JPS58107721A - Analog-to-digital converter - Google Patents

Analog-to-digital converter

Info

Publication number
JPS58107721A
JPS58107721A JP20772681A JP20772681A JPS58107721A JP S58107721 A JPS58107721 A JP S58107721A JP 20772681 A JP20772681 A JP 20772681A JP 20772681 A JP20772681 A JP 20772681A JP S58107721 A JPS58107721 A JP S58107721A
Authority
JP
Japan
Prior art keywords
integrator
input
channel
reference voltage
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20772681A
Other languages
Japanese (ja)
Other versions
JPS632488B2 (en
Inventor
Taiki Uchiumi
内海 岱基
Hisashi Yamamoto
久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP20772681A priority Critical patent/JPS58107721A/en
Publication of JPS58107721A publication Critical patent/JPS58107721A/en
Publication of JPS632488B2 publication Critical patent/JPS632488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/52Input signal integrated with linear return to datum

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To attain high speed conversion for multi-channel input, by providing two sets of integrators and providing another input signal to the other integrator while the output of one integrator is counted, in an A/D converter of the double integral system. CONSTITUTION:An input channel is selected at a multiplexer MP and given to integrators IG1, IG2. While the integrator IG1 integrates an input signal, the integrator IG2 integrates a reference voltage -Es. The signal inputted to the integrator IG2 is A/D-converted while the time required for the output voltage of the integrator IG2 until it returns to the original level is counted. After a prescribed time, the switch is changed over, the integrator IG1 is integrated at the reference voltage -Es and the other channel signal is given to the integrator IG2.

Description

【発明の詳細な説明】 本発明は、二重積分方式によるアナログ・ディジタル変
倶器に+4fるもので、多チャン、ネルのアナログ入力
を高速でディジタル信号に変換−・4ることのできる変
換器を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an analog-to-digital converter using a double integration method, and is capable of converting multiple channels of analog input into digital signals at high speed. The purpose is to provide equipment.

第1図は多チャンネルのアナログ入力をディジタル信号
に変換する従来の二重積分方式によるアナログ・ディジ
タル変換器の接続図、第3図はその動作波形図である。
FIG. 1 is a connection diagram of a conventional analog-to-digital converter using a double integration method for converting multi-channel analog input into digital signals, and FIG. 3 is an operating waveform diagram thereof.

周知のように、二重積分方式によるアナログ・ディジタ
ル変換は第1図で示す如く増幅器AとコンデンサCと入
力抵抗R□よりなる積分器IGと、基準電圧源±E8お
よび比較器COMPとよりなるものであり、多チャンネ
ルの場合にはこれにマルチプレクサMPが付加されて構
成される。S□、 S−、S+、 SRはそれぞれアナ
ログスイッチで、これらのスイッチは第5図(ロ)、 
ri 、に)に示す時間々隔でオン・オフされる。t□
、t2181.は経過時間を示すものである。マルチプ
レクサ1により選択された第1チヤネルch1のアナロ
グ入力EXlは時間t1.t2の間において積分器IG
で積分される。
As is well known, analog-to-digital conversion using the double integration method consists of an integrator IG made up of an amplifier A, a capacitor C, and an input resistor R, as shown in Figure 1, a reference voltage source ±E8, and a comparator COMP. In the case of multiple channels, a multiplexer MP is added to this. S□, S-, S+, and SR are analog switches, and these switches are shown in Figure 5 (b),
It is turned on and off at intervals shown in (ri, 2). t□
, t2181. indicates the elapsed time. The analog input EXl of the first channel ch1 selected by the multiplexer 1 is at time t1. During t2, the integrator IG
It is integrated by

