JPS58217591A - Preparation of methane-rich gas utilizing byproduct gas - Google Patents

Preparation of methane-rich gas utilizing byproduct gas

Info

Publication number
JPS58217591A
JPS58217591A JP9948882A JP9948882A JPS58217591A JP S58217591 A JPS58217591 A JP S58217591A JP 9948882 A JP9948882 A JP 9948882A JP 9948882 A JP9948882 A JP 9948882A JP S58217591 A JPS58217591 A JP S58217591A
Authority
JP
Japan
Prior art keywords
gas
methane
rich
rich gas
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9948882A
Other languages
Japanese (ja)
Inventor
Masaaki Nakamura
正明 中村
Keiichi Saida
斎田 桂一
Kiyoshi Uenoyama
清 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9948882A priority Critical patent/JPS58217591A/en
Publication of JPS58217591A publication Critical patent/JPS58217591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To inexpensively obtain a high-calorie methane-rich gas, in preparing the methane-rich gas by reacting CO and H2 in a coal gas, by adding the byproduct exhaust gas containing high-concn. CO from a metal refining furnace as a carbon source. CONSTITUTION:After a coke oven gas 1 is introduced into a pretreating process 3 to remove the tar component therein, a proper amount of a byproduct exhaust gas 2 containing high-concn. CO from a metal refining furnace is added to said tar-free gas as a carbon source. The mixed stock gas 1 is introduced into a primary desulfurizing vessel 4 to desulfurize inorg. sulfur such as H2S and, after the treated gas is heated by a heater 5, org. sulfur such as COS in the gas is desulfurized in a secondary desulfurizing vessel 6 while finish desulfurization is further carried out in a third desulfurizing vessel 7. The desulfurized gas is pressurized to 1-50atm by a compressor 8 and introduced into a methane converter 9 filled with an Ni-Al2O catalyst, where CO and H2 in the mixed stock gas are reacted to obtain an objective methane-rich gas 11.

Description

【発明の詳細な説明】 本発明は石炭ガスから高カロリーのメタンリッチガスを
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-calorie methane-rich gas from coal gas.

メタンリッチガスは、近年都市ガスあるいは各種合成原
料ガスとしてその需要が益々盛んである。
In recent years, demand for methane-rich gas as city gas or various synthetic raw material gases has been increasing.

そこでこの需要に応するため、石炭、液化石油ガス等の
炭化水素燃料から代替天然ガス(sNG)を製造するプ
ロセスの研究が進められてきた。
In order to meet this demand, research has been progressing on processes for producing alternative natural gas (sNG) from hydrocarbon fuels such as coal and liquefied petroleum gas.

一方、製鉄所、の高炉のオールコークス操業に基づくコ
ークスの増産に伴いコークス炉ガス(COG)の発生が
増加し、現在この余剰のCOGの活用が検討されている
On the other hand, the generation of coke oven gas (COG) has increased due to increased production of coke based on all-coke operation of blast furnaces in steel plants, and the use of this surplus COG is currently being considered.

そこでこのCOG等の石炭ガス、すなわち、石炭ガスを
乾留して得られるガスからメタンリッチガスを製造する
方法が検討され、ニッケル系触媒の存在下、250〜.
500’C1圧力1〜,50気圧程度で反応を行い一酸
化炭素(Co)f、(メタン、(OH,)に転化させる
方法が試みられた。一般に石炭ガス中のH2/COモル
比はほとんどが3以上であり、水素(H2)過剰である
。メタン合成に適したH2/COモル比ハ(1)式から
もわかるように3が理想である。
Therefore, a method of producing methane-rich gas from coal gas such as COG, that is, gas obtained by carbonizing coal gas, has been studied, and in the presence of a nickel-based catalyst, methane-rich gas is produced at a temperature of 250 to 250 ml.
A method of converting 500'C1 into carbon monoxide (Co)f, (methane, (OH)) by carrying out a reaction at a pressure of 1 to 50 atmospheres has been attempted.In general, the H2/CO molar ratio in coal gas is almost is 3 or more, indicating an excess of hydrogen (H2).The H2/CO molar ratio suitable for methane synthesis is ideally 3, as can be seen from equation (1).

CO+3H−−→CH4+ H2O(1)さらに、CO
Gの場合単独でメタネー/ヨンを行っり場合、カロリー
アンプ前メタン含有率28.6%、4640 k ca
l / N m”のものが、カロリーアップ後、メタン
含有率45%で約5’700 k cal / N r
n3程度にしかならず、さらに高カロリーアンプが要望
されていた。
CO+3H--→CH4+ H2O (1) Furthermore, CO
In the case of G, when performing methane/yon alone, methane content before calorie amplifier is 28.6%, 4640 kca
l/N m", after increasing the calories, it becomes about 5'700 kcal/N r with 45% methane content.
It was only about n3, and there was a demand for an even higher calorie amplifier.

