tar and lower hydrocarbons as a mixture of o 2, wherein the relative gasification gas produced in the gasification furnace is separated by the O 2 separator,
CO 2 gas separation and circulation means for separating CO 2 gas from gasification gas downstream of the high-temperature reforming furnace and introducing the solid fuel to the gasification furnace supply system. And
The CO 2 gas separation / circulation means is constituted by a CO 2 separator provided in a preceding stage of an ammonia synthesizer for producing ammonia by mixing H 2 in a gasification gas with N 2 separated by the O 2 separator. ,
A fuel supply pipe is connected to a position lower than the upper surface of the fluidized bed on the side surface of the gasification furnace, and the solid fuel is supplied from the fuel supply pipe into the fluidized bed.
A flow gas pipe is connected in the vicinity of a connection portion of the fuel supply pipe to the gasification furnace, and the CO 2 gas separated by the CO 2 separator is separated from the flow gas pipe by the solid fuel containing the biomass. The present invention relates to a fuel gasification facility which is configured to be introduced as a flowing gas for stably supplying into a fluidized bed so as not to be melted and fixed to a connecting portion of a fuel supply pipe .

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前述の如く構成すると、ガス化ガス中から分離されるCO2ガスが固体燃料のガス化炉への供給用として有効活用され、固体燃料がガス化炉へ安定して供給されると共に、ガス化炉内におけるガス化反応の一つである
C+CO2→2CO
という反応が促進されることとなり、ガス化効率の向上にもつながる。
When configured as described above, the CO 2 gas separated from the gasification gas is effectively used for supplying the solid fuel to the gasification furnace, so that the solid fuel is stably supplied to the gasification furnace and the gasification is performed. C + CO 2 → 2CO, one of the gasification reactions in the furnace
Reaction will be promoted, leading to improved gasification efficiency.

前記燃料ガス化設備においては、前記高温改質炉で改質されたガス化ガスから脱塵並びに微量成分除去を行うスプレー塔と、該スプレー塔で脱塵並びに微量成分除去が行われたガス化ガスから硫黄を除去する脱硫塔と、該脱硫塔で硫黄が除去されたガス化ガスから軽質タール等の微量成分を除去する精密除去器と、を更に備えるように構成することができる。 In the fuel gasification facility, a spray tower for dedusting and removing trace components from the gasification gas reformed in the high-temperature reforming furnace, and a gasification in which dust removal and trace component removal has been performed in the spray tower A desulfurization tower that removes sulfur from the gas and a precision remover that removes trace components such as light tar from the gasification gas from which sulfur has been removed in the desulfurization tower can be further provided .

一方、前記燃料ガス化設備においては、前記CO2ガス分離循環手段で分離されたCO2ガスを、固体燃料が貯留されるホッパへ導入することが、固体燃料を乾燥させ、固体燃料をCO2ガスによって圧送し定常供給する上で有効となる。 On the other hand, in the fuel gasification system, the CO 2 gas separated by the CO 2 gas separating circulating means, be introduced into the hopper solid fuel is stored, the solid fuel is dried, the solid fuel CO 2 This is effective for pumping and steady supply with gas.

