JPS6179749A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS6179749A
JPS6179749A JP59200891A JP20089184A JPS6179749A JP S6179749 A JPS6179749 A JP S6179749A JP 59200891 A JP59200891 A JP 59200891A JP 20089184 A JP20089184 A JP 20089184A JP S6179749 A JPS6179749 A JP S6179749A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
magnet alloy
rare earth
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59200891A
Other languages
Japanese (ja)
Inventor
Moriyoshi Hata
畑 守中
Yoshio Inokoshi
良夫 猪越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59200891A priority Critical patent/JPS6179749A/en
Publication of JPS6179749A publication Critical patent/JPS6179749A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a permanent magnet alloy having improved maximum energy product as well as increased coercive force, by substituting a specific amount of at least one kind among Ti, Hf, Zr, and Nb for a part of Fe, in the alloy consisting of specific percentage of rare earth elements, B and Fe. CONSTITUTION:At least one kind among Ti, Hf, Zr, and Nb is added to the R-B-Fe permanent magnet alloy having a composition consisting of 8-30atomic% R (at least one kind among the rare earth element s including Y), 2-28atomic% B, and the balance Fe, as substitute for a part of Fe, by <=15atomic%.

Description

【発明の詳細な説明】 〔産業上の利用分野j 本発明は希土類−鉄一ボロン系の永久磁石合金の改良に
関するもので、各種産業用及び民生用電気・電子機器の
基幹材料の一つとして利用さnる。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the improvement of a rare earth-iron-boron permanent magnet alloy, which can be used as one of the key materials for various industrial and consumer electrical and electronic devices. Used.

具体的にはオーディオ用の小型スピーカー、コンピュー
ター周辺端末機器、各種小型モーター、水晶時計のステ
ッピングモーター等幅広い分野で利用可能である。
Specifically, it can be used in a wide range of fields, including small audio speakers, computer peripheral terminal equipment, various small motors, and stepping motors for crystal clocks.

〔従来の技術」 特開昭59−46008号公報にBを含む希土類鉄系磁
石の組成及び製造方法が開示さnている。
[Prior Art] JP-A-59-46008 discloses the composition and manufacturing method of a rare earth iron magnet containing B.

〔発明−が解決しようとする問題」 従来のR−B−F’e系磁石は常温以下で高磁気特性が
得らA;bR−Fe合金をベースにキュリ一点を高める
ことと常温で安定な化合物を得ることを目的にBが添加
され、高性能化が実現さA7tが、公知のサマリウムコ
バルト磁石に比べ保磁力が小さく、又バラツキも大きい
という欠点があり、安定製造のうえで大きな障害であっ
た。
[Problem to be solved by the invention] Conventional R-B-F'e magnets have high magnetic properties at temperatures below room temperature. B was added for the purpose of obtaining a compound, and high performance was achieved. However, compared to known samarium cobalt magnets, A7t has the disadvantage of having a smaller coercive force and greater variation, which is a major obstacle to stable production. there were.

〔問題点を解決する之めの手段〕[Means for solving problems]

上記問題点全解決する之めに、本発明は従来の希土類−
ボロン−鉄系三元化合物において保磁力の改善は、添加
元素による方法が有効な手段の一つであることに鑑み、
ネオジウム−ポロン−鉄系をペースとして、多数の元素
を添加し実験、検討金試みた。その結果特許請求の範囲
に示し7′CTi 。
In order to solve all of the above problems, the present invention aims to solve all of the above problems.
Considering that one of the effective methods for improving coercive force in boron-iron ternary compounds is to use additive elements,
Using the neodymium-poron-iron system as a starting point, we conducted experiments and studies by adding numerous elements. The result is 7'CTi as shown in the claims.

Zr、  Hf及びN’bの添加が問題点を解決する之
めの手段であることが判明’L fcことに基づく。
It was found that the addition of Zr, Hf and N'b was a means to solve the problem.

