JPS58111302A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPS58111302A
JPS58111302A JP56210411A JP21041181A JPS58111302A JP S58111302 A JPS58111302 A JP S58111302A JP 56210411 A JP56210411 A JP 56210411A JP 21041181 A JP21041181 A JP 21041181A JP S58111302 A JPS58111302 A JP S58111302A
Authority
JP
Japan
Prior art keywords
ball
rare earth
magnetic properties
elements
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56210411A
Other languages
Japanese (ja)
Inventor
Yoshio Inokoshi
良夫 猪越
Katsuhiko Yahagi
矢萩 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP56210411A priority Critical patent/JPS58111302A/en
Publication of JPS58111302A publication Critical patent/JPS58111302A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To lower the distortion in ground particles thereby to improve magnetic properties, by employing a sintered hard alloy ball as a grinding ball used in the grinding process. CONSTITUTION:An alloy consisting essentially of 20-40wt% one or more kinds of rare earth elements and 60-80wt% one or more kinds of transition elements (Co, Fe, Ni, Mo, Cr, Mn and the like) and one or more kinds of other elements is ground by means of a vibration ball mill and shaped in a magnetic field and is then sintered to complete a magnetic product. Magnetic properties, i.e., coersive force and residual flux density, are heightened by employing a sintered hard alloy ball having a diameter of 4-10mm. as a ball used in the grinding process.

Description

【発明の詳細な説明】 本発明は希土類元素と遷移元素とその他の元素の合金か
らなる微粉末tg形、焼結して製造する磁石の製造方法
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of manufacturing a magnet by sintering a fine powder TG type made of an alloy of rare earth elements, transition elements, and other elements.

従来希土類磁石(以後RM磁石と称する・Rは希土類元
素、輩はその他の元素、)は磁気特性に優n、小型磁石
製品にしても充分優rtた磁気特性含有することから小
型、薄型製品、軽量機器に用いられつつある0例えば電
子時計、小型モーター、スピーカー、計測器等に広(用
いらnている。
Conventional rare earth magnets (hereinafter referred to as RM magnets, where R is a rare earth element and R is another element) have excellent magnetic properties, and are good enough to be used as small magnet products, so they are small, thin products, It is increasingly being used in lightweight equipment, such as electronic watches, small motors, speakers, and measuring instruments.

しかし磁気特性の向上には粉砕工程が重要な役目會果た
すが、従来の粉砕方法では、粉砕工程において生成され
る粉体は大きな歪を有し、磁気特性を低下してしまう欠
点があった。
However, although the pulverization process plays an important role in improving the magnetic properties, conventional pulverization methods have the drawback that the powder produced in the pulverization process has large distortions, which deteriorates the magnetic properties.

本発明は上記欠点上改良し、粉砕工程において使用する
粉砕球を超硬質合金球とし、粉末粒子中の歪を低下する
事が出来るため、磁気特性を著しく向上することを可能
せしめる製造方法である。
The present invention is a manufacturing method that improves on the above-mentioned drawbacks and uses ultra-hard alloy balls as the grinding balls used in the grinding process, which reduces strain in the powder particles, thereby making it possible to significantly improve magnetic properties. .

一般にR−磁石は希土類元素Rが、B’W、、04、P
デ、8@、Y、La、等〕と輩はo@、y。
In general, R-magnets contain rare earth elements R, B'W, 04, P
[De, 8@, Y, La, etc.] and the others are o@, y.

、M4.Of等の遷移金属及びMI # C(L # 
Ba、Sr、?(、Zr、Tlf、V、Mh 、TG、
WムA a ’ a ’ を等の元素からなる金属間化
合物で”* MN e RI Ml  a RI M鯉
等の化学式を有している。
, M4. Transition metals such as Of and MI#C(L#
Ba, Sr,? (, Zr, Tlf, V, Mh, TG,
It is an intermetallic compound consisting of elements such as WmuA a ' a ' and has a chemical formula such as "* MN e RI Mla RI M carp.

上記の構成元素を共溶解して製造した合金11ず微粒子
の単磁区粒子まで粉砕することが重要である0通常10
 p以下に粉砕する必要がTo17.最適粒度範囲は1
〜10μである。この微粉砕は一般にゼール電ル、振動
ミルにて粉砕するのであるが、′ボール玉、として超硬
合金球の材質で直径41〜1゜露の範囲で行なっている
。この場合ボール玉t−4゛■以下、゛又は10雪以上
にしたi合、生成される微粉末が最適粒度範囲(1〜1
0−μ)以外に属するため、球の直径を1配のごとく採
用し元。
Alloy manufactured by co-dissolving the above constituent elements 11 It is important to grind down to fine single domain particles 0 Usually 10
To17. The optimal particle size range is 1
~10μ. This fine pulverization is generally carried out using a Seel electric or vibrating mill, and is carried out using cemented carbide balls having a diameter of 41 to 1°. In this case, if the ball ball is less than t-4゛■, ゛ or more than 10 snow, the fine powder produced will be in the optimum particle size range (1 to 1
Since it belongs to a range other than 0-μ), the diameter of the sphere is used as if it were one size.