以上の構成によれば、ガス化炉の流動層の上へ燃料供給管から固体燃料を供給する場合に比べ、該固体燃料の微粒子が飛散せずに流動媒体と充分に接触する形となって、固体燃料の熱分解が確実に完了し、得られるガス熱量即ち冷ガス効率が高まる一方、C転換率やH転換率も高くすること、更に、ガス化ガス中のタールの改質が可能となる。ここで、仮に、ガス化炉側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると、特に固体燃料としてバイオマスを使用した場合、該バイオマスは石炭より揮発分が多くガス化しやすいことから、ガス化炉に対する燃料供給管の接続部において、数百[℃]に昇温して溶融化し、それが固着していくと、燃料供給管が詰まってしまうことも考えられるが、前述の如く構成した場合には、燃料供給管に接続した流動用ガス管からCO2ガスが流動ガスとして供給され、固体燃料の流動が促進されるため、固体燃料としてたとえバイオマスを使用したとしても、溶融化したバイオマスが燃料供給管の接続部に固着せず、該燃料供給管が詰まる心配もない。 According to the above configuration, compared with the case where the solid fuel is supplied from the fuel supply pipe onto the fluidized bed of the gasification furnace, the solid fuel fine particles do not scatter and are in sufficient contact with the fluid medium. , The thermal decomposition of solid fuel is reliably completed, the amount of gas heat obtained, that is, the efficiency of cold gas is increased, the C conversion rate and the H conversion rate are also increased, and the tar in the gasification gas can be reformed. Become. Here, if the fuel supply pipe is connected to a position lower than the upper surface of the fluidized bed on the gasifier side surface and the solid fuel is supplied from the fuel supply pipe into the fluidized bed, biomass is used as the solid fuel. In this case, since the biomass has a higher volatile content than coal and is easily gasified, at the connection portion of the fuel supply pipe to the gasifier, the biomass is heated to several hundred [° C.] and melted. Although it is conceivable that the fuel supply pipe is clogged, in the case of the configuration as described above, CO 2 gas is supplied as a flowing gas from the flow gas pipe connected to the fuel supply pipe, and the flow of the solid fuel is promoted. Therefore, even if biomass is used as the solid fuel, the melted biomass does not adhere to the connecting portion of the fuel supply pipe, and there is no fear that the fuel supply pipe is clogged.

本発明の燃料ガス化設備によれば、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉への供給用として有効活用し得、固体燃料をガス化炉へ安定して供給し得るという優れた効果を奏し得る。 According to the fuel gasification facility of the present invention, the CO 2 gas finally separated from the combustible gas such as H 2 or CO that is the product can be effectively used for supplying the solid fuel to the gasification furnace, An excellent effect that the solid fuel can be stably supplied to the gasification furnace can be obtained.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び図2は本発明を実施する形態の参考例であって、図中、図6及び図7と同一の符号を付した部分は同一物を表わしており、基本的な構成は図6及び図7に示す従来のものと同様であるが、本図示例の特徴とするところは、図1及び図2に示す如く、ガス化炉2で生成されたガス化ガス中からCO2ガスを分離して固体燃料のガス化炉2への供給系統へ導くCO2ガス分離循環手段を備えた点にある。 FIGS. 1 and 2 are reference examples for carrying out the present invention. In the figure, the same reference numerals as those in FIGS. 6 and 7 denote the same components, and the basic configuration is shown in FIG. 7 is similar to the conventional one shown in FIG. 7, but the feature of the illustrated example is that, as shown in FIGS. 1 and 2, CO 2 gas is extracted from the gasification gas generated in the gasification furnace 2. A CO 2 gas separation / circulation means for separating and leading to the supply system of the solid fuel to the gasification furnace 2 is provided.

本図示例の場合、
空気をO2とN2とに分離するO2分離器17と、
前記ガス化炉2で生成され媒体分離装置9(図1には図示を省略、図6参照)で流動媒体が分離されたガス化ガスに対し前記O2分離器17で分離されたO2を混合してタール及び低級炭化水素の改質を行う高温改質炉18と、
該高温改質炉18で改質されたガス化ガスから脱塵並びに微量成分除去を行うスプレー塔19と、
該スプレー塔19で脱塵並びに微量成分除去が行われたガス化ガスから硫黄を除去する脱硫塔20と、
該脱硫塔20で硫黄が除去されたガス化ガスから軽質タール等の微量成分を除去する精密除去器21と、
該精密除去器21で軽質タール等の微量成分が除去されたガス化ガス(H2、CO、CO2)からCO2を分離するCO2分離器22と、
該CO2分離器22でCO2が分離されたガス化ガス中のH2/CO比を約2に調整するフィッシャー・トロプシュ合成反応を行うことにより液体燃料としてのH2及びCOを製造するFT合成器23と
を具備せしめ、前記CO2ガス分離循環手段を、前記FT合成器23の前段に設けられるCO2分離器22によって構成してある。
In the case of this example,
An O 2 separator 17 for separating air into O 2 and N 2 ;
(Not shown in FIG. 1, see FIG. 6) the generated in the gasification furnace 2 medium separator 9 O 2 where the fluidized medium is separated by the relative separated gasification gas O 2 separator 17 A high temperature reforming furnace 18 for mixing and reforming tar and lower hydrocarbons;
A spray tower 19 for dedusting and removing trace components from the gasified gas reformed in the high-temperature reforming furnace 18;
A desulfurization tower 20 for removing sulfur from the gasification gas that has been dedusted and trace components removed in the spray tower 19;
A precision remover 21 for removing trace components such as light tar from the gasification gas from which sulfur has been removed in the desulfurization tower 20;
A CO 2 separator 22 for separating CO 2 from a gasified gas (H 2 , CO, CO 2 ) from which trace components such as light tar have been removed by the precision remover 21;
FT for producing H 2 and CO as liquid fuel by performing a Fischer-Tropsch synthesis reaction in which the H 2 / CO ratio in the gasified gas from which CO 2 has been separated by the CO 2 separator 22 is adjusted to about 2. And the CO 2 gas separation / circulation means is constituted by a CO 2 separator 22 provided in the preceding stage of the FT synthesizer 23.

