JPS58110076A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58110076A
JPS58110076A JP21554381A JP21554381A JPS58110076A JP S58110076 A JPS58110076 A JP S58110076A JP 21554381 A JP21554381 A JP 21554381A JP 21554381 A JP21554381 A JP 21554381A JP S58110076 A JPS58110076 A JP S58110076A
Authority
JP
Japan
Prior art keywords
film
region
silicon nitride
nitride film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21554381A
Other languages
Japanese (ja)
Other versions
JPH0227813B2 (en
Inventor
Yoshikimi Morita
盛田 由公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP21554381A priority Critical patent/JPH0227813B2/en
Publication of JPS58110076A publication Critical patent/JPS58110076A/en
Publication of JPH0227813B2 publication Critical patent/JPH0227813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the high frequency characteristics of the titled semiconductor device by a method wherein a ring-shaped graft base region is formed on the semiconductor substrate which will be turned to a collector region, a thick oxide film is generated thereon by performing a heat treatment, and an emitter region is provided at the vacant space located in the center of the ring-shaped part, thereby enabling to reduce the irregularity in size. CONSTITUTION:An SiO2 film 11a is coated on the N type Si substrate 10 which will be used as the collector region of an NPN transistor, and an Si3N4 film 12 is formed in the center of said film 11a aparting from an Si3N4 film 12a and surrounding the film 12a. Then, an ion is implanted using the films 12 and 12a, and after a ring-shaped P<+> type graft base region 13 has been formed in the substrate 10, a heat treatment is performed in an N2 atmosphere and an O2 atmosphere, and a pressing diffusion is performed on the region 13. On this region 13, a thick SiO2 film is generated, and an SiO2 film 11c is generated on the films 12 and 12a. Subsequently, a resist film 14 is provided while the inside of the ring-shaped base region 13 is being exposed, the film 12a is removed together with the film 11c located above the film 12a by performing an etching, an N type layer 15 is grown here, and an N type emitter region 15a is formed in the layer 15.

Description

【発明の詳細な説明】 本発明は、集積回路に適する高周波特性のすぐれたバイ
ポーラトランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a bipolar transistor with excellent high frequency characteristics suitable for integrated circuits.

近年高周波特性のすぐれたバイポーラトランジスタと前
記トランジスタを用いた集積回路を実現するために、N
PN)ランジスタのエミッタ領域をメサ構造にするのが
一般的に行われている。第1図にこの種のトランジスタ
の構造とその簡単な製造方法を示す。
In recent years, in order to realize bipolar transistors with excellent high frequency characteristics and integrated circuits using said transistors, N
It is common practice to form the emitter region of a PN transistor into a mesa structure. FIG. 1 shows the structure of this type of transistor and its simple manufacturing method.

第1図の工程図において、まず工程(、)では、コレク
タ領域となるN型のシリコン基板1の表面にP型ベース
領域2および砒素を不純物とした浅いN+層3を酸素雰
囲気中で拡散形成する。上記N+層層形形成拡散処理後
に残留する同N+層3上のシリコン酸化膜をエツチング
除去した後に、全面にCVD法などを用いシリコン酸化
膜4を、前記コレクタ領域1上および前記ベース領域2
上に形成し、ついで、シリコン窒化膜6、多結晶シリコ
ン膜6を蒸着する。そして、最表部に所定のフォトレジ
ストパターン7を設ける。
In the process diagram of FIG. 1, first, in step (,), a P-type base region 2 and a shallow N+ layer 3 doped with arsenic are formed by diffusion in an oxygen atmosphere on the surface of an N-type silicon substrate 1 that will become a collector region. do. After etching and removing the silicon oxide film on the N+ layer 3 remaining after the above-mentioned N+ layer formation diffusion treatment, a silicon oxide film 4 is deposited on the collector region 1 and the base region 2 by CVD or the like over the entire surface.
Then, a silicon nitride film 6 and a polycrystalline silicon film 6 are deposited. Then, a predetermined photoresist pattern 7 is provided on the outermost part.

工程(b)では、上記多結晶シリコン膜6表面IC通常
の方法で形成した例えば商品名0FPR−800などの
前記ポジ型フォトレジストパターン7をマスクにして、
この多結晶シリコン膜6をエツチングし、ついで、前記
フォトレジストパターン7を除去した後に、同形の前記
多結晶シリコン膜6aをマスクとして直下の前記シリコ
ン窒゛化膜5を熱リン酸でエツチングして、同形状のシ
リコン窒化膜6aを形成する。
In step (b), the surface of the polycrystalline silicon film 6 is formed using the positive photoresist pattern 7, such as product name 0FPR-800, formed by a conventional method as a mask.
After etching the polycrystalline silicon film 6 and removing the photoresist pattern 7, the silicon nitride film 5 immediately below is etched with hot phosphoric acid using the polycrystalline silicon film 6a of the same shape as a mask. , a silicon nitride film 6a having the same shape is formed.