時間t2以後、積分器IGは基準電圧−E8を積分し、
積分器IGが時間t3において元のレベルに戻ると、比
較器COMpがそれを検出する。積分器IGの出力は第
3図の(ハ)で示される。第1チャネルcb□、の入力
EX□のディジタル変換は第3図の(ホ)に示す如く、
基準電圧−E8を積分している期間内、即ちt2からt
3の期間クロックパルスを計数することによシ行われる
。その後、積分器IGはt3からt3’ tでの期間基
準電圧−E8を積分する。t2からt3+までの期間、
即ち基準電圧−E8が積分器IGに加えられている期間
は一定値に定められており、この期間は積分器IGが入
力Ex□を積分している期間(t□〜12)より等しい
か或は大きく選ばれている・時間t、1が経過すると積
分器IGがリセットされ、今度はマルチプレクサ即によ
シ第2チャネルch2の入力EX2が選択される。入力
EX□はt4からt5の期間積分され、その後t5から
t6Iの一定期間積分器IGは基準電圧−E8を積分す
る。第2チヤネルの入力Ex2のディジタル変換は15
.16の期間に行われる。
After time t2, integrator IG integrates reference voltage -E8,
When integrator IG returns to its original level at time t3, comparator COMp detects it. The output of the integrator IG is shown in (c) of FIG. The digital conversion of the input EX□ of the first channel cb□ is as shown in (e) of Fig. 3.
Within the period of integrating the reference voltage -E8, that is, from t2 to t
This is done by counting clock pulses for a period of 3 seconds. Thereafter, the integrator IG integrates the reference voltage -E8 for the period t3 to t3't. The period from t2 to t3+,
That is, the period during which the reference voltage -E8 is applied to the integrator IG is set to a constant value, and this period is equal to or equal to the period (t□~12) during which the integrator IG integrates the input Ex□. is selected to be large. When the time t, 1 has elapsed, the integrator IG is reset, and the input EX2 of the second channel ch2 is now selected by the multiplexer immediately. The input EX□ is integrated for a period from t4 to t5, and then the integrator IG integrates the reference voltage -E8 for a certain period from t5 to t6I. The digital conversion of the second channel input Ex2 is 15
.. It will be held during the 16th period.

以下同様に、入力への積分と基準電圧E8の積分が交互
に行なわれ、基準電圧E8の積分期間内にそのチャネル
のディジタル変換が行なわれる。なお、第1品にお6で
SRは積分器IGのリセット用スイッチを示すものであ
る。
Similarly, the integration of the input and the integration of the reference voltage E8 are performed alternately, and the digital conversion of the channel is performed within the integration period of the reference voltage E8. Note that in the first item, 6 and SR indicate a reset switch for the integrator IG.

ディジタル変換器は、被変換入力Exを積分している期
間はゲイジタル変換動作が行なわれない。この被変換入
力積分時間は電源からのまわりこみに対して積分性をも
たせるために1電源周期の整数倍に選んである。そのた
め、二重積分方式のアナログ・ディジタル変換器は電源
ノイズに対しては強いが、単位時間(例えば:Lsec
)に処理できるアナログ・ディジタル変換の回数が少な
いという欠点がある。その結果、データロガ−などのよ
うVこ被変換のチャネル数が多い機器のアナログ・ディ
ジタル変換器としては必ずしも満足されるものではなか
った・ 本発明は、被変換入力EXを積分している期間もディジ
タル変換処理に使われるようにして上記のような問題点
を解決したものである。
The digital converter does not perform a gain conversion operation during the period when the input to be converted Ex is being integrated. This input integration time to be converted is selected to be an integer multiple of one power supply cycle in order to provide integrality with respect to the wrap-around from the power supply. Therefore, double integration type analog-to-digital converters are resistant to power supply noise, but the
) has the disadvantage that the number of analog-to-digital conversions that can be processed is small. As a result, it is not necessarily satisfactory as an analog-to-digital converter for devices such as data loggers that have a large number of channels to be converted. The above-mentioned problems have been solved by being used for digital conversion processing.

第2図は本発明のアナログ・ディジタル変換器  。。Figure 2 shows the analog-to-digital converter of the present invention. .

の一実施例のブロック図で、第1図の回路に積分器IG
2及びアナログスイッチS81’ SI2”S2’ ”
Cが付加されている。各スイッチのオン・オフは第4図
のti乃至(へ)および(至)乃至に)の時間間隔で行
なわれ、積分器IG1. IG2の出力は第4図(ハ)
および(ロ)で示される。即ち、時間t□〜t2の間ス
イッチ81.をオン(他のスイッチはオフ。又、soは
IIQI+に接続)にして第1チヤネルch□の入力E
x□を積分器IG□で積分する。時間t□〜t2の経過
後、スイッチSI工をオフ、Ssx、 S−をオン、s
oをII“に接続して基準電圧−E8をt□〜t2より
長いが或いは等しい一定時間t2〜t3′の間、積分器
IG1に与えて積分する。
This is a block diagram of an embodiment of an integrator IG in the circuit of FIG.
2 and analog switch S81'SI2"S2'"
C is added. Each switch is turned on and off at time intervals of ti to (to) and (to) to) in FIG. 4, and the integrator IG1. The output of IG2 is shown in Figure 4 (c)
Indicated by and (b). That is, from time t□ to t2, switch 81. (Other switches are off. Also, so is connected to IIQI+) and the input E of the first channel ch□
Integrate x□ with integrator IG□. After time t□~t2, turn off switch SI, turn on Ssx, S-, s
o is connected to II'' and the reference voltage -E8 is applied to the integrator IG1 for integration during a fixed time period t2 to t3' which is longer than or equal to t□ to t2.

