JPS62164849A - Rare earth ferrous permanent magnet - Google Patents

Rare earth ferrous permanent magnet

Info

Publication number
JPS62164849A
JPS62164849A JP61007096A JP709686A JPS62164849A JP S62164849 A JPS62164849 A JP S62164849A JP 61007096 A JP61007096 A JP 61007096A JP 709686 A JP709686 A JP 709686A JP S62164849 A JPS62164849 A JP S62164849A
Authority
JP
Japan
Prior art keywords
sized
magnet
rare earth
small
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61007096A
Other languages
Japanese (ja)
Inventor
Yoshio Inokoshi
良夫 猪越
Moriyoshi Hata
畑 守中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61007096A priority Critical patent/JPS62164849A/en
Publication of JPS62164849A publication Critical patent/JPS62164849A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To develop a small-sized magnet having high performance and high quality by adding a specific ratio of Al to a ternary magnet alloy consisting of rare earth-iron-boron. CONSTITUTION:Powder, sized 3-5mum diameter, of the alloy composed of the compsn. consisting of 8-20% R (at least >=1 kinds of rare earth elements contg. Y), 3-12% B, 0.01-4.0% Al, and the balance Fe is formed and the molding thereof is formed by exerting pressure thereto in the magnetic field direction and perpendicular direction in a magnetic field of 10,000 oersted in the stage of producing the small-sized high-performance magnet to be used for small-sized speakers, peripheral terminals of computers, step motors of analog electronic timepieces, etc. Such molding is sintered for 1-2hr at 1,050-1,150 deg.C in a vacuum and further, the gaseous atmosphere is replaced with Ar at the same time, then the molding is subjected to additional sintering for 2hr and is cooled down to a room temp. at a cooling rate of 50 deg.C/hr. The squareness characteristic at the Curie point and in the demagnetization curve is improved, by which the stable permanent magnet having the decreased fluctuation of magnetic force by an environmental temp. change and shape change is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類−鉄−ボロン3元系磁石合金の改良に関
するもので、各種産業用及び民生用電子・電気m器関連
材料の一つとしで利用される。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the improvement of a rare earth-iron-boron ternary magnet alloy, which can be used as one of the materials related to various industrial and consumer electronic/electric appliances. used in

具体的には、小型スピーカー、コンピューター周辺端末
器、アナログ電子時計のステップモーター等の各種モー
ター等幅広い分野で利用される。
Specifically, it is used in a wide range of fields, including small speakers, computer peripheral terminals, and various motors such as step motors for analog electronic watches.

本発明はより高性能高品質化が要求されている小型磁石
の用途に焦点を置くものである。
The present invention focuses on the use of small magnets, which require higher performance and higher quality.

(従来の技術) 特開昭59−46008号公報に3元系希土類鉄ボロン
系合金磁石とぞの製造方法が開示されている。
(Prior Art) Japanese Unexamined Patent Publication No. 59-46008 discloses a method for manufacturing a ternary rare earth iron boron alloy magnet.

(発明が解決しようとする問題点) 従来の希土類鉄ボロン3元系合金の永久磁石材料は、高
性能化のため降を多fit(60wt%以上)含んでい
るので、反面キュリ一点が300〜350℃前後と低く
、残留磁束の温度依存性が悪く、また従来のサマリウム
コバルト系永久磁石の減磁曲線と比較し、角型性が悪い
等の欠点を有していた。
(Problems to be Solved by the Invention) Conventional rare earth iron boron ternary alloy permanent magnet materials contain a large amount of iron (more than 60 wt%) to improve performance. The temperature dependence of the residual magnetic flux is low at around 350° C., and the demagnetization curve of the conventional samarium cobalt permanent magnet is poor.

本発明は係る欠点を改善すべく、磁気特性を大きく損な
うことなしに、ヤユリ一点及び減磁曲線における角型性
を向上さしめ、環境温度変化及びパーミアンス変化(形
状変化)による磁力の変動の小さい安定した永久磁石を
提供することを目的としている。
In order to improve these drawbacks, the present invention improves the squareness of the single point and demagnetization curve without significantly impairing the magnetic properties, and reduces fluctuations in magnetic force due to environmental temperature changes and permeance changes (shape changes). The purpose is to provide stable permanent magnets.