〔実施例〕〔Example〕

以下に本発明を実施例に従って説明する、添加元素とし
て事前の実験で保磁力の向上に効果があると認めらnた
元素であるTi、 Zr、 Hf及びNt)d”取りあ
げ、表−1に示す組成となる合金全作製した。
In the following, the present invention will be explained according to examples.Ti, Zr, Hf, and Nt), which are elements that have been found to be effective in improving coercive force in preliminary experiments, are selected as additive elements, and are shown in Table 1. All alloys with the composition shown were fabricated.

表−1合金組成 合金の作製はアルゴンガス雰囲気中において高周波溶解
炉を用いて水冷銅鋳型に鋳込んだ。
Table 1 Alloy Composition The alloy was produced by casting into a water-cooled copper mold using a high frequency melting furnace in an argon gas atmosphere.

インゴットはショークラッシャーによりアルゴンガス雰
囲気中で粒子径が111111以下になるまで粉砕し、
次にディスクミル全周い、100ミクロン程度になるま
で粉砕する。更に振動ボールミル用のステンレス容器に
得られ之粉末とこ2″Lヲ粉砕するボール及び冷却剤と
してトルエン全封入し、振動シル粉砕を行ない、平均粒
径が約3ミクロンになるまで微粉砕し友。次にこうして
得らnfc微粉末i 10 KOe  の磁界中で配向
させ、2 ton、/−の圧力で配向方向と直角の方向
に圧縮成形を行い15m角の成形体をつくる。
The ingot is crushed in an argon gas atmosphere using a show crusher until the particle size becomes 111111 or less.
Next, use a disk mill around the entire circumference to grind the material to about 100 microns. Further, the obtained powder was placed in a stainless steel container for a vibrating ball mill, and the powder was crushed into 2"L balls and toluene was completely enclosed as a coolant, and the vibrating mill was pulverized until the average particle size was about 3 microns. Next, the thus obtained NFC fine powder i 10 KOe is oriented in a magnetic field, and compression molding is performed in a direction perpendicular to the orientation direction at a pressure of 2 tons/- to produce a 15 m square compact.

この後成形体をアルゴン雰囲気中で1 o80℃、。After this, the molded body was heated at 1°C at 80°C in an argon atmosphere.

1埒間の焼結を施し、焼結後直ちに冷却室で急冷した。Sintering was performed for 1 mn, and immediately after sintering, it was rapidly cooled in a cooling chamber.

更に焼結体全アルゴンガス雰囲気中で650℃、1時間
加熱保持し、加熱保持後冷却室で急冷処理全行った。磁
気特性の測定はブロックから41.φX10咽tの試料
を切り出し、4πX−H水平同軸補償コイルを用い、減
磁曲mk求め、各測定値音読みとったものである。第2
表にその結果金示す。
Further, the sintered body was heated and held at 650° C. for 1 hour in an argon gas atmosphere, and after being heated and held, it was rapidly cooled in a cooling chamber. Measurement of magnetic properties is carried out from block 41. A sample of φX10 mm was cut out, a demagnetization curve mk was determined using a 4πX-H horizontal coaxial compensation coil, and each measured value was read. Second
The table shows the results.