そこでこの過剰なH2f:メタンに転化させるためには
外部から炭素源を加える必要声ある。
Therefore, in order to convert this excess H2f into methane, it is necessary to add a carbon source from outside.

従来、との炭素源として、ナフサ、液化石油ガス等を加
えていたが、この場合メタン転化工程の前に炭化水素類
を一酸化炭素に分解するだめの水蒸気改質工程あるいは
部分酸化工程が必要となり、必らずしも好ましい方法と
は云えなかった。
Conventionally, naphtha, liquefied petroleum gas, etc. have been added as carbon sources, but in this case, a steam reforming process or partial oxidation process is required to decompose hydrocarbons into carbon monoxide before the methane conversion process. Therefore, it could not necessarily be said to be a preferable method.

本発明者は、外部から加える炭素源として、原料多様化
の一環として、種々探索を行い、従来、他のガスとミッ
クスし、加熱炉やボイラー等の自家消費燃料以外に使い
道の少なかった金属精錬炉で大量に副生ずる高濃度−酸
化炭素含有排ガス、たとえば製鋼用転炉排ガス、合金鉄
製造用電気炉排ガスを採用することにより、前記ナフサ
、や液化石油ガス等の如く水蒸気改質工程や部分酸化工
程等の複雑な処理工程も必要とせず、そのまま炭素源と
して使用でき極めて経済的なプロセスとなることを見出
した。
As part of the diversification of raw materials, the inventor of the present invention searched for various sources of carbon added from the outside, and discovered that metal smelting, which had traditionally been mixed with other gases and had little use other than as a self-consumption fuel for heating furnaces and boilers, etc. By employing high-concentration carbon oxide-containing exhaust gas that is produced in large amounts as a by-product in furnaces, such as converter exhaust gas for steel manufacturing and electric furnace exhaust gas for ferroalloy production, it is possible to improve steam reforming processes and parts such as naphtha and liquefied petroleum gas. It has been found that the process does not require complicated treatment steps such as oxidation steps, and can be used as a carbon source as is, resulting in an extremely economical process.

さらに、たとえば、製鋼用転炉排ガス(LD() )単
独でメタネーションを行った場合カロリーアップ前メタ
ン含有率O%、2180 k ca]、 / N m3
のものが、カロリーアップ後メタン含有率1.4%、約
2376kcal/Nm”程度にしかならないものが、
COGとLDGとを併用することによりノタノ含有率約
80%、約5ooo k cal / Nm”となり、
それぞれ単独でメタネーションした場合に比し、犬11
」なメタン含有箪と発熱量とが得られることを見出し、
本発明に到達したものである。
Furthermore, for example, when methanation is performed on steelmaking converter exhaust gas (LD()) alone, the methane content before calorie increase is 0%, 2180 kca], /N m3
However, after the calorie increase, the methane content is only 1.4%, about 2376 kcal/Nm.
By using COG and LDG together, the notano content becomes approximately 80%, approximately 500 kcal/Nm",
Compared to the case of methanation alone, dogs 11
discovered that it was possible to obtain a methane-containing cabinet and calorific value,
This has led to the present invention.

すなわち、本発明は石炭ガス中のCOとI(2とを反応
させ、メタンに富んだガスを製造する(であたり、石炭
ガス中に金属製錬炉で副生ずるCO含有排ガスを炭素源
として加えることを特徴とするメタンリッチガスの製造
法である。
That is, the present invention produces a methane-rich gas by reacting CO and I(2) in coal gas. This is a method for producing methane-rich gas characterized by the following.

石炭ガス、あるいは金属製錬炉で副生ずるCO含有排ガ
スとしてはたとえば第1表((その組成の好ましい1例
を示した。
For example, coal gas or CO-containing exhaust gas produced as a by-product in a metal smelting furnace is shown in Table 1 (a preferred example of its composition is shown).

第  1  表    (体積O;ノ 又、好ましい工程の概略説明図、の1例を第1図に示し
た。第1図において、COGとLDG i用いた場合の
例について説明すれば、COOは当初原料ガスホルダー
lに収納され、次いで前処理工程3vこ導かれ、そこで
後工程のトラブルの原因となるBTX、ナフタリン、タ
ール等の物質を除去する。
An example of Table 1 (volume O; also, a schematic explanatory diagram of a preferred process) is shown in Fig. 1. In Fig. 1, to explain an example when COG and LDG i are used, COO is initially The material is stored in a raw material gas holder 1, and then led to a pretreatment process 3v, where substances such as BTX, naphthalene, and tar that cause trouble in the subsequent process are removed.