(問題点を解決するための手段) 上記問題点を解決づるため、本発明は、希を類−遷移金
属間合金において、キュリ一点及び磁気特性を向上させ
るためには、添加元素による方法が有効な手段の−・つ
であることに鑑み、希り類鉄ボロン系を基盤として、多
数の組成系を調整し、実験検討を試みた。
(Means for Solving the Problems) In order to solve the above problems, the present invention proposes that a method using additive elements is effective for improving the Curie point and magnetic properties in rare-transition metal alloys. Considering that this is one of the most effective methods, we prepared a number of composition systems based on the rare iron boron system and attempted experimental studies.

その結果、前述の特許請求の範囲で示される組成がキュ
リ一点及び減磁曲線における角型性等の改誘に寄与する
ことを見い出したことに基づくものである。尚、Mの4
.0%以上の添加は大幅な残留磁束密度の低下を招くの
で、4.0%以下に限定した。
As a result, this invention is based on the discovery that the composition shown in the above-mentioned claims contributes to improving the Curie point and squareness in the demagnetization curve. Furthermore, M4
.. Since addition of 0% or more causes a significant decrease in residual magnetic flux density, it is limited to 4.0% or less.

(実施例) プラセオジム5〜6at%、ネオジム9〜1Qat%、
ボロン6〜8at%、アルミニウム1〜2at%、残[
eの組成となる様秤量、アーク溶解炉にてボタン状イン
ゴツ1−を作製する。この後ショークラッシャーで1M
R角まで粉砕した侵、ディスクミルにて50〜100I
IIRまで粗粉砕を行ない最後に振動型ボールミルで粒
径3〜5JJ11の粉末を得る。次に係る磁性粉末に配
向性を付与させるため1万エルステツドの磁界中で磁界
方向と垂直方向に圧力2ton/=を印加し成型体とす
る。次に高密度化を達成させるため、10’Torr程
度の真空中で1〜2時間、1050〜1150℃で焼結
、更に同温度で雰囲気をArガスで置換し2時間追加焼
結し、その後約毎時50℃の勾配で室温まで冷却した。
(Example) Praseodymium 5-6 at%, neodymium 9-1 Qat%,
Boron 6-8 at%, Aluminum 1-2 at%, balance [
A button-shaped ingot 1- is produced in an arc melting furnace by weighing so as to have the composition of e. After this, 1M with Show Crusher
Crushed to R angle, 50-100I with a disc mill
Coarse pulverization is carried out up to IIR, and finally powder with a particle size of 3 to 5JJ11 is obtained using a vibrating ball mill. Next, in order to impart orientation to the magnetic powder, a pressure of 2 tons/= is applied in a direction perpendicular to the direction of the magnetic field in a magnetic field of 10,000 oersteds to form a molded body. Next, in order to achieve high density, sintering was performed at 1050 to 1150°C for 1 to 2 hours in a vacuum of about 10'Torr, and then the atmosphere was replaced with Ar gas at the same temperature and sintered for an additional 2 hours. It was cooled to room temperature at a gradient of about 50°C per hour.

試料測定は、ブロックより切り出し水平同軸補償4πI
〜ト1コイルを用い測定、得られた減磁曲線から磁気特
性を求めた。またキュリ一点はVSM (Vibrat
ing Sample Magnetometer)を
用い測定した。
Sample measurement is performed by cutting out a block and horizontal coaxial compensation 4πI
The magnetic properties were determined from the demagnetization curve obtained by measurement using a coil. Also, one Curie is VSM (Vibrat)
ing Sample Magnetometer).

以下結果をプラセオジム−ネオジム混晶系に絞り表に示
づ。
The results are shown below for the praseodymium-neodymium mixed crystal system.

ただし角型比は本文中では次式で定義した。However, the squareness ratio is defined in the text using the following formula.