第2表 磁気特性測定結果 第1図はTi、 Hf、 Zr及びMl)全添加した場
合の添加量がIHc  に及ばず影響を示し友ものであ
る。図で明らかの様にこれら第4元素の添加は従来のN
d−B−Fe三元合金に比べIHc  は明らかに向上
することが判る。特にZr添加効果は著し〈従来6KO
e に比べ10Az%  添加では実に12KOe  
にも向上している。その結果永久磁石として要求される
特性で最も重要な最大磁気エネMGO ルギー積は、従来の24  から2a3   に飛躍的
に向上させる結果を持次らしている。第2図は従来のN
d15 Bg Feyy合金及び不発明で最も高い磁気
特性が得らn 7’(Nd、、 B、 Fe6. Zr
1(1合金のI−H曲線金示したものであるが、Zr添
加によりBrは僅か減少するがIHc  が太き(ニー
H曲線の角型性が改善していることが顕著である。
Table 2 Magnetic property measurement results Figure 1 shows that when all of Ti, Hf, Zr and Ml are added, the amount of addition is less than that of IHc and shows no influence. As is clear from the figure, the addition of these fourth elements is different from conventional N
It can be seen that IHc is clearly improved compared to the d-B-Fe ternary alloy. In particular, the effect of Zr addition is remarkable (conventional 6KO
Compared to e, the addition of 10Az% resulted in a total of 12KOe.
It has also improved. As a result, the maximum magnetic energy MGO energy product, which is the most important property required for a permanent magnet, has been dramatically improved from the conventional 24 to 2a3. Figure 2 shows the conventional N
The highest magnetic properties are obtained with d15 Bg Feyy alloy and n7' (Nd, B, Fe6. Zr
The I-H curve of alloy No. 1 (1) shows that although Br slightly decreases due to the addition of Zr, IHc becomes thicker (it is noticeable that the squareness of the knee H curve is improved).

第5図は第4元素全添加しt場合の添加量が最大磁気エ
ネルギー積に及はす影響を示し比ものである。、図によ
nば最大磁気エネルギー積はTi。
FIG. 5 shows the influence of the amount added on the maximum magnetic energy product when all the fourth elements are added. , according to the figure, the maximum magnetic energy product is Ti.

Hf、Zr及びNb  いづnも5〜10At%添加O
ときピーク値が得られるが、15At%t−越えると無
添加の従来品よりも低い特性となってしまう。
Hf, Zr and Nb additions are also 5-10 At% O
However, if it exceeds 15 At% t-, the properties will be lower than those of conventional products without additives.

これは第4元素の添加によって飽和磁気の高いFe元素
が少くなったことにょシBrが低下したことと、15A
t%以内の添加ではI−H曲線の角型化が改良さnたも
のが15At%を越えることによって逆に角型比が悪ぐ
なっfc、′fcめによるものである。すなわち第4元
素の添加を好ましくなく、実用性を考慮すnば、上限は
各々の元素15At%以内が限度と考える。
This is due to the decrease in Fe element with high saturation magnetism due to the addition of the fourth element, and the decrease in Br and 15A
When the addition amount is less than t%, the squareness of the I-H curve is improved, but when the addition exceeds 15 At%, the squareness ratio deteriorates due to fc and 'fc. That is, if it is not preferable to add the fourth element, and considering practicality, the upper limit is considered to be within 15 At% of each element.

以上本発明を実施例に基き説明し九が、実施例及び記載
の態様は本発明全これらに限定するものではない。すな
わち実施例ではベースとなる合金組成k Nd+s”a
F e??一定としたが、本発明の第4元素添加効果は
この組成だけによるものでなく、前記の特開昭59−4
6008に記載されている組成についても同様の効果金
持文ら丁ものである。
Although the present invention has been described above based on Examples, the present invention is not limited to these Examples and described aspects. That is, in the example, the base alloy composition k Nd+s”a
Fe? ? However, the effect of adding the fourth element in the present invention is not only due to this composition, but also in the above-mentioned JP-A-59-4.
The composition described in No. 6008 also has similar effects.

更に第4元素はそれぞれ単独に添加したが、一種以上の
複合添加も同様の効果があることは容易に推測できるこ
とである。
Furthermore, although each of the fourth elements was added individually, it can be easily inferred that the combined addition of one or more elements would have the same effect.

〔発明の効果〕 本発明は以上説明し危機にNd、Pr等を主成分とする
R−B−IFe系合金に第4元素としてTi。
[Effects of the Invention] As described above, the present invention uses Ti as a fourth element in an R-B-IFe alloy containing Nd, Pr, etc. as main components.