父、添加ガスであるLDGは添加ガスホルダー2に収納
されており、前処理装置3を出たCOOに適当量添加さ
れる。LDGは通常特に前処理を必要としない。混合さ
れた原料ガスは、脱硫器に入り、メタネーンヨノ触媒に
とって被毒の原因となる硫黄化合物をl ppm以下迄
除去する。まず1次脱硫器4でF e203系の吸着剤
によってH2S等の無機サルファーを脱硫する。加熱器
5で約250’C〜5i)0℃に昇温して2次脱硫器6
でFe2O3系の吸着剤によってCO8,C82等の有
機サルファーを脱硫する。
LDG, which is an additive gas, is stored in an additive gas holder 2, and is added in an appropriate amount to the COO that has exited the pretreatment device 3. LDG usually requires no particular pretreatment. The mixed raw material gas enters a desulfurizer, where sulfur compounds that cause poisoning of the methanone iono catalyst are removed to 1 ppm or less. First, in the primary desulfurizer 4, inorganic sulfur such as H2S is desulfurized using an Fe203-based adsorbent. Heater 5 raises the temperature to about 250'C~5i) 0°C, and then the secondary desulfurizer 6
Organic sulfur such as CO8 and C82 is desulfurized using a Fe2O3-based adsorbent.

ついで3次脱硫器7でZnO系の吸着剤によって仕」二
の脱硫を行う。ついで、昇圧機8によって1〜50気圧
に昇圧して混合ガスをメタン転化器9に導く。メタン転
化器9には、N IA Q203系触媒が充填され、2
50〜500’C11〜50気圧の条−注下、CoとH
2とが反応し、混合ガスのメタネーションが行われる。
Next, a second desulfurization is performed in a tertiary desulfurizer 7 using a ZnO-based adsorbent. Then, the pressure is increased to 1 to 50 atmospheres by a pressure booster 8 and the mixed gas is introduced to a methane converter 9. The methane converter 9 is filled with NIA Q203 type catalyst, and 2
50-500'C 11-50 atmospheres - Co., H
2 reacts, and methanation of the mixed gas occurs.

メタン転化器9では必要に応じてメタン転化の反応熱に
よる温度上昇を緩和する。メタン転化器9を出たガスは
、冷却器1oで冷却され、製品ガスホルダー11に収納
される。
In the methane converter 9, temperature rise due to reaction heat of methane conversion is alleviated as necessary. The gas exiting the methane converter 9 is cooled by a cooler 1o and stored in a product gas holder 11.

以下実施例をもって本発明を更に説明する。The present invention will be further explained below with reference to Examples.

実施例 第1図の工程を用い、前記した条件でもって、COOに
LDGを添加し/こものを原料カスとしてメタイ・7 
ヨ:/を行った。用いたCOGおよびLDQの組成およ
び発熱量i−を第2表に示した通やである。
EXAMPLE Using the process shown in Figure 1 and under the conditions described above, LDG was added to COO/Metai 7 was made using the raw material scraps.
Yo: I went to /. The compositions and calorific values i- of COG and LDQ used are shown in Table 2.

cooとLDGは、C0G100に対しJJDG17ノ
削合で用いた。この比率はH2/coの原料モル比を約
3としだものである。
coo and LDG were used for JJDG17 cutting on C0G100. This ratio makes the raw material molar ratio of H2/co approximately 3.