そして、前記CO2ガス分離循環手段としてのCO2分離器22で分離されたCO2ガスは、図2に示す如く、固体燃料のガス化炉2への供給系統であって且つ固体燃料が貯留されるホッパ14へ導入するよう構成してある。 Then, CO 2 gas separated by the CO 2 separator 22 as the CO 2 gas separating circulating means, as shown in FIG. 2, a supply system to the gasification furnace 2 of a solid fuel and solid fuel reservoir The hopper 14 is configured to be introduced.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

図1に示す参考例の場合、ガス化炉2で生成され媒体分離装置9(図1には図示を省略、図6参照)で流動媒体が分離されたガス化ガスは、高温改質炉18においてO2分離器17で分離されたO2が混合されてタール及び低級炭化水素の改質が行われ、スプレー塔19において前記高温改質炉18で改質されたガス化ガスから脱塵並びに微量成分除去が行われ、脱硫塔20において前記スプレー塔19で脱塵並びに微量成分除去が行われたガス化ガスから硫黄が除去され、精密除去器21において前記脱硫塔20で硫黄が除去されたガス化ガスから軽質タール等の微量成分が除去され、CO2分離器22において前記精密除去器21で軽質タール等の微量成分が除去されたガス化ガス(H2、CO、CO2)からCO2が分離され、FT合成器23において前記CO2分離器22でCO2が分離されたガス化ガス中のH2/CO比を約2に調整するフィッシャー・トロプシュ合成反応が行われることにより液体燃料としてのH2及びCOが製造されるが、前記CO2ガス分離循環手段としてのCO2分離器22で分離されたCO2ガスは、図2に示す如く、固体燃料が貯留されるホッパ14へ導入される。 In the case of the reference example shown in FIG. 1, the gasification gas generated in the gasification furnace 2 and separated from the fluidized medium in the medium separation device 9 (not shown in FIG. 1, see FIG. 6) O 2 separator 17 are mixed separate O 2 reforming of tar and lower hydrocarbons is carried out, dedusting from reformed gasification gas in the hot reformer 18 in a spray tower 19 as well as in Trace component removal was performed, sulfur was removed from the gasification gas in which dedusting and trace component removal was performed in the spray tower 19 in the desulfurization tower 20, and sulfur was removed in the desulfurization tower 20 in the precision remover 21. From the gasification gas (H 2 , CO, CO 2 ) from which the trace components such as light tar are removed from the gasification gas and the trace components such as light tar are removed by the precision remover 21 in the CO 2 separator 22. 2 are separated, FT synthesis H 2 and CO as a liquid fuel by the CO 2 separator 22 with CO 2 is a Fischer-Tropsch synthesis reaction to adjust the H 2 / CO ratio of about 2 gasification gas separated is carried out at 23 are produced, the CO 2 gas separated by the CO 2 separator 22 as the CO 2 gas separating circulating means, as shown in FIG. 2, is introduced into the hopper 14 the solid fuel is stored.

このように、前記CO2ガスがホッパ14へ導入されると、該ホッパ14内において固体燃料の乾燥が行われると共に、固体燃料がCO2ガスによって圧送される形となり、該固体燃料の定常供給が可能となる。 As described above, when the CO 2 gas is introduced into the hopper 14, the solid fuel is dried in the hopper 14, and the solid fuel is pumped by the CO 2 gas, so that the solid fuel is constantly supplied. Is possible.