工程(C)では、シリコン窒化膜6aをマスクとして前
記N+層3をエツチングしてN+型エミッタ領域3aを
形成する。このエツチング処理過程で同時にマスク上方
の前記多結晶シリコン膜6aもエツチング除去する。
In step (C), the N+ layer 3 is etched using the silicon nitride film 6a as a mask to form an N+ type emitter region 3a. During this etching process, the polycrystalline silicon film 6a above the mask is also etched away.

工程(d)では、P型ベース領域2およびN+型エミッ
タ領域3aの露出面を温度900℃程度の酸化性雰囲気
中で選択酸化し、表面のシリコン酸化膜4aを形成する
In step (d), the exposed surfaces of the P type base region 2 and the N+ type emitter region 3a are selectively oxidized in an oxidizing atmosphere at a temperature of about 900° C. to form a silicon oxide film 4a on the surface.

上記第1図に示した従来の方法では、高周波特性を向上
させるために前記N”43に添加される砒素濃度は1×
1o ctn  程度と高く、このだめに、通常の単結
晶シ゛リコンのエツチング速度に比較してこの層3のエ
ツチング速度がいちじるしく大きい。したがって、前記
N+層3をエツチングしてN型エミッタ領域3aを形成
する場合に、弗酸系溶液によるエツチングでは、マスク
である前記シリコン窒化膜5とに対するアンダーカット
iも大きく、同エミッタ領域3のパターン寸法と形状の
制御、再現性が悪く、また上記のような製造工程では、
前記N+層3のエツチングの終点決定が困難であり、し
たがって電気的特性とりわけ遮断周波数などの高周波特
性のばらつきが大きくなる問題があった。
In the conventional method shown in FIG. 1 above, the arsenic concentration added to the N"43 is 1×
The etching rate of this layer 3 is as high as about 1octn, and the etching rate of this layer 3 is significantly higher than that of ordinary single crystal silicon. Therefore, when etching the N+ layer 3 to form the N-type emitter region 3a, when etching with a hydrofluoric acid solution, the undercut i with respect to the silicon nitride film 5, which is a mask, is large, and the emitter region 3 is etched. Control and reproducibility of pattern dimensions and shapes are poor, and the manufacturing process described above is
It is difficult to determine the end point of the etching of the N+ layer 3, and therefore there is a problem in that the electrical characteristics, particularly the high frequency characteristics such as the cut-off frequency, vary widely.

本発明の目的は、上記問題を解決したバイポーラトラン
ジスタ製造方法を提供することにある。。
An object of the present invention is to provide a bipolar transistor manufacturing method that solves the above problems. .

本発明は、半導体基板の表面上に直接あるいは酸化膜を
介して形成されたシリコン窒化膜を環状に選択食刻して
、内側の島状部分と外側部分とに分離した後、前記シリ
コン窒化膜をマスクにして選択食刻部下のシリコン基板
内へ同基板の導電型とは逆導電型を与える不純物イオン
を注入して所所の領域を形成する工程、前記内側島状部
分に残存するシリコン窒化膜もしくは同シリコン窒化膜
とこの直下の酸化シリコン膜を除去して半導体基板面を
露呈する工程、上記露呈半導体基板部分上にこれと同一
導電型のエピタキシャル層を形成した後に、同エピタキ
シャル層の下方、もしくは前記半導体基板の頂部分を逆
導電型の層に変換する工程を有する半導体装置の製造方
法である。
In the present invention, a silicon nitride film formed directly or through an oxide film on the surface of a semiconductor substrate is selectively etched into an annular shape to separate it into an inner island-like part and an outer part, and then the silicon nitride film is separated into an inner island-like part and an outer part. A step of implanting impurity ions that give a conductivity type opposite to that of the substrate into the silicon substrate under selective etching using as a mask to form a certain region, silicon nitride remaining in the inner island-like portion A step of removing the silicon nitride film and the silicon oxide film immediately below to expose the semiconductor substrate surface, forming an epitaxial layer of the same conductivity type on the exposed semiconductor substrate portion, and then forming an epitaxial layer below the epitaxial layer. Alternatively, a method for manufacturing a semiconductor device includes a step of converting the top portion of the semiconductor substrate into a layer of an opposite conductivity type.

以下、本発明を実施例により、図面を用いて詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be explained in detail by way of examples and with reference to the drawings.