本発明により、微粉砕工程におけるポールの材質による
磁気特性への影響が7判明した。従来の鋼のボール玉に
比べ、超硬質合金球を使用した場合、製造さnる希土類
磁石の保磁力、残留磁束密度が増大することが可蛇とな
った。
According to the present invention, seven effects on magnetic properties due to the material of the pole in the pulverization process have been clarified. Compared to conventional steel balls, when using cemented carbide balls, it has become possible to increase the coercive force and residual magnetic flux density of the manufactured rare earth magnet.

この微粉末は磁場中(s、oooエルステッド以上)で
0゜5〜10t/jで成廖し、その後さらに静水圧加圧
により密度を均一化する。この場合5〜30t/−で約
蜀秒間加圧する。この後真空中(約1〇−禦〜10−”
Tarf)で約400〜500℃で1〜2時間脱ガスを
行ない、1100〜1250℃の範囲で焼結後、冷却し
さらに300〜900Cで1−■時間焼鈍i53磁石製
晶に製造される。
This fine powder grows at 0°5 to 10 t/j in a magnetic field (more than s, ooo Oersted), and is then further homogenized by hydrostatic pressure. In this case, pressure is applied at 5 to 30 t/- for about 10 seconds. After this, in a vacuum (approximately 10-10"
Tarf) is degassed at about 400-500°C for 1-2 hours, sintered at 1100-1250°C, cooled, and further annealed at 300-900C for 1-2 hours to produce an i53 magnet crystal.

次に実施例について説明する。Next, an example will be described.

実−例1 金属am (99、91>) f:2511ft−ト4
11ROo(99,99チ〉)50重量%、0%(99
゜elG>)8重量%、71 (99,9−>)15重
量−12デ(99,9%〉)2重量−を夫々秤量し、こ
れを真空後ムマ置換した溶解炉中でアルミナルツボを用
いて高周波溶解を行ない、金塩に鋳造されて合金インゴ
ットを作製する。こrL!クラッシャーで窒素ガス中で
5メツシユ(約1φ■]以下に粗粉砕する、この粉末と
溶媒ダイフロンと所定の直径4 、6 、8 、10−
の超硬質球を入れ各ポット共300〜400分振動ボー
ル電ルにて微粉砕さnlいずnも1〜10 p程度まで
粉砕する。
Actual Example 1 Metal am (99, 91>) f: 2511ft-4
11ROo (99,99chi) 50% by weight, 0% (99
゜elG〉) 8% by weight, 71 (99,9->) 15% by weight and 12de(99,9%〉) by 2% by weight were weighed, respectively, and placed in an alumina crucible in a melting furnace that had been vacuumed and replaced with a vacuum. The metal is used for high frequency melting and cast into gold salt to produce an alloy ingot. This is L! Coarsely crush this powder to 5 meshes (approximately 1φ■) or less in a crusher in nitrogen gas, and combine this powder with the solvent Daiflon and a predetermined diameter of 4, 6, 8, 10 mm.
Each pot was pulverized with a vibrating ball electrician for 300 to 400 minutes to a particle size of 1 to 10 particles.

ボール玉を鋼にし元場合も同様である。The same is true when the ball is made of steel.

各粉末は、20,000エルステツドの磁界中で2處/
−加圧さnる。さらにゴムパツキンをし、油中にて5t
/−の静水圧加圧上行なった。この物は真空中゛で脱溶
媒さnlさらに500℃で脱ガスを行ない、とfit−
1200℃で2時間焼結をし、100℃以下に冷却する
。その後8oo℃で2時間飾鈍會行ない、磁気特性t 
Ill定し、ボール玉が鋼の場合と超硬合金の場合の両
者を比較する実施例2 金属B惰(99,9%>)會12重量−1金属Py(9
9,9嗟>)t13重量%、金1!Oo’(99999
G>)¥t5G重量%、Ms(99,99%>)tto
重ts、−1=t (99,9%>)7重量%、ムA(
99,9嘔〉)を7.5重量−10(99、s9%>)
to−5重量−を高周波溶解後金型に鋳造しインゴット
を作り、その後粗粉砕する、この粉末をステンレスポッ
トに、ダイフロン溶媒と各所定の’ * 6 # 8 
、10雪の超硬合金球と共に入れ振動ボールミルにて1
〜10μ程度に微粉砕する。各粉末は20,000エル
ステツド磁界中で10#/−加圧を行ない、充分脱ガス
後xfo。
Each powder was tested 2 times per day in a magnetic field of 20,000 oersteds.
- Pressurize. Furthermore, put on a rubber seal and place it in oil for 5 tons.
/- hydrostatic pressurization was carried out. This product was desolventized in vacuum, further degassed at 500°C, and fit-
Sintering is carried out at 1200°C for 2 hours and then cooled to below 100°C. After that, the temperature was 80°C for 2 hours, and the magnetic properties were
Example 2 Comparing the cases where the balls are made of steel and those made of cemented carbide Metal B (99,9%>)
9,9嗟>) T13% by weight, gold 1! Oo'(99999
G>)¥t5G weight%, Ms(99,99%>)tto
Weight ts, -1=t (99,9%>) 7% by weight, Mu A (
99,9〉) to 7.5 weight -10 (99,s9%〉)
After high-frequency melting, the to-5 weight is cast into a mold to make an ingot, and then coarsely crushed. This powder is placed in a stainless steel pot, and mixed with Daiflon solvent and each prescribed '*6 #8
, 1 in a vibrating ball mill with 10 snow cemented carbide balls.
Finely grind to about 10μ. Each powder was subjected to pressurization of 10#/- in a 20,000 oersted magnetic field, and after sufficient degassing, xfo was obtained.