更に、前記CO2ガスがホッパ14からスクリューフィーダ15と燃料供給管16を経てガス化炉2へ供給されることにより、ガス化反応の一つである
C+CO2→2CO
という反応が促進されることとなり、ガス化効率の向上にもつながる。
Further, when the CO 2 gas is supplied from the hopper 14 through the screw feeder 15 and the fuel supply pipe 16 to the gasification furnace 2, C + CO 2 → 2CO, which is one of gasification reactions.
Reaction will be promoted, leading to improved gasification efficiency.

因みに、N2ガスや蒸気等をホッパ14へ導入することも可能ではあるが、仮にN2ガスをホッパ14へ導入した場合、ガス化炉2に不活性ガスが混入することとなって、生成されるガス化ガスの熱量が低下する一方、仮に蒸気をホッパ14へ導入した場合、余分な蒸気が必要となり、その分システム全体の効率が低下してしまうこととなる。しかし、本図示例では、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2を循環させて利用するため、N2ガスを用いる場合のようにガス化ガスの熱量が低下したり、蒸気を用いる場合のようにシステム全体の効率が低下してしまう心配は全くない。 Incidentally, it is possible to introduce N 2 gas, steam, or the like into the hopper 14, but if N 2 gas is introduced into the hopper 14, an inert gas is mixed into the gasification furnace 2, thereby generating While the amount of heat of the gasified gas is reduced, if steam is introduced into the hopper 14, extra steam is required, and the efficiency of the entire system is reduced accordingly. However, in this illustrated example, since CO 2 finally separated from the combustible gas such as H 2 or CO that is the product is circulated and used, the calorific value of the gasification gas as in the case of using N 2 gas. There is no concern that the efficiency of the entire system will be reduced as in the case of using steam.

こうして、製品となるH2やCO等の可燃性ガスから最終的に分離されるCO2ガスを固体燃料のガス化炉2への供給用として有効活用し得、固体燃料をガス化炉2へ安定して供給し得る。 Thus, the CO 2 gas finally separated from the combustible gas such as H 2 or CO that is the product can be effectively used for supplying the solid fuel to the gasification furnace 2, and the solid fuel is supplied to the gasification furnace 2. It can be supplied stably.

図3はガス化炉2の変形例を示す要部構成図であって、図中、図1及び図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図2に示すものと同様であるが、本図示例の特徴とするところは、図3に示す如く、ガス化炉2側面における流動層1上面より低い位置に燃料供給管16を接続し、該燃料供給管16から固体燃料を流動層1内へ供給するよう構成した点にある。   FIG. 3 is a main part configuration diagram showing a modified example of the gasification furnace 2, in which the parts denoted by the same reference numerals as in FIGS. 1 and 2 represent the same thing, and the basic configuration is shown in FIG. 1 and FIG. 2, but the feature of this illustrated example is that the fuel supply pipe 16 is connected to a position lower than the upper surface of the fluidized bed 1 on the side surface of the gasifier 2 as shown in FIG. The solid fuel is supplied from the fuel supply pipe 16 into the fluidized bed 1.

前述の如く、ガス化炉2側面における流動層1上面より低い位置に燃料供給管16を接続し、該燃料供給管16から固体燃料を流動層1内へ供給するよう構成すると、図2に示す例の如く、ガス化炉2の流動層1の上へ燃料供給管16から固体燃料を供給する場合に比べ、該固体燃料の微粒子が飛散せずに流動媒体と充分に接触する形となって、固体燃料の熱分解が確実に完了し、得られるガス熱量即ち冷ガス効率が高まる一方、C転換率やH転換率も高くすること、更に、ガス化ガス中のタールの改質が可能となる。   As described above, when the fuel supply pipe 16 is connected to a position lower than the upper surface of the fluidized bed 1 on the side surface of the gasification furnace 2 and the solid fuel is supplied from the fuel supply pipe 16 into the fluidized bed 1, FIG. As in the example, compared with the case where the solid fuel is supplied from the fuel supply pipe 16 onto the fluidized bed 1 of the gasification furnace 2, the solid fuel fine particles are not scattered and are sufficiently in contact with the fluid medium. , The thermal decomposition of solid fuel is reliably completed, the amount of gas heat obtained, that is, the efficiency of cold gas is increased, the C conversion rate and the H conversion rate are also increased, and the tar in the gasification gas can be reformed. Become.