第2図において、(a)から(f)は本発明の一実施例
であるバイポーラ集積回路の製造方法である。
In FIG. 2, (a) to (f) show a method for manufacturing a bipolar integrated circuit, which is an embodiment of the present invention.

工程(a)で1dNPN)ランジスタのコレクタ領域と
なるN型シリコン基板1oを酸化雰囲気中で熱酸化する
ことによりシリコン酸化膜11aを300〜600八程
度に成長させた後、同シリコン酸化膜11a上シリコン
窒化膜12を、プラズマ蒸着法により、6000〜80
00人程度に蒸着形成し、ついで、例えば商品名0FP
R−Booなどの1.ポジ型フォトレジスト膜パターン
をマスクにして、前記シリコン窒化膜12をプラズマド
ライエツチングにて環状に選択的に除去して、島状部分
12aを形成する。
In step (a), the silicon oxide film 11a is grown to a thickness of about 300 to 6008 by thermally oxidizing the N-type silicon substrate 1o, which will become the collector region of the 1dNPN) transistor, in an oxidizing atmosphere. The silicon nitride film 12 is deposited with a film thickness of 6,000 to 80
0FP is formed by vapor deposition, and then, for example, the product name is 0FP.
1. of R-Boo etc. Using the positive photoresist film pattern as a mask, the silicon nitride film 12 is selectively removed in an annular manner by plasma dry etching to form an island portion 12a.

工程0))では、前記シリコン窒化膜12.12aをマ
スクとして、イオン注入法により注入エネルギー60 
KeV、ドーズ量IX’10  crn  程度で硼素
イオンを注入してP型ベースコンタクト領域(P型グラ
フト・ベース領域)となるP+層13を形成し、ついで
、温度860〜9oO℃程度の窒素雰囲気中でアニール
した後、温度900〜960℃程度の酸化性雰囲気中で
100分程度酸化する工程である。これによシ、前記P
”M113の領域は、拡散とともに酸化が進行し、膜厚
3000〜4000A程度のシリコン酸化膜11bが形
成され、同時に、シリコン窒化膜12,12aの一部も
2oO〜aoo人程度酸化されシリコン酸化膜11cが
形成され、前記シリコン窒化膜12゜12a上とP+層
13上の厚いシリコン酸化膜11bとは厚みの差は十分
に大きくなる。
In step 0)), using the silicon nitride film 12.12a as a mask, an implantation energy of 60% is applied by ion implantation.
KeV, boron ions are implanted at a dose of about IX'10 crn to form a P+ layer 13 that will become a P-type base contact region (P-type graft base region), and then in a nitrogen atmosphere at a temperature of about 860 to 90°C. This is a step of annealing at a temperature of about 900 to 960° C. and then oxidizing it for about 100 minutes in an oxidizing atmosphere at a temperature of about 900 to 960°C. In addition to this, the above P
``In the region M113, oxidation progresses with diffusion, and a silicon oxide film 11b with a thickness of about 3000 to 4000 Å is formed.At the same time, a part of the silicon nitride films 12 and 12a is also oxidized by about 200 to 1000 Å, forming a silicon oxide film. 11c is formed, and the difference in thickness between the silicon nitride film 12.degree. 12a and the thick silicon oxide film 11b on the P+ layer 13 becomes sufficiently large.

工程(0) e (d)では、フォトレジストパターン
14をマスクにして、シリコン窒化膜12aおよび間膜
周辺の薄いシリコン酸化膜11a、11cを弗酸系溶液
でエツチング除去し、選択的に基板シリコン1oおよび
前記P+#13の一部を露出させる。、1これにより、
前記基板シリコン1oおよび前記P+層13の一部以外
はシリコン酸化膜11a、11b。
In step (0) e (d), using the photoresist pattern 14 as a mask, the silicon nitride film 12a and the thin silicon oxide films 11a and 11c around the interlayer are removed by etching with a hydrofluoric acid solution to selectively remove the silicon nitride film 12a and the thin silicon oxide films 11a and 11c around the interlayer. 1o and a portion of the P+#13 are exposed. , 1 This gives us
Silicon oxide films 11a and 11b are formed except for part of the silicon substrate 1o and the P+ layer 13.

11cおよびシリコン窒化膜12で被覆される。11c and a silicon nitride film 12.