積分器IG□の出力は元のレベルに時間t3において戻
り、これはコンパレータCOMPによJI出される。
The output of integrator IG□ returns to its original level at time t3, which is output by comparator COMP.

第1チヤネルah□の入力hx□のディジタル変換は第
4図の(ト)で示す如<t2〜t3の間をクロックパル
スで計数することにより行なわれる。一方、時間t2か
らt2Iの間、積分器IG2はリセットされ、そノff
1t2°からt3’ (t工〜t2と等しい)の期間ス
イッチSI2をオンにし、積分器工G2で第2チャンネ
ルch2O,入力”I2を積分する。したがって、この
人力EX2を積分している期間は第1チヤネルch□の
基準電圧−E8を積分しているt2〜i31内で桁ゎれ
ることになる。時間t2′−t3Iが経過したら、次に
時間t3Iからt5の間スイッチs工2をオフ、Es2
. s−をオン、Sをll0I+に接続し、積分器NG
2で基準電圧−E8を積分する。とのt3’ ”−t5
0期間は前述したt2〜13+に等しい。積分器IG2
は元のレベルに時間t5Iにおいて戻り、これはコンパ
レータCOMによって検出される。第2チヤネルch2
の入力EX2のディジタル変換は第4図に)で示す如<
t3I−t51の期間をクロックパルスで計数スること
により行われる。次に、時間t1がらtの間4 積分器工G1をリセットし、その後1時間t□〜t2I
t21 、、 t31 と等しいt4〜t5の間スイッ
チS工□をオンにして積分器IG1で第1チヤネルah
□の入力EX3を積分する。したがって、この人力Ex
3の積分は第2チヤネルch2の基準電圧−E8を積分
しているt3t−t5の期間内で行われる。時間t4〜
t5が経過したら、次にt5〜t6Iの期間スイッチS
I□をオフr  Ssx、 S−をオン−Scを++ 
1 ++に接続し、積分器IG□で基準電圧−Esを積
分する。このt5〜t6“、の期間は前述したt2〜t
3I、t3I−t5と等鴎い。
Digital conversion of the input hx□ of the first channel ah□ is performed by counting the period between <t2 and t3 using clock pulses, as shown in (G) in FIG. On the other hand, between time t2 and t2I, integrator IG2 is reset and its ff
The switch SI2 is turned on for a period from 1t2° to t3' (equal to t-t2), and the integrator G2 integrates the second channel ch2O, input "I2. Therefore, the period during which this human power EX2 is integrated is The digits will change within t2 to i31, which integrates the reference voltage -E8 of the first channel ch□.After the time t2'-t3I has elapsed, switch s2 is turned off from time t3I to t5. , Es2
.. Turn on s-, connect S to ll0I+, and integrator NG
2 to integrate the reference voltage -E8. t3' ”-t5
The 0 period is equal to t2 to 13+ described above. Integrator IG2
returns to its original level at time t5I, which is detected by comparator COM. 2nd channel ch2
The digital conversion of the input EX2 is as shown in Fig. 4).
This is done by counting the period t3I-t51 using clock pulses. Next, reset the integrator G1 for 4 hours from time t1 to t, and then for 1 hour from t□ to t2I.
Between t4 and t5, which are equal to t21, t31, the switch S is turned on and the integrator IG1 selects the first channel ah.
Integrate the input EX3 of □. Therefore, this human power Ex
The integration of 3 is performed within the period t3t-t5 during which the reference voltage -E8 of the second channel ch2 is integrated. Time t4~
After t5 has elapsed, the next period of time from t5 to t6I is switch S.
I□ off r Ssx, S- on - Sc++
1 ++ and integrates the reference voltage -Es with the integrator IG□. This period from t5 to t6" is the period from t2 to t mentioned above.
3I, t3I-t5 and similar.