Hf、 Zr及びNbヲ単独あるいは複合添加すること
により、保磁力の増大及びI−H曲線の角型性を改善す
ることがOT能で、こnに伴って永久磁石にとって最も
重要な特性である最大エネルギー積の向上を持tらし、
その工業的意義は大きい。
By adding Hf, Zr, and Nb alone or in combination, it is possible to increase the coercive force and improve the squareness of the I-H curve, which is the most important characteristic for permanent magnets. With an improvement in the maximum energy product,
Its industrial significance is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNd1llB8Fe??−XMX (但しM 
= Ti、 Hf。 Zr及びN1))系合金においてXがIHc  に及ぼ
す影響を示し定グラフ、第2図は添加元素のなかで最も
高い磁気特性が得られ7’CNd45BgFe6□Zr
、0合金と従来合金のI−H曲線を比較し次グラフ、第
6図はNd、5B、Fe7y−エMx系合金において添
加元素MOX量と最大エネルギー積(B H) mxと
の関係金示したグラフである。 以   上
Figure 1 is Nd1llB8Fe? ? -XMX (However, M
= Ti, Hf. Figure 2 shows the influence of X on IHc in Zr and N1)) series alloys.
The following graph compares the I-H curves of the 0 alloy and the conventional alloy. Figure 6 shows the relationship between the amount of added element MOX and the maximum energy product (B H) mx in Nd, 5B, Fe7y-Mx alloys. This is a graph. that's all

Claims (1)

【特許請求の範囲】[Claims] 原子百分比で8〜30%のR(但しRはYを含む希土類
元素の少くとも一種)、2〜28%のB及び残部Feか
らなる組成の合金にFeの一部を15%以下のTi、H
f、Zr及びNbの少くとも一種を添加してなることを
特徴とする永久磁石用合金。
In an alloy with a composition consisting of 8 to 30% R (at least one rare earth element including Y) in atomic percentage, 2 to 28% B, and the balance Fe, part of the Fe is added to 15% or less Ti, H
An alloy for permanent magnets, characterized in that it contains at least one of f, Zr and Nb.
JP59200891A 1984-09-26 1984-09-26 Permanent magnet alloy Pending JPS6179749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200891A JPS6179749A (en) 1984-09-26 1984-09-26 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200891A JPS6179749A (en) 1984-09-26 1984-09-26 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS6179749A true JPS6179749A (en) 1986-04-23

Family

ID=16431967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200891A Pending JPS6179749A (en) 1984-09-26 1984-09-26 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS6179749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292601A (en) * 1987-05-26 1988-11-29 Seiko Epson Corp Rare earth permanent magnet
US5049208A (en) * 1987-07-30 1991-09-17 Tdk Corporation Permanent magnets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292601A (en) * 1987-05-26 1988-11-29 Seiko Epson Corp Rare earth permanent magnet
US5049208A (en) * 1987-07-30 1991-09-17 Tdk Corporation Permanent magnets

Similar Documents

Publication Publication Date Title
JPS61289605A (en) Manufacture of rare earth-boron permanent magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH03236202A (en) Sintered permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
JPH0551656B2 (en)
JPS63317643A (en) Production of rare earth-iron permanent magnetic material
JPS6181603A (en) Preparation of rare earth magnet
JP3303044B2 (en) Permanent magnet and its manufacturing method
US5055129A (en) Rare earth-iron-boron sintered magnets
JPS6179749A (en) Permanent magnet alloy
JPS6181607A (en) Preparation of rare earth magnet
JPS62241304A (en) Rare earth permanent magnet
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPS6320411A (en) Production of material for permanent magnet
US4981513A (en) Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
JPH0845718A (en) Magnetic material and its manufacture
JPS61147504A (en) Rare earth magnet
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS5822348A (en) Permanent magnet alloy
US5015304A (en) Rare earth-iron-boron sintered magnets
JPS61124553A (en) Alloy for permanent magnet
JPS61119651A (en) Rare earth element-iron type permanent magnet
JPH04240703A (en) Manufacture of permanent magnet