従来の3元系と比較し、キュリ一点で最大40℃、角型
比も最大3%程度向上したことが判る。
It can be seen that compared to the conventional ternary system, the Curie point improved by a maximum of 40 degrees Celsius, and the squareness ratio improved by a maximum of about 3%.

(発明の効果) 本発明は以上説明した様に、R−Fe−83元系合金に
第4番目の元素としてMを添加あるいは4元系合金とし
て用いることにより、キュリ一点及び減磁曲線におりる
角型比の向上することにより環境温度変化及びパーミア
ンス変化による磁石製品の残留磁束変動の小ざい安定し
た磁石をもたらしたものである。その工業的意義は小さ
くない。
(Effects of the Invention) As explained above, the present invention achieves the Curie point and demagnetization curve by adding M as the fourth element to the R-Fe-83 element alloy or by using it as a quaternary alloy. By improving the squareness ratio, a stable magnet with small residual magnetic flux fluctuations due to environmental temperature changes and permeance changes has been achieved. Its industrial significance is not small.

Claims (1)

【特許請求の範囲】[Claims]  原子百分率で8〜20%のR(RはYを含む希土類元
素の少なくとも一種以上)、3〜12%のB(ボロン)
、0.01〜4.0%のAl(アルミニウム)、残部F
e(鉄)からなる組成の合金であることを特徴とする永
久磁石合金。
8 to 20% R (R is at least one kind of rare earth element including Y), 3 to 12% B (boron) in atomic percentage
, 0.01-4.0% Al (aluminum), balance F
A permanent magnet alloy characterized by being an alloy having a composition consisting of e (iron).
JP61007096A 1986-01-16 1986-01-16 Rare earth ferrous permanent magnet Pending JPS62164849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61007096A JPS62164849A (en) 1986-01-16 1986-01-16 Rare earth ferrous permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61007096A JPS62164849A (en) 1986-01-16 1986-01-16 Rare earth ferrous permanent magnet

Publications (1)

Publication Number Publication Date
JPS62164849A true JPS62164849A (en) 1987-07-21

Family

ID=11656545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61007096A Pending JPS62164849A (en) 1986-01-16 1986-01-16 Rare earth ferrous permanent magnet

Country Status (1)

Country Link
JP (1) JPS62164849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003031A1 (en) * 1988-09-05 1990-03-22 Seiko Epson Corporation Recording/reproducing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003031A1 (en) * 1988-09-05 1990-03-22 Seiko Epson Corporation Recording/reproducing apparatus
US5469421A (en) * 1988-09-05 1995-11-21 Seiko Epson Corporation Floppy disk drive device

Similar Documents

Publication Publication Date Title
US4684406A (en) Permanent magnet materials
US3684593A (en) Heat-aged sintered cobalt-rare earth intermetallic product and process
JPH01298704A (en) Rare earth permanent magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JPS61195954A (en) Permanent magnet alloy
Ormerod Powder metallurgy of rare earth permanent magnets
JPS62164849A (en) Rare earth ferrous permanent magnet
JPH04322405A (en) Rare earth permanent magnet
JPS61119651A (en) Rare earth element-iron type permanent magnet
JPS61195946A (en) Magnetic material and permanent magnet
JPS61147503A (en) Rare earth magnet
JPH0152469B2 (en)
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPS61245505A (en) Manufacture of rare-earth iron magnet
JP3246268B2 (en) Radial anisotropic ring sintered magnet
JPS6144155A (en) Permanent magnet alloy
JPS6179749A (en) Permanent magnet alloy
Koo Partial substitution of SM with neodymium, praseodymium, and mischmetal in RE 2 TM 17 permanent magnets
JPS63216307A (en) Alloy powder for magnet
JPS61124553A (en) Alloy for permanent magnet
JPS61166949A (en) Alloy for permanent magnet
JP2992808B2 (en) permanent magnet
JPH023205A (en) Manufacture of permanent magnet
JPH01298703A (en) Rare earth permanent magnet