積分器IG□の出力は元のレベルに時間t6において戻
り、これはコンパレータCOMによって検出される。第
3チヤネルch3のディジタル変換は第4図の(ト)で
示す如< t5〜t6の期間をクロックパルスで計数す
ることによ!ll哲われる。同様にして、積分器IG1
が第3チヤネルCh3の基準電圧−E8を積分している
t5〜t、lの期間内において、積分器IG2は第4チ
ヤネルch4の入力EX4を積分する。以下、同様のこ
とが繰り返される。
The output of integrator IG□ returns to its original level at time t6, which is detected by comparator COM. Digital conversion of the third channel ch3 is performed by counting the period from t5 to t6 using clock pulses, as shown in (G) in FIG. I'll be criticized. Similarly, integrator IG1
During the period from t5 to t, l during which the integrator IG2 integrates the reference voltage -E8 of the third channel Ch3, the integrator IG2 integrates the input EX4 of the fourth channel ch4. The same process is repeated thereafter.

このように本発明においては二重積分方式のアナログ−
ディジタル変換器において2つの積分器を使用し、1つ
のチャネルの被変換入力に対する基準電圧を一方の積分
器で積分している期間内において他方の積分器により次
のチャネルの被変換入力の積分を行うように構成し、こ
れを交互に行うように構成したので、ディジタル変換の
ための遊びの時間が短縮される。よって、被変換入力の
積分時間を電源周期の整数倍にとシ、かつり胃ツクパル
スの周期も従来と同じでありても、従来の変換器の変換
動作のほぼ2倍のディジタル処理が行える。よって、本
発明のアナログ・ディジタル変換器はデータロガ−のよ
うに多チャンネルの入力を取扱う機器に用いて好適であ
る。しかも、本発明の変換器においては第1図の変換器
に比して積分器とアナログスイッチが増えているが、抵
抗R工、R8,基準電源士′E8など精度が要求される
部品が共用化されているので、それほどのコストアップ
なしに実現することができる。
In this way, in the present invention, the double integral method analog
Two integrators are used in a digital converter, and while one integrator is integrating the reference voltage for the converted input of one channel, the other integrator is integrating the converted input of the next channel. Since the configuration is configured to perform the conversion and to perform the conversion alternately, the idle time for digital conversion is shortened. Therefore, even if the integration time of the input to be converted is an integral multiple of the power supply cycle and the period of the stomach pulse is the same as before, digital processing can be performed approximately twice as much as the conversion operation of the conventional converter. Therefore, the analog-to-digital converter of the present invention is suitable for use in equipment that handles multi-channel input, such as a data logger. Furthermore, although the converter of the present invention has more integrators and analog switches than the converter shown in Figure 1, parts that require precision such as the resistor R, R8, and reference power supply engineer 'E8 are shared. , it can be realized without much increase in cost.

なお、本発明に係るアナログφディジタル変換器の場合
、積分器lG1− lG2のコンデンサC工、C2の容
量差はディジタル変換のカウント数に関係せず、また積
分器IG□、 lG2のオフセットによるカウント差は
ディジタル変換の前にキヤリプレーテッドゼ四を行うよ
うにすれば補償することができるため、積分器IG1.
 lG2を通ったととKよるディジタル変換値の差はな
い等の特徴がある。
In the case of the analog φ digital converter according to the present invention, the capacitance difference between the capacitors C and C2 of the integrators IG1 and IG2 is not related to the count number of digital conversion, and the difference in the capacitance between the integrators IG and IG2 is due to the offset of the integrators IG and IG2. Since the difference can be compensated for by carrying out the calculation before digital conversion, the integrator IG1.
It has the characteristics that there is no difference in the digital conversion value depending on K and when it passes through lG2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアナμグ奉ディジタル変換器の    
Sブロック図、第2図は本発明のアナ°四グ・ディジタ
ル変換器のブ四ツク図、第3図は第1図の動作波形図、
第4図は第2図の動作波形図である。 鼎・・・マルチプレクサ、IGl、 lG2−・・積分
器、±Es・・・基準電圧源、COMP・・・比較器。 第 4 司
Figure 1 shows a conventional analog-to-digital converter.
S block diagram, FIG. 2 is a block diagram of the analog-to-four-digital converter of the present invention, FIG. 3 is an operating waveform diagram of FIG. 1,
FIG. 4 is an operational waveform diagram of FIG. 2. Ding...Multiplexer, IGl, lG2-...Integrator, ±Es...Reference voltage source, COMP...Comparator. 4th Chief