得られた製品ガスの組成および発熱量f:第2衣に示し
た。この結果メタン含有率と発熱量の大巾向上が達成さ
れた。なお、はぼ同操業条注において、COGおよびL
DC) iそれぞれ単独でメタネー7ヨ/したときのメ
タン含有率および発熱量1・ま前述のようにそれぞれ約
5’i’00 k cal / Nrn3および23’
i’6 k cal / N m3であったから、両ガ
スを混合して原料と17て用いた場合、予期以上の高力
口l)−アンプが達成されたことになる。又、本発明方
法はナフサや液化添加ガスを添加する方法に比べて設備
を簡略化できるばかりでなく、従来積極的な有効利用が
なされていなかった金属精錬炉で副生する高濃度の一酸
化炭素含有排ガス全有効活用する方法を提供するもので
産業上の価値は極めて犬である。
Composition and calorific value f of the obtained product gas: Shown in the second column. As a result, significant improvements in methane content and calorific value were achieved. In addition, in the Habodo Operation Note, COG and L
DC) The methane content and calorific value when each i is methane 7 yo/Nrn3 and 23' respectively, as mentioned above, is approximately 5'i'00 kcal/Nrn3 and 23'
Since it was i'6 kcal/N m3, if both gases were mixed and used together with the raw material, a higher force than expected was achieved. In addition, the method of the present invention not only simplifies the equipment compared to the method of adding naphtha or liquefied additive gas, but also eliminates the high concentration of monoxide produced as a by-product in metal smelting furnaces, which has not been effectively utilized in the past. It provides a method for effectively utilizing all carbon-containing exhaust gas, and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する好ましい工程の概略説明
図の1例である。 ■・  原料ガスボルダ−12−添加ガスホルダー、3
  前処理装置、4・ 1次脱硫器、5、加熱器、6 
2次脱硫器、′/ ・3次脱硫器、8・・昇圧機、・、
・・−メタ7転化器、1−・−冷却器、Jl   製品
ガスホルダー。 代理人 弁理士 井 上 雅 生
FIG. 1 is an example of a schematic illustration of a preferred process for carrying out the method of the present invention. ■・ Raw material gas boulder-12-Additional gas holder, 3
Pretreatment device, 4. Primary desulfurizer, 5, heater, 6
Secondary desulfurizer, '/ ・Tertiary desulfurizer, 8... Booster,...
...-Meta 7 converter, 1--Cooler, Jl product gas holder. Agent Patent Attorney Masao Inoue

Claims (1)

【特許請求の範囲】[Claims] 1、 石炭ガス中の一酸化炭素と水素とを反応させ、メ
タンに富んだガスを製造するにあたり、石炭ガス中に金
属精錬炉で副生ずる高濃度−酸化炭素含有排ガスを炭素
源として加えることを特徴とするメタンリッチガスの製
造法。
1. When producing methane-rich gas by reacting carbon monoxide and hydrogen in coal gas, it is recommended to add high-concentration carbon oxide-containing exhaust gas, which is a by-product of metal smelting furnaces, to coal gas as a carbon source. Characteristic method for producing methane-rich gas.
JP9948882A 1982-06-10 1982-06-10 Preparation of methane-rich gas utilizing byproduct gas Pending JPS58217591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9948882A JPS58217591A (en) 1982-06-10 1982-06-10 Preparation of methane-rich gas utilizing byproduct gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9948882A JPS58217591A (en) 1982-06-10 1982-06-10 Preparation of methane-rich gas utilizing byproduct gas

Publications (1)

Publication Number Publication Date
JPS58217591A true JPS58217591A (en) 1983-12-17

Family

ID=14248684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9948882A Pending JPS58217591A (en) 1982-06-10 1982-06-10 Preparation of methane-rich gas utilizing byproduct gas

Country Status (1)

Country Link
JP (1) JPS58217591A (en)

Similar Documents

Publication Publication Date Title
CA2762945C (en) Method of making synthesis gas
CA2052452C (en) Process for producing high purity hydrogen
AU2014361206B2 (en) Method for generating synthesis gas in conjunction with a smelting works
KR970006922B1 (en) Process for the preparation of carbon monoxide rich gas
GB1033764A (en) Improvements in or relating to the production of methane gases
BRPI0609477A2 (en) synthesis gas production units and their production method
JP4580310B2 (en) Generation method of high calorific gas
AU2014361204A1 (en) Method for preparation of ammonia gas and CO2 for a urea synthesis process
GB2039518A (en) A process and a plant for preparing a gas rich in methane
US3728093A (en) Production of synthetic pipeline gas
JP5763054B2 (en) Method for simultaneously producing iron and crude synthesis gas containing CO and H 2
US4159201A (en) Process for producing a carbon monoxide-rich gas
CN105883851A (en) Novel gasification and pyrolysis coupling gas poly-generation process
JPS5938161B2 (en) Method for producing synthesis gas for ammonia production
JP2015117312A (en) Method for producing gas turbine fuel
US2383715A (en) Production of gas mixture for methanol
JPS60155627A (en) Metal compound reduction and apparatus therefor
JPS6129328B2 (en)
EP0113198A2 (en) Single-stage reforming of high hydrogen content feeds for production of ammonia syn gas
JPS58217591A (en) Preparation of methane-rich gas utilizing byproduct gas
JPS5811591A (en) Preparation of high calorie gas from coal gas as raw material
US2349438A (en) Process of producing a gas suitable for the synthesis of hydrocarbons
JPH04159393A (en) Manufacture of city gas of high calorific value
JP3947266B2 (en) Hydrogen production method and apparatus used therefor
JPS57162784A (en) Preparation of gas rich in methane