工程(、)では、前記基板シリコン1oおよび前記P+
層13の一部の上に、減圧エピタキシャル成長法により
N型エピタキシャル層15を5000〜7000人程度
、選択的に成長させる。成長条件は反応ガスとしてジク
ロールシラン(SiH2CR2)を用い、成長速度0.
5〜1.oμm/m i n 、成長温度1050〜1
1oO℃程度、成長時圧カ80Torr程度である。こ
れにより、シリコン露出面上にのみ、選択的に前記N型
エピタキシャル層16が成長する。
In step (,), the substrate silicon 1o and the P+
An N-type epitaxial layer 15 of about 5,000 to 7,000 layers is selectively grown on a portion of the layer 13 by a low-pressure epitaxial growth method. The growth conditions were as follows: dichlorosilane (SiH2CR2) was used as the reaction gas, and the growth rate was 0.
5-1. oμm/min, growth temperature 1050-1
The temperature during growth was approximately 100° C. and the pressure during growth was approximately 80 Torr. As a result, the N-type epitaxial layer 16 selectively grows only on the exposed silicon surface.

工程(f)では前記シリコン酸化膜11bおよび前記シ
リコン窒化膜12をマスクとして前記N型エピタキシャ
ル層16内にN型高濃度のエミッタ領域である1層15
aをイオン注入法により、注入エネルギー40 KeV
 、ドーズ量6×1ocrn  程度で砒素イオンを注
入した後、窒素雰囲気中、960〜10oO℃の温度で
拡散して形成する。
In step (f), one layer 15 which is an N-type high concentration emitter region is formed in the N-type epitaxial layer 16 using the silicon oxide film 11b and the silicon nitride film 12 as masks.
a was implanted by ion implantation at an implantation energy of 40 KeV.
, arsenic ions are implanted at a dose of about 6×1 ocrn, and then diffused in a nitrogen atmosphere at a temperature of 960 to 100°C.

続いて1、N型エピタキシャル層内の下方、あるいは前
記基板シリコン1oの頂部分にP型ベース領域であるP
一層16をイオン注入法により、注入エネルギー140
−160KeV 、ドーズ量1×1orIn程度で硼素
イオンを注入し、窒素雰囲気中、900℃程度の温度で
30分アニールして形成する。
Next, 1, a P-type base region P is formed below the N-type epitaxial layer or at the top of the silicon substrate 1o.
One layer 16 is implanted using an ion implantation method with an implantation energy of 140
Boron ions are implanted at -160 KeV at a dose of about 1x1 or In, and annealed for 30 minutes at a temperature of about 900 DEG C. in a nitrogen atmosphere.

以上説明したように、本発明によるバイポーラ集積回路
の製造方法を用いれば、第1図の従来例におけるエミッ
タ領域のN+層3のような高濃度に不純物添加されたシ
リコンをエツチングする工程はなく、これによるエミッ
タ領域のパターン寸法。
As explained above, if the method for manufacturing a bipolar integrated circuit according to the present invention is used, there is no need to etch heavily doped silicon such as the N+ layer 3 in the emitter region in the conventional example shown in FIG. This results in pattern dimensions of the emitter area.

形状のばらつきはなくなるので、トランジスタのエミッ
タの寸法、高周波特性を制御する場合、そのばらつきを
小さくすることができる。また本発明によれば、ドライ
エツチングで除去されるシリコン窒化膜12a直下およ
び周辺には薄いシリコン啼化膜11a、11cがあり、
このシリコン窒化膜12aのプラズマドライエツチング
時のストッパーの役割を果しているだめドライエツチン
グの終点の制御性も良い。
Since variations in shape are eliminated, variations can be reduced when controlling the emitter dimensions and high frequency characteristics of transistors. Further, according to the present invention, there are thin silicon nitride films 11a and 11c directly under and around the silicon nitride film 12a to be removed by dry etching.
Since this silicon nitride film 12a serves as a stopper during plasma dry etching, the end point of the dry etching can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメサ構造のエミッタ領域をもったバイポ
ーラトランジスタを形成する方法を示す素子の工程断面
図、第2図は、本発明の一実施例であり、メサ構造をも
ったバイポーラトランジスタを形成する方法を製造工程
順に示した素子の断面図である。 1、1o−−−−−−N型シリコン基板、2,13゜1
60・・・・P型ベース領域、35ees・・1層、3
a 。 151 mmmmmm l’J W :X−ミッタ領域
、4 、4 a 、11a。 1 l b 、 11068m−eシリコン酸化膜、5
.5a、12゜12a・・・・0シリコン窒化膜、60
・・・・多結晶シリコン膜、7,14・・e@O・フォ
トレジスト膜パターン、16・・・■・N型エピタキシ
ャル層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 fJ1図 1
FIG. 1 is a process cross-sectional view of an element showing a conventional method for forming a bipolar transistor with a mesa structure emitter region, and FIG. 2 is an embodiment of the present invention, in which a bipolar transistor with a mesa structure is formed. FIG. 3 is a cross-sectional view of an element showing a method of forming the element in the order of manufacturing steps. 1, 1o---N-type silicon substrate, 2,13°1
60...P type base region, 35ees...1 layer, 3
a. 151 mmmmmm l'J W :X-mitter area, 4, 4a, 11a. 1 lb, 11068m-e silicon oxide film, 5
.. 5a, 12°12a...0 silicon nitride film, 60
...Polycrystalline silicon film, 7,14...e@O photoresist film pattern, 16...■ N-type epitaxial layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure fJ1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面上に直接あるいは酸化膜を介して形成
されたシリコン窒化膜を環状に選択食刻して、内側の島
状部分と外側部分とに分離した後、前記シリコン窒化膜
をマスクにして選択食刻部下のシリコン基板内へ同基板
の導電型とは逆導電型を与える不純物イオンを注入して
、所定の領域を形成する工程と、選択食刻部の前記内側
の島状部分に残存するシリコン窒化膜もしくは同シリコ
ン窒化膜とこの直下の陵化シリコン膜を除去して、半導
体基板面を露呈する工程と、上記露呈半導体基板部分上
にこれと同一導電型のエピタキシャル層を形成する工程
と、同エピタキシャル層の下方、もしくは前記半導体基
板の頂部分を逆導電型の層に変換する工程とを具備する
ことを特徴とする半導体装置の製造方法。
A silicon nitride film formed directly or via an oxide film on the surface of a semiconductor substrate is selectively etched into an annular shape to separate it into an inner island-shaped portion and an outer portion, and then the silicon nitride film is used as a mask. A step of implanting impurity ions that give a conductivity type opposite to that of the substrate into the silicon substrate under the selective etching to form a predetermined region, and remaining in the inner island-shaped portion of the selective etching. a step of exposing the semiconductor substrate surface by removing the silicon nitride film or the silicon nitride film and the silicon nitride film immediately below the silicon nitride film, and a step of forming an epitaxial layer of the same conductivity type on the exposed semiconductor substrate portion. A method for manufacturing a semiconductor device, comprising the steps of: converting a layer below the epitaxial layer or a top portion of the semiconductor substrate into a layer of an opposite conductivity type.
JP21554381A 1981-12-23 1981-12-23 HANDOTAISOCHINOSEIZOHOHO Expired - Lifetime JPH0227813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21554381A JPH0227813B2 (en) 1981-12-23 1981-12-23 HANDOTAISOCHINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21554381A JPH0227813B2 (en) 1981-12-23 1981-12-23 HANDOTAISOCHINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS58110076A true JPS58110076A (en) 1983-06-30
JPH0227813B2 JPH0227813B2 (en) 1990-06-20

Family

ID=16674164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21554381A Expired - Lifetime JPH0227813B2 (en) 1981-12-23 1981-12-23 HANDOTAISOCHINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0227813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170024A (en) * 1984-09-10 1986-04-10 Nippon Ester Co Ltd Cup-forming method in draw twisting frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170024A (en) * 1984-09-10 1986-04-10 Nippon Ester Co Ltd Cup-forming method in draw twisting frame
JPH0146609B2 (en) * 1984-09-10 1989-10-09 Nippon Ester Co Ltd

Also Published As

Publication number Publication date
JPH0227813B2 (en) 1990-06-20

Similar Documents

Publication Publication Date Title
JP5076098B2 (en) Process for doping two levels of a double poly bipolar transistor after formation of a second poly layer
JPH0251255B2 (en)
EP0076106A2 (en) Method for producing a bipolar transistor
JPS58110076A (en) Manufacture of semiconductor device
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPH06216140A (en) Transistor process of removing narrow base effect
JPH0330293B2 (en)
JPH0335528A (en) Manufacture of semiconductor device
JP2722829B2 (en) Method for manufacturing semiconductor device
JPH04152530A (en) Manufacture of semiconductor device
JPH04168764A (en) Manufacture of semiconductor device
JPH01251658A (en) Manufacture of semiconductor device
JPS6081863A (en) Manufacture of semiconductor device
JPH0494567A (en) Manufacture of semiconductor device
JPH04216651A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPH0233932A (en) Manufacture of semiconductor device
JPH01291424A (en) Semiconductor device and manufacture thereof
JPS60145659A (en) Manufacture of semiconductor element
JPS5974671A (en) Manufacture of semiconductor device
JPH03224238A (en) Manufacture of bipolar transistor
JPH10270457A (en) Manufacture of bipolar transistor
JPH04309226A (en) Manufacture of semiconductor device
JPH04179236A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device