Claims (1)

【特許請求の範囲】[Claims] 被変換入力を一定時間積分したのちこの入力積分時間よ
り等しいか或いは長い一定時間被変換入力とは逆極性の
基準電圧を積分す、る積分器を有し、この積分器の出力
が元のレベルに戻るまで基準電圧を積分している期間を
ディジタル的に計数することにより被変換入力をディジ
タル信号に変換する二重積分方式のアナログ・ディジタ
ル変換器において、第2の積分器を設け、1つのチャネ
ルの被変換入力に対する基準電圧を一方の積分器によシ
積分している期間内において次のチャネルの被変換入力
を他方の積分器によシ積分するようにしたアナログ・デ
ィジタル変換器。
It has an integrator that integrates the input to be converted for a certain period of time and then integrates a reference voltage of opposite polarity to the input to be converted for a certain period of time that is equal to or longer than this input integration time, and the output of this integrator returns to the original level. In a double-integration type analog-to-digital converter that converts the input to be converted into a digital signal by digitally counting the period during which the reference voltage is integrated until it returns to , a second integrator is provided, and one An analog-to-digital converter in which, during a period in which one integrator is integrating a reference voltage for an input to be converted of a channel, an input to be converted of the next channel is integrated by another integrator.
JP20772681A 1981-12-22 1981-12-22 Analog-to-digital converter Granted JPS58107721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20772681A JPS58107721A (en) 1981-12-22 1981-12-22 Analog-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20772681A JPS58107721A (en) 1981-12-22 1981-12-22 Analog-to-digital converter

Publications (2)

Publication Number Publication Date
JPS58107721A true JPS58107721A (en) 1983-06-27
JPS632488B2 JPS632488B2 (en) 1988-01-19

Family

ID=16544521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20772681A Granted JPS58107721A (en) 1981-12-22 1981-12-22 Analog-to-digital converter

Country Status (1)

Country Link
JP (1) JPS58107721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197237U (en) * 1984-11-30 1986-06-21
JPS645226A (en) * 1987-06-29 1989-01-10 Nec Corp Oversample type a/d converter
CN113852372A (en) * 2021-08-31 2021-12-28 中国计量大学 Method and device for compensating reference charge of integral analog-to-digital converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868317A (en) * 1981-10-19 1983-04-23 Toshiba Corp Analog to digital converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868317A (en) * 1981-10-19 1983-04-23 Toshiba Corp Analog to digital converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197237U (en) * 1984-11-30 1986-06-21
JPS645226A (en) * 1987-06-29 1989-01-10 Nec Corp Oversample type a/d converter
CN113852372A (en) * 2021-08-31 2021-12-28 中国计量大学 Method and device for compensating reference charge of integral analog-to-digital converter
CN113852372B (en) * 2021-08-31 2024-02-02 中国计量大学 Reference charge compensation method and device for integral analog-to-digital converter

Also Published As

Publication number Publication date
JPS632488B2 (en) 1988-01-19

Similar Documents

Publication Publication Date Title
GB2190258B (en) A subranging analog-to-digital converter
JPS55100742A (en) Analog-to-digital converter
JPS58104526A (en) Two-stage a/d converter
JPS5639629A (en) Digital-analog converter
JPS58107721A (en) Analog-to-digital converter
JPS54161983A (en) Temperature compensating circuit of photometric circuit
FR2406914A1 (en) FAST ANALOGUE-DIGITAL CONVERTER
JPS54964A (en) Analog digital converter
JPS5753143A (en) Analogue-digital converter
JPS5513583A (en) Analogue-digital converter circuit
SE454311B (en) ANALOG-DIGITAL CONVERTER DEVICE INCLUDING A MULTIPLE SEPARATE ANALOG-DIGITAL CONVERTER
JPH0295024A (en) Sigmadelta modulation type a/d converter with multiplexer
JPS