図4は本発明を実施する形態の参考例(図1参照)におけるガス化炉2の他の具体例を示す要部構成図であって、図中、図1及び図3と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図3に示すものと同様であるが、本図示例の特徴とするところは、前記CO2ガス分離循環手段としてのCO2分離器22(図1参照)で分離されたCO2ガスを固体燃料が貯留されるホッパ14へ導入する代りに、図4に示す如く、前記固体燃料のガス化炉2への供給系統としての燃料供給管16のガス化炉2に対する接続部近傍に流動用ガス管24を接続し、該流動用ガス管24に対し前記CO2ガス分離循環手段としてのCO2分離器22で分離されたCO2ガスを、固体燃料を安定して流動層内へ供給するための流動ガスとして導入するよう構成した点にある。 FIG. 4 is a main part configuration diagram showing another specific example of the gasification furnace 2 in the reference example (see FIG. 1) of the embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 1 and 3 are used. The attached parts represent the same thing, and the basic configuration is the same as that shown in FIGS. 1 and 3, but the feature of this illustrated example is that the CO 2 gas separation and circulation means serves as the CO 2 gas separation and circulation means. Instead of introducing the CO 2 gas separated by the two separators 22 (see FIG. 1) into the hopper 14 in which the solid fuel is stored, as shown in FIG. 4, as a supply system of the solid fuel to the gasifier 2 of connecting the connecting portion fluidizing gas pipe 24 in the vicinity for the gasification furnace 2 of the fuel supply pipe 16, separated by the CO 2 separator 22 as the CO 2 gas separating circulating means to flowable gas pipe 24 the CO 2 gas, the fluidizing gas for supplying solid fuel stably into the fluidized bed It lies in that is configured to introduce.

ここで、図3や図4に示す例の如く、ガス化炉2側面における流動層1上面より低い位置に燃料供給管16を接続し、該燃料供給管16から固体燃料を流動層1内へ供給するよう構成すると、特に固体燃料としてバイオマスを使用した場合、該バイオマスは石炭より揮発分が多くガス化しやすいことから、ガス化炉2に対する燃料供給管16の接続部において、数百[℃]に昇温して溶融化し、それが固着していくと、燃料供給管16が詰まってしまうことも考えられるが、図4に示す例の場合には、燃料供給管16に接続した流動用ガス管24からCO2ガスが流動ガスとして供給され、固体燃料の流動が促進されるため、固体燃料としてたとえバイオマスを使用したとしても、溶融化したバイオマスが燃料供給管16の接続部に固着せず、該燃料供給管16が詰まる心配もない。 Here, as in the examples shown in FIGS. 3 and 4, the fuel supply pipe 16 is connected to a position lower than the upper surface of the fluidized bed 1 on the side surface of the gasification furnace 2, and the solid fuel is fed into the fluidized bed 1 from the fuel supply pipe 16. When configured to supply, especially when biomass is used as a solid fuel, the biomass has a higher volatile content than coal and is easily gasified. Therefore, at the connection portion of the fuel supply pipe 16 to the gasification furnace 2, several hundred [° C.] If the fuel is heated and melted and is fixed, the fuel supply pipe 16 may be clogged. However, in the example shown in FIG. 4, the flow gas connected to the fuel supply pipe 16 from the tube 24 CO 2 gas is supplied as a fluidizing gas, since the flow of the solid fuel is promoted, even with the use of biomass as a solid fuel, without biomass was melted causes sticking to the connection portion of the fuel supply pipe 16 There is no worry about clogged fuel supply pipe 16.

尚、図4に示す例において、図3に示す例と同様に、CO2ガス分離循環手段としてのCO2分離器22(図1参照)で分離されたCO2ガスを固体燃料が貯留されるホッパ14へ導入しても良いことは言うまでもない。 In the example shown in FIG. 4, similarly to the example shown in FIG. 3, the CO 2 gas separated by the CO 2 separator 22 as CO 2 gas separating circulating means (see FIG. 1) is a solid fuel is stored Needless to say, it may be introduced into the hopper 14.

