JPS58112372A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS58112372A JPS58112372A JP21051381A JP21051381A JPS58112372A JP S58112372 A JPS58112372 A JP S58112372A JP 21051381 A JP21051381 A JP 21051381A JP 21051381 A JP21051381 A JP 21051381A JP S58112372 A JPS58112372 A JP S58112372A
- Authority
- JP
- Japan
- Prior art keywords
- film
- mask
- semiconductor substrate
- region
- ion implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 150000004767 nitrides Chemical class 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 11
- 230000001681 protective effect Effects 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 238000005468 ion implantation Methods 0.000 abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 16
- 238000000137 annealing Methods 0.000 abstract description 8
- 238000004925 denaturation Methods 0.000 abstract description 8
- 230000036425 denaturation Effects 0.000 abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 7
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 5
- 150000002500 ions Chemical class 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 230000002411 adverse Effects 0.000 abstract description 2
- 238000010494 dissociation reaction Methods 0.000 abstract description 2
- 230000005593 dissociations Effects 0.000 abstract description 2
- 230000004913 activation Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- -1 silicon ions Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 101100366935 Caenorhabditis elegans sto-2 gene Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の技術分野
本発明は半導体装置の製造方法、より詳しくは化合物半
導体基板上に、自己整合(セルフアラインメント−s@
lf aligmm@nt−)型電界効果トランジスタ
(FET )を、イオン注入におけるマスクパターンの
位置ずれなく高精度に形成することを可能にする半導体
装置の製“遣方法に関する。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for manufacturing a semiconductor device, and more specifically, to perform self-alignment (self-alignment) on a compound semiconductor substrate.
The present invention relates to a method for manufacturing a semiconductor device that allows a field effect transistor (FET) of the lf aligmm@nt- type to be formed with high precision without misalignment of a mask pattern during ion implantation.
(2) 技術の背景
近年の半導体集積回路の発展経過においては、半導体装
置をよシ以上に高密度に、かつ、高信頼性でもって製造
することが必要とされている。(2) Background of the Technology With the recent development of semiconductor integrated circuits, it is necessary to manufacture semiconductor devices with higher density and higher reliability.
GaAs等の化合物半導体を用いた所謂シ、、トキ・ダ
ート型電界効果トランジスタの製造においても、ゲート
幅をできるだけ狭くすることが高密度化にとって必要で
あるが、その場合ソース・ドレイン引出し抵抗低減のた
めr−)電極をマスクとするイオン注入で高密度領域を
形成する所謂自己整合型構造を併用しようとすると、マ
スク合せ上の問題が生じて来る。即ち、かかる電界効果
トランジスタを′、そのダート幅を現在以上に狭くシた
状態で形成するた込には、活性領域とソース・ドレイン
高濃度領域との形成に用いるイオン注入マスクの位置合
わせ精度の向上が必要罠なって来る。In the manufacture of so-called "cross-dart" field effect transistors using compound semiconductors such as GaAs, it is necessary to make the gate width as narrow as possible to achieve high density. Therefore, if a so-called self-aligned structure in which a high-density region is formed by ion implantation using the r-) electrode as a mask is used, a problem arises in mask alignment. In other words, in order to form such a field effect transistor with a dirt width narrower than the current one, it is necessary to improve the alignment accuracy of the ion implantation mask used to form the active region and the source/drain high concentration regions. It becomes a trap that requires improvement.
(3)従来技術と問題点 !1図は従来技術における自己整合構造のシ。(3) Conventional technology and problems ! Figure 1 shows a self-aligned structure in the prior art.
ットキ・ダート重電界効果トランジスタの製造方法を説
明するためKその要部を断面で示す図で、同図を参照す
ると、先ず半絶縁性の化合物半導体(GaAm )基W
Ll上に二酸化シリコン(8102)膜2を厚さ約40
001に形成し、次いでPET形成領域用窓を窓開けす
る(同図(a) )、かかる8102膜2の膜厚は、イ
オン注入において、マスクとして効果が十分発揮しうる
厚さである6次いで、上記5in2!#2をマスクとし
て、窓開けされたFET形成領域にシリコンイオン(8
1”)を通常の技術でイオン注入法で注入する。In order to explain the manufacturing method of a heavy field effect transistor, this is a diagram showing a cross section of the main part. First, a semi-insulating compound semiconductor (GaAm) base
Silicon dioxide (8102) film 2 is placed on Ll to a thickness of about 40 mm.
001, and then a window for the PET formation region is opened (see figure (a)).The thickness of the 8102 film 2 is such that it can be sufficiently effective as a mask in ion implantation. , the above 5in2! Using #2 as a mask, silicon ions (8
1") is implanted by ion implantation using conventional techniques.
しかる後、マスクとして用いた8102膜2を工。After that, the 8102 film 2 used as a mask was processed.
チングにより除去し、次いで当該半導体基板表面に厚さ
100OXの保護膜(810□膜)を付着させてからア
ニールを行ない、注入され先前記シリコンイオンを活性
化してn W!FIT形成領域(活性層)3を形成した
稜上記n型領域にr−ト電&4を形成する(同一(b)
)。Then, a protective film (810□ film) with a thickness of 100 OX is attached to the surface of the semiconductor substrate, and then annealing is performed to activate the silicon ions to be implanted, and nW! An r-to-electrode &4 is formed in the n-type region above the ridge where the FIT formation region (active layer) 3 is formed (same (b)).
).
しかる後再度イオン注入マスクとして5102膜を付着
した後、高濃度層形成領域部分の窓開けを行ない、次い
で通常の技術によるイオン注入法によシ高湊度にシリコ
ンイオン(81”)を注入する(同図(C))。After that, a 5102 film is again deposited as an ion implantation mask, a window is opened in the region where the high concentration layer is to be formed, and then silicon ions (81") are implanted to a high degree of depth using the ion implantation method using a conventional technique. (Figure (C)).
次いで上記イオン注入マスク用5tO2膜5を除去した
後、保護膜としてStO□膜(図示せず)を当該半導体
基板1上に付着させ、しかる後アニールを行ないn+高
濃度層6.7を形成し、次いで上記保護膜(sto2膜
)を除去した後、ソースおよびドレイン用の高濃度領域
6,7にそれぞれソース電極8、ドレイン電極9を形成
してFETを作成する(同図(d) ) @
とζろで、上述した従来技術においては、以下に述べる
如く、イオン注入用マスク形成におけるマスク合わせ精
度は通常1〜2μmが限度であるため、当該マスクの位
置ずれが起こる欠点がある。Next, after removing the ion implantation mask 5tO2 film 5, a StO□ film (not shown) is deposited on the semiconductor substrate 1 as a protective film, and then annealing is performed to form an n+ high concentration layer 6.7. Then, after removing the protective film (sto2 film), a source electrode 8 and a drain electrode 9 are formed in the high concentration regions 6 and 7 for the source and drain, respectively, to create an FET (FIG. 2(d)). In the above-mentioned conventional technology, as described below, the mask alignment accuracy in forming an ion implantation mask is usually limited to 1 to 2 μm, so there is a drawback that the mask may be misaligned.
すなわち、第1図(C)に示す高濃度層形成のためのイ
オン注入におけるマスクとしてS量0□膜5を付着した
後、上記高濃度層形成領域部分をエツチングした場合、
同図に破線で示す如くにマスク・量ターンがずれること
がある。かかるマスクツ臂ターンのずれはn型層3と1
層6.7とのずれを生じ、このずれがr−)幅方向に生
じるとそのFETではソース・ドレイン引出し抵抗低減
の効果が減殺されるため、特にr−ト幅を狭くとってい
たとすると(例え#−15μm以下)、完成したFET
の特性が・fラツキ、%に集積回路の場合正常動作を果
し得なくなる等、製造歩留シや装置信頼性の面で問題と
なる。That is, when the S content 0□ film 5 is deposited as a mask in the ion implantation for forming the high concentration layer shown in FIG. 1(C), and then the high concentration layer forming region is etched,
As shown by the broken line in the same figure, the mask/quantity turn may shift. This misalignment of the mask-to-arm turn is caused by the difference between the n-type layers 3 and 1.
If a misalignment occurs with the layer 6.7, and this misalignment occurs in the r-) width direction, the effect of reducing the source/drain extraction resistance will be diminished in that FET. (e.g. #-15μm or less), completed FET
In the case of an integrated circuit, the characteristics of the integrated circuit are unstable and the integrated circuit cannot operate normally, which causes problems in terms of manufacturing yield and device reliability.
一方、上記マスクツ譬ターンのずれを防止するため、第
1図(&)に示すSiO2膜2を除去せずにそのまま残
し、当該5502膜2を高濃度層6.7形成のためのイ
オン注入マスクとして再使用することが考えられる。On the other hand, in order to prevent the mask from shifting, the SiO2 film 2 shown in FIG. It is possible to reuse it as
ところが厚い5102膜はGaAs等の化合物半導体基
板との間では内部ストレス発生等による著しい熱変性を
与えるため、上述した同図伽)ll′2:おけるアニー
ルにおいてGaAs基板が熱費性し、その結果基板表面
のsto、鵬と接している部分が導電性をもつようにな
るという重大な問題がある。そのため、力・かる方法は
上記マスク・量ターンのずれを解決するのに使用するこ
とはできない。However, when the thick 5102 film is connected to a compound semiconductor substrate such as GaAs, it causes significant thermal denaturation due to the generation of internal stress. There is a serious problem in that the portions of the substrate surface that are in contact with the sto and ferrules become electrically conductive. Therefore, the force-measure method cannot be used to solve the above-mentioned mask-quantity turn deviation.
以上説明した如くに、従来技術においては、イオン注入
マスクの位置ずれを解決することができないため、半導
体装置の信頼性低下をまねく實か)でなく、集積回路の
高密化にも支障を来すも°のである。As explained above, in the conventional technology, it is not possible to solve the misalignment of the ion implantation mask, which not only leads to a decrease in the reliability of semiconductor devices, but also hinders the increase in the density of integrated circuits. It is also °.
(4)発明の目的
本発明は上述した従来技術における問題点に鑑み、前記
位置ずれおよび熱変性による基板への悪影響のないイオ
ン注入マスクを用いることによシ、r−)幅の狭い高密
度化に適した半導体装置の製造方法を提供することにあ
る。(4) Purpose of the Invention In view of the above-mentioned problems in the prior art, the present invention provides an ion implantation mask that does not adversely affect the substrate due to positional deviation and thermal denaturation. An object of the present invention is to provide a method for manufacturing a semiconductor device suitable for
(5) 発明の構成
上記目的を達成するため、本願の発明者は9什アルミニ
ウム(A/N)が化合物半導体基板に熱費性を発生させ
ないことに着目し、かかる事実に基づいて当@ AJN
膜を態量活性層およびn+型高lII度層形成のための
イオン注入マスクとして共通に用いることを特徴とする
半導体装置の製造方法を提供する。なお、AjNによる
熱変性については下記の実施例で説明する。(5) Structure of the Invention In order to achieve the above object, the inventor of the present application focused on the fact that 90nm aluminum (A/N) does not cause heat consumption in compound semiconductor substrates, and based on this fact, the inventor of the present application @ AJN
Provided is a method for manufacturing a semiconductor device, characterized in that a film is commonly used as an ion implantation mask for forming a quantitatively active layer and an n+ type high degree layer. Note that thermal denaturation by AjN will be explained in the following examples.
(6)発明実施例
菖2図は本発明の方法の実施例を説明するために半導体
装置の要部を断面で示す図で、同図において第1図と同
じ部分は同じ符号を付して示す。(6) Embodiment of the Invention Figure 2 is a cross-sectional view of the main parts of a semiconductor device for explaining an embodiment of the method of the present invention. show.
縞2図を参照すると、半絶縁性の化合物半導体基板1上
に窒化アル2ニウム(ムjN)膜12を例えば4000
Xの膜厚に形成し、自己整合型電界効果トランジスタ形
成領域のための窓を窓開けする。Referring to the stripe diagram 2, an aluminum nitride (mujN) film 12 is coated on a semi-insulating compound semiconductor substrate 1 with a film thickness of, for example, 4,000 yen.
The film is formed to have a film thickness of X, and a window for a self-aligned field effect transistor formation region is opened.
なおかかるmuきは従来の工、チング技術を用いて答易
になしうる。It should be noted that such mucking can be easily accomplished using conventional machining and cutting techniques.
次いで、従来技術の場合と同じく、シリコンイオン(s
t”)を上記AJN膜12をマスクとして、当該FET
形成領域にイオン注入法によシ注入する(第2図(a)
’) 。Next, as in the prior art, silicon ions (s
t'') using the AJN film 12 as a mask, the FET is
The formation region is implanted by ion implantation (Fig. 2(a)).
').
しかる後、上記マスク12を付着したまま車紋半導体基
板lの表面に保護膜として二酸化シリコン(8102)
膜13を付着してからアニールを行な因、n型活性層3
を形成する(同図(b))。このS io2膜13は、
本発明では必須ではないが、1000X程度の薄いもの
であれば後述の如く熱費性を発生しないのに対し、熱処
理によるGaAs等の化合物半導体基板表面でのAs解
離等による変性を防ぐのにむしろ効果がある。After that, silicon dioxide (8102) is applied as a protective film to the surface of the car pattern semiconductor substrate l with the mask 12 still attached.
After depositing the film 13, annealing is performed to form the n-type active layer 3.
((b) in the same figure). This S io2 film 13 is
Although not essential in the present invention, if it is as thin as about 1000X, it will not cause any heat costs as described below, but it is more effective to prevent degeneration due to dissociation of As on the surface of a compound semiconductor substrate such as GaAs due to heat treatment. effective.
マスク12を付着したitアニールをすることができる
理由は、第3図に示す如(、AJNが8102とは異な
jl GmAm等の化合物半導体基板に対して熱費性を
起生させないためである。The reason why it is possible to perform IT annealing with the mask 12 attached is because as shown in FIG.
第3図は5102またはAJNを保!!膜とした場合、
イオン注入後にかかる保護膜を被覆しfcGmAs基板
を熱処理した後における注入イオンの活性化率の膜厚に
対する依存性を示す線図で、同図においてIは810.
被徨時の活性化率、■はA/N被覆時の活性化率をそれ
ぞれ示している。Figure 3 shows 5102 or AJN! ! When used as a membrane,
This is a diagram showing the dependence of the activation rate of implanted ions on the film thickness after the fcGmAs substrate is coated with the protective film and heat treated after ion implantation, and I is 810.
Activation rate when covered with A/N, and ■ indicate activation rate when covered with A/N, respectively.
同図を参照すると、AjN ll[使用時の活性化率は
図示されている1μm以下の膜厚の範囲において80−
と一定しておシ、当該AJN膜に起因する熱費性がない
ことを示している。一方、5so2II使用時の活性化
率は0.1ttrII(D@厚のところで−Ifは10
0−以下になるが、当該膜厚よシ大きいとζろでは再び
活性化率が増加し、140%の値で安定する。前記活性
化率が100%を越えることは注入イオン数より多いキ
ャリアを発生していることを意味し、従って基板が熱愛
性を生じていることを示すものである。Referring to the figure, AjN ll [the activation rate during use is 80-
This shows that there is no heat cost caused by the AJN film. On the other hand, the activation rate when using 5so2II is 0.1ttrII (-If at D@thickness is 10
However, if the film thickness is larger than that, the activation rate increases again at ζ and stabilizes at a value of 140%. When the activation rate exceeds 100%, it means that more carriers are generated than the number of implanted ions, and therefore indicates that the substrate is fervent.
上述した如<、AINは熱変性を発生させなめため、従
来技術におけるSl02gのように、アニールを行なう
前に除去する必要がなく、従って従来技術において問題
とされ九マスクツ譬ターンの位置ずれの問題が解決され
る。As mentioned above, since AIN causes thermal denaturation, there is no need to remove it before annealing, unlike Sl02g in the prior art, and therefore, the problem of misalignment of nine mask turns, which is a problem in the prior art, is avoided. is resolved.
以上述べた如く、膜厚に関係なく熱変性を発生させない
AjNイオン注入マスクを付着したtまアニールを行な
いn型活性層を形成した(1112図伽))後、アニー
ル保繰膜(8102膜)13を除去し、次いでn型活性
層上にゲート電極4を形成し、しかる後付着したままの
AAIN膜12全12クとして高濃度SI+をイオン注
入法によシ注入する(同図(e))−次いで、熱変性を
生じない程度の薄い5lo2膜を保護膜として車重半導
体基板表面に付着してからアニールを行ない、n+高濃
度層6.7をセルファライン的に形成する。As mentioned above, after the n-type active layer was formed by annealing with an AJN ion implantation mask that does not cause thermal degeneration regardless of the film thickness (Fig. 1112)), an annealing preservation film (8102 film) was formed. 13 is removed, and then a gate electrode 4 is formed on the n-type active layer, and then high-concentration SI+ is implanted by ion implantation as the entire 12 parts of the AAIN film 12 still attached (FIG. 1(e)). )--Next, a 5LO2 film, which is thin enough not to cause thermal denaturation, is attached to the surface of the vehicle heavy semiconductor substrate as a protective film and then annealed to form an n+ high concentration layer 6.7 in a self-aligned manner.
最後に、上記5IO2保11膜を除去し、n+高濃度層
上にソースおよびドレイン電極8.9を形成する(同図
(d))。Finally, the 5IO2 film 11 is removed, and source and drain electrodes 8.9 are formed on the n+ high concentration layer (FIG. 4(d)).
(7)発明の効果
以上説明した如く、本発明の方法によれば、セルフアラ
インメント型FETをイオン注入マスクの位置ずれなし
に形成することができるため、従来技術では不可能であ
ったf−)幅の縮小も従来の5μmから本発明において
は1μm程FI!Lまで狭めることが可能となり、集積
回路(LSI、VLSI )の高密化に貢献できるだけ
でなく、半導体装置の信頼性も向上するときとなシ、半
導体1k111製造における効果は大なるものである。(7) Effects of the Invention As explained above, according to the method of the present invention, a self-alignment type FET can be formed without misalignment of the ion implantation mask. The width has also been reduced from the conventional 5 μm to about 1 μm in the present invention! It becomes possible to reduce the size to L, which not only contributes to higher density of integrated circuits (LSI, VLSI), but also improves the reliability of semiconductor devices, which has a great effect on semiconductor 1k111 manufacturing.
第1図は従来技術におけるセルファラインメント型電界
効果トランジスタの製造方法を説明するための半導体装
置要部の断面図、第2図は本発明における上記電界効果
トランジスタの製造方法を断切するための半導体装置要
部の断面図、第3図は二酸化シリコン膜および窒化アル
ミニウム膜の膜厚に対するGaAs基板中の注入イオン
の活性化率の依存性を示すl/#図である。
1・・・化合物半導体基板、2.5.13・・・二酸化
シリコン膜、3・・・mli活性層、4・・・ダート電
極、6.7・・・n+高II!度層、8・・・ソース電
極、9・・・ドレイン電極、12・・・窒化アルミニウ
ム膜。
特許出願人 富士通株式会社
代理へ弁理士 松 岡 宏四部1....:、・’C”
ljj
第1図
、;l゛
(b)
第1図
(d
第2図
(Q )FIG. 1 is a sectional view of a main part of a semiconductor device for explaining a method of manufacturing a self-alignment field effect transistor in the prior art, and FIG. 2 is a cross-sectional view of a semiconductor device for explaining a method of manufacturing a field effect transistor according to the present invention FIG. 3, which is a sectional view of the main part of the device, is an l/# diagram showing the dependence of the activation rate of implanted ions in the GaAs substrate on the film thicknesses of the silicon dioxide film and the aluminum nitride film. 1...Compound semiconductor substrate, 2.5.13...Silicon dioxide film, 3...mli active layer, 4...Dart electrode, 6.7...n+high II! 8... Source electrode, 9... Drain electrode, 12... Aluminum nitride film. Patent applicant represented by Fujitsu Limited Patent attorney Hiroshi Matsuoka 1. .. .. .. :,・'C”
ljj Figure 1; l゛(b) Figure 1(d Figure 2(Q)
Claims (1)
方法において、前記半導体基板上に、窒イヒアルミニウ
ム膜を付着し素子領域形成用窓を窓開けする工S%該窒
化アルオニウム膜をマスクとして上記窓開けされた領域
に不純物の注入を行ない、しかる後当該基板表面に保護
膜を付着して熱処理を行ない活性層領域を形成する工程
、上記保護膜を除去した後前記領域にゲート電極を形成
し、次いで前記窒化アルζニウム膜とダート電極を一ス
クとして不純物注入を行ない、しかる後皺半導体基板表
面に保護膜を付着した後に熱処理によシソース・ドレイ
ン高談度領域を形成する工程、上記保護膜を除去し友後
、ソースおよびドレイン電極を高濃度領域に形成する工
程、を含むことを特徴とする半導体装置の製造方法。In a method for forming a field effect transistor on a compound semiconductor substrate, an aluminum nitride film is deposited on the semiconductor substrate, and a window for forming an element region is opened using the aluminum nitride film as a mask. After that, a protective film is attached to the surface of the substrate and heat treatment is performed to form an active layer region. After removing the protective film, a gate electrode is formed in the region, and then a gate electrode is formed in the region. Impurity implantation is carried out using the aluminum ζ nitride film and the dirt electrode as one mask, and after that, a protective film is attached to the surface of the wrinkled semiconductor substrate, and a step of forming a source/drain high conductivity region by heat treatment is performed, and the above protective film is removed. 1. A method of manufacturing a semiconductor device, comprising the step of forming source and drain electrodes in a high concentration region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21051381A JPS58112372A (en) | 1981-12-26 | 1981-12-26 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21051381A JPS58112372A (en) | 1981-12-26 | 1981-12-26 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58112372A true JPS58112372A (en) | 1983-07-04 |
JPH024138B2 JPH024138B2 (en) | 1990-01-26 |
Family
ID=16590611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21051381A Granted JPS58112372A (en) | 1981-12-26 | 1981-12-26 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58112372A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849620A (en) * | 1995-10-18 | 1998-12-15 | Abb Research Ltd. | Method for producing a semiconductor device comprising an implantation step |
-
1981
- 1981-12-26 JP JP21051381A patent/JPS58112372A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849620A (en) * | 1995-10-18 | 1998-12-15 | Abb Research Ltd. | Method for producing a semiconductor device comprising an implantation step |
Also Published As
Publication number | Publication date |
---|---|
JPH024138B2 (en) | 1990-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6310589B2 (en) | ||
EP0706202A2 (en) | Method for producing a pattern and a semiconductor device | |
US4977100A (en) | Method of fabricating a MESFET | |
US4700455A (en) | Method of fabricating Schottky gate-type GaAs field effect transistor | |
JPS58112372A (en) | Manufacture of semiconductor device | |
JPS594083A (en) | Manufacture of semiconductor device | |
JPS61240684A (en) | Schottky-type field effect transistor and manufacture thereof | |
JPS6347982A (en) | Semiconductor device | |
JP3139208B2 (en) | Method for manufacturing field effect transistor | |
JP2682032B2 (en) | Method for manufacturing semiconductor device | |
JP2667840B2 (en) | Method for manufacturing compound semiconductor device | |
JP2796303B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPS6190470A (en) | Manufacture of compound semiconductor device | |
JPS61150379A (en) | Manufacture of semiconductor device | |
JPS63281473A (en) | Field-effect semiconductor device and manufacture thereof | |
JPS5893290A (en) | Manufacture of schottky barrier field effect transistor | |
JPH0439773B2 (en) | ||
JPH03240244A (en) | Semiconductor device and its manufacture | |
JPS58145161A (en) | Manufacture of semiconductor device | |
JPH01208870A (en) | Manufacture of compound semiconductor device | |
JPS59123269A (en) | Manufacture of semiconductor device | |
JPH09293735A (en) | Manufacture of field effect transistor | |
JPH0783026B2 (en) | Method for manufacturing field effect transistor | |
GB2273202A (en) | Field effect transistor | |
JPH0353773B2 (en) |