Cそ3時間焼結し室温まで急冷し、′その後8廊O亡f
4時間焼鈍し、磁気特性を測定す為、比較のため微粉砕
工程で使用される超硬合金球上通常の鋼球で置換した場
合において製造さnる磁石の磁気特性も測定した。
Sintered for 3 hours, cooled rapidly to room temperature, and then sintered for 3 hours.
After annealing for 4 hours, in order to measure the magnetic properties, the magnetic properties of the produced magnet were also measured in the case where the cemented carbide balls used in the pulverization process were replaced with ordinary steel balls for comparison.

以上のようにして得らrtた磁気特性とボール材質の関
係を第1図及び第2図に示しである。この図から明らか
であるように、磁気特性はボール玉の材質に依存し、超
硬合金球を使用すると著しく、磁気特性、すなわち保磁
力(t+Ha)、残留磁束密度(Bデ)が向上すること
が判明した。
The relationship between the magnetic properties obtained as described above and the ball material is shown in FIGS. 1 and 2. As is clear from this figure, the magnetic properties depend on the material of the ball, and the use of cemented carbide balls significantly improves the magnetic properties, namely coercive force (t+Ha) and residual magnetic flux density (Bde). There was found.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微粉砕工程で使用する鋼球径による磁気特性の
影響を示したものであシ、第2図は超硬合金球径による
磁気特性の影響上水したものである。
Figure 1 shows the influence of the magnetic properties by the diameter of the steel balls used in the pulverization process, and Figure 2 shows the influence of the magnetic properties by the diameter of the cemented carbide balls.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素が一種以上で、20〜40重量−と遷移元素
(o6.yl 、Mi、MQ、011M%等)が一種以
上およびその他の元素が一種以上で、60〜80重量−
からなる合金を粉砕し、磁場中成形後焼結する磁石製品
において、振動ボールミルの粉砕工程で直径4箇〜10
■の超硬合金球を使用する磁石の製造方法。
One or more rare earth elements, 20 to 40% by weight, one or more transition elements (O6.yl, Mi, MQ, 011M%, etc.) and one or more other elements, 60 to 80% by weight
In magnet products, which are made by grinding an alloy consisting of
■Method for manufacturing magnets using cemented carbide balls.
JP56210411A 1981-12-25 1981-12-25 Manufacture of rare earth magnet Pending JPS58111302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210411A JPS58111302A (en) 1981-12-25 1981-12-25 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210411A JPS58111302A (en) 1981-12-25 1981-12-25 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS58111302A true JPS58111302A (en) 1983-07-02

Family

ID=16588865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210411A Pending JPS58111302A (en) 1981-12-25 1981-12-25 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS58111302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110052599A (en) * 2019-04-26 2019-07-26 四川一然新材料科技有限公司 A kind of 108 or more low density rigid alloying pellet of diameter and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110052599A (en) * 2019-04-26 2019-07-26 四川一然新材料科技有限公司 A kind of 108 or more low density rigid alloying pellet of diameter and preparation method thereof

Similar Documents

Publication Publication Date Title
US4894097A (en) Rare earth type magnet and a method for producing the same
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPS62177101A (en) Production of permanent magnet material
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPS58111302A (en) Manufacture of rare earth magnet
JPS6320411A (en) Production of material for permanent magnet
JPS5911641B2 (en) Bonded permanent magnet powder and its manufacturing method
JPH08148315A (en) Production of rare earth magnet
JPH0521216A (en) Permanent magnet alloy and its production
JP2660917B2 (en) Rare earth magnet manufacturing method
JPS63115307A (en) Manufacture of rare-earth magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPS5827321B2 (en) Permanent magnet manufacturing method
JPH03291305A (en) Manufacture of shape anisotropic and soft magnetic alloy powder
JPS61290701A (en) R-fe-b permanent magnet and manufacture thereof
JPS6140738B2 (en)
JPS60221551A (en) Permanent magnet alloy
JPH07331393A (en) Rare earth magnet alloy powder and its production
JPH06179901A (en) Production of alnico magnetic alloy powder for resin magnet
JPS6179749A (en) Permanent magnet alloy
JPH05163509A (en) Production of rare-earth element-fe-b magnetic alloy powder
JPS62164849A (en) Rare earth ferrous permanent magnet
JPS583944A (en) Permanent magnet alloy with variable reversible temperature coefficient