図5は本発明を実施する形態の第例であって、図中、図1と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1に示すものと同様であるが、本図示例の特徴とするところは、図5に示す如く、前記CO2ガス分離循環手段を、ガス化ガス中のH2をN2と混合してアンモニアを製造するアンモニア合成器25の前段に設けられるCO2分離器22によって構成した点にある。 FIG. 5 is a first example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components, and the basic configuration is the same as that shown in FIG. However, as shown in FIG. 5, the feature of this illustrated example is that the CO 2 gas separation and circulation means is an ammonia synthesizer that produces ammonia by mixing H 2 in the gasification gas with N 2 . 25 is constituted by the CO 2 separator 22 provided in the preceding stage.

本図示例の場合、前記CO2分離器22でCO2が分離されたガス化ガス中からH2を分離するH2分離器26を設けてあり、該H2分離器26で分離されたH2を前記アンモニア合成器25にアンモニア製造時の反応用として導入し、前記H2分離器26でH2が分離されたCOは、前記CO2分離器22でCO2が分離されたガス化ガスに戻すようにしてある。 For this illustrated example, the CO 2 in the CO 2 separator 22 is provided with of H 2 separator 26 which separates and H 2 from gasification gas separated, separated by the H 2 separator 26 H 2 is introduced into the ammonia synthesizer 25 for reaction during the production of ammonia, and the CO from which H 2 has been separated by the H 2 separator 26 is gasified gas from which CO 2 has been separated by the CO 2 separator 22. It is trying to return to.

図5に示すシステム構成を採用した場合にも、ガス化炉2の具体例としては、図1の場合と同様に、図2、図3、図4のいずれの形式を用いることができ、前述と同様の作用効果が得られる。   Even when the system configuration shown in FIG. 5 is adopted, as a specific example of the gasification furnace 2, any of the formats shown in FIGS. 2, 3, and 4 can be used as in the case of FIG. The same effect can be obtained.

尚、本発明の燃料ガス化設備は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The fuel gasification facility of the present invention is not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の参考例のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the reference example of embodiment which implements this invention. 本発明を実施する形態の参考例におけるガス化炉の具体例を示す要部構成図である。It is a principal part block diagram which shows the specific example of the gasification furnace in the reference example of embodiment which implements this invention. 図2に示すガス化炉の変形例を示す要部構成図である。It is a principal part block diagram which shows the modification of the gasification furnace shown in FIG. 本発明を実施する形態の参考例におけるガス化炉の他の具体例を示す要部構成図である。It is a principal part block diagram which shows the other specific example of the gasification furnace in the reference example of embodiment which implements this invention. 本発明を実施する形態の第一例のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the 1st example of embodiment which implements this invention. 従来の燃料ガス化設備の一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the conventional fuel gasification installation. 従来の燃料ガス化設備の一例におけるガス化炉を示す要部構成図である。It is a principal part block diagram which shows the gasification furnace in an example of the conventional fuel gasification equipment.

符号の説明Explanation of symbols

1 流動層
2 ガス化炉
3 導入管
5 燃焼炉
7 ダウンカマー
8 媒体分離装置
10 回収容器
11 分散板
14 ホッパ(供給系統)
15 スクリューフィーダ
16 燃料供給管(供給系統)
19 スプレー塔
20 脱硫塔
21 精密除去器
22 CO2分離器(CO2ガス分離循環手段)
23 FT合成器
24 流動用ガス管
25 アンモニア合成器





DESCRIPTION OF SYMBOLS 1 Fluidized bed 2 Gasification furnace 3 Introducing pipe 5 Combustion furnace 7 Downcomer 8 Medium separator 10 Recovery container 11 Dispersing plate 14 Hopper (supply system)
15 Screw feeder 16 Fuel supply pipe (supply system)
19 Spray tower
20 Desulfurization tower
21 Precision remover 22 CO 2 separator (CO 2 gas separation and circulation means)
23 FT Synthesizer 24 Gas Pipe for Flow 25 Ammonia Synthesizer





Claims (3)

流動用反応ガスにより流動媒体の流動層を形成して投入されるバイオマスを含む固体燃料のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉と、
空気をО2とN2とに分離するО2分離器と、
前記ガス化炉で生成されたガス化ガスに対し前記O2分離器で分離されたО2を混合してタール及び低級炭化水素の改質を行う高温改質炉と、
前記高温改質炉の下流でガス化ガス中からCO2ガスを分離して前記固体燃料のガス化炉への供給系統へ導くCO2ガス分離循環手段と、を備えた燃料ガス化設備であって、
前記CO2ガス分離循環手段を、ガス化ガス中のH2を前記О2分離器で分離したN2と混合してアンモニアを製造するアンモニア合成器の前段に設けられるCO2分離器によって構成し
前記ガス化炉の側面における流動層上面より低い位置に燃料供給管を接続し、該燃料供給管から固体燃料を流動層内へ供給するよう構成すると共に、
前記燃料供給管のガス化炉に対する接続部近傍に流動用ガス管を接続し、前記流動用ガス管に対し前記CO 2 分離器で分離されたCO 2 ガスを、前記バイオマスを含む固体燃料が前記燃料供給管の接続部に溶融化して固着しないように安定して流動層内へ供給するための流動ガスとして導入するよう構成したことを特徴とする燃料ガス化設備。
A gasification furnace that forms a fluidized bed of a fluidized medium with a fluidizing reaction gas and gasifies a solid fuel containing biomass and generates gasified gas and combustible solids;
An O 2 separator that separates air into O 2 and N 2 ;
High temperature reformer for performing reforming tar and lower hydrocarbons as a mixture of o 2, wherein the relative gasification gas produced in the gasification furnace is separated by the O 2 separator,
CO 2 gas separation and circulation means for separating CO 2 gas from gasification gas downstream of the high-temperature reforming furnace and introducing the solid fuel to the gasification furnace supply system. And
The CO 2 gas separation / circulation means is constituted by a CO 2 separator provided in a preceding stage of an ammonia synthesizer for producing ammonia by mixing H 2 in a gasification gas with N 2 separated by the O 2 separator. ,
A fuel supply pipe is connected to a position lower than the upper surface of the fluidized bed on the side surface of the gasification furnace, and the solid fuel is supplied from the fuel supply pipe into the fluidized bed.
A flow gas pipe is connected in the vicinity of a connection portion of the fuel supply pipe to the gasification furnace, and the CO 2 gas separated by the CO 2 separator is separated from the flow gas pipe by the solid fuel containing the biomass. A fuel gasification facility configured to be introduced as a fluidized gas for stably supplying into a fluidized bed so as not to be melted and fixed to a connecting portion of a fuel supply pipe .
前記高温改質炉で改質されたガス化ガスから脱塵並びに微量成分除去を行うスプレー塔と、
該スプレー塔で脱塵並びに微量成分除去が行われたガス化ガスから硫黄を除去する脱硫塔と、
該脱硫塔で硫黄が除去されたガス化ガスから軽質タール等の微量成分を除去する精密除去器と、を更に備えたことを特徴とする請求項1に記載の燃料ガス化設備。
A spray tower for dedusting and removing trace components from the gasified gas reformed in the high temperature reforming furnace;
A desulfurization tower for removing sulfur from the gasification gas that has been dedusted and trace components removed in the spray tower;
The fuel gasification facility according to claim 1, further comprising a precision remover that removes trace components such as light tar from the gasification gas from which sulfur has been removed in the desulfurization tower.
前記CO2 分離器で分離されたCO2ガスを、固体燃料が貯留されるホッパへ導入するよう構成した請求項1又は2に記載の燃料ガス化設備。 The fuel gasification facility according to claim 1 or 2, wherein the CO 2 gas separated by the CO 2 separator is introduced into a hopper in which solid fuel is stored.
JP2007048726A 2007-02-28 2007-02-28 Fuel gasification equipment Expired - Fee Related JP5088535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048726A JP5088535B2 (en) 2007-02-28 2007-02-28 Fuel gasification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048726A JP5088535B2 (en) 2007-02-28 2007-02-28 Fuel gasification equipment

Publications (2)

Publication Number Publication Date
JP2008208297A JP2008208297A (en) 2008-09-11
JP5088535B2 true JP5088535B2 (en) 2012-12-05

Family

ID=39784887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048726A Expired - Fee Related JP5088535B2 (en) 2007-02-28 2007-02-28 Fuel gasification equipment

Country Status (1)

Country Link
JP (1) JP5088535B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021011A1 (en) * 2008-08-20 2010-02-25 株式会社Ihi Fuel gasification equipment
JP2010215809A (en) * 2009-03-17 2010-09-30 Yanmar Co Ltd Controller of gasification device
JP5379548B2 (en) * 2009-04-21 2013-12-25 株式会社Ihi Raw material input device for gasification equipment
UY33038A (en) * 2009-11-20 2011-06-30 Rv Lizenz Ag THERMAL AND CHEMICAL USE OF CABONACE SUBSTANCES IN PARTICULAR FOR THE GENERATION OF ENERGY WITHOUT EMISSIONS
JP5965097B2 (en) * 2010-09-13 2016-08-03 株式会社Ihi Fluidized bed gasifier
CN101995836B (en) * 2010-11-01 2012-07-18 广州迪森热能技术股份有限公司 Automatic biomass gas feeding and diffusing control system and biomass gasification reaction system
CN101995837B (en) * 2010-11-01 2012-07-18 广州迪森热能技术股份有限公司 Automatic biomass gas feeding and diffusing control method and biomass gasification reaction system
CN102796561B (en) * 2012-08-09 2014-04-30 武汉凯迪工程技术研究总院有限公司 Anaerobic gasification method and device for biomass fuels by carbon dioxide circulation
JP7135686B2 (en) * 2018-10-02 2022-09-13 株式会社Ihi Gasification gas production device and gasification gas production method
GB2593939B (en) * 2020-04-09 2022-04-27 Velocys Tech Limited Manufacture of a synthetic fuel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346065A (en) * 1993-06-07 1994-12-20 Mitsubishi Heavy Ind Ltd Gasification of organic material
JP4222645B2 (en) * 1996-04-23 2009-02-12 株式会社荏原製作所 Method and apparatus for recycling organic waste
JP3415748B2 (en) * 1996-07-15 2003-06-09 株式会社荏原製作所 Method and apparatus for two-stage gasification of organic waste
JP2002256274A (en) * 2001-03-02 2002-09-11 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed gasification facility
JP2002275479A (en) * 2001-03-16 2002-09-25 Kawasaki Heavy Ind Ltd Method and apparatus for combustible gas production
JP4124627B2 (en) * 2001-09-25 2008-07-23 株式会社荏原製作所 Liquid fuel synthesis system
JP4479906B2 (en) * 2005-02-03 2010-06-09 株式会社Ihi Fluidized bed gasification gas purification method and purification apparatus
JP2008208259A (en) * 2007-02-27 2008-09-11 Ihi Corp Fuel gasification apparatus
WO2010021011A1 (en) * 2008-08-20 2010-02-25 株式会社Ihi Fuel gasification equipment

Also Published As

Publication number Publication date
JP2008208297A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5088535B2 (en) Fuel gasification equipment
US8888875B2 (en) Methods for feedstock pretreatment and transport to gasification
JP5763618B2 (en) Two-stage dry feed gasifier and method
US9616403B2 (en) Systems and methods for converting carbonaceous fuels
JP5782376B2 (en) Two-stage entrained gasifier and method
EP1606370B1 (en) Method for producing synthesis gas
Hofbauer et al. Waste gasification processes for SNG production
JP5630626B2 (en) Organic raw material gasification apparatus and method
WO2010021011A1 (en) Fuel gasification equipment
JP2014111768A (en) Methods for producing synthesis gas
ES2804520T3 (en) Two-stage gasification with dual rapid cooling
JP4138032B2 (en) Carbonaceous material gasification method
JP2012512318A (en) Gasification system and method by stepwise slurry addition
FI110266B (en) A method for gasifying a carbonaceous fuel in a fluidized bed gasifier
US20170066983A1 (en) Integrated Process Plant Having a Biomass Reforming Reactor Using a Fluidized Bed
WO2011087951A1 (en) Producing low methane syngas from a two-stage gasifier
KR101633213B1 (en) Desulfurization apparatus and method of petroleum coke using a bubbling fluidized bed with CO2 gasification
JP2008208259A (en) Fuel gasification apparatus
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JP5040361B2 (en) Fuel gasification equipment
JP6637614B2 (en) Two-stage gasifier and gasification process with raw material flexibility
WO2010021010A1 (en) Fuel gasification system
AU2016266238B2 (en) Method for operating coal gasification system
WO2003068894A1 (en) Method and device for gasification
JP4563627B2 (en) Gasification furnace for organic waste and organic waste gasification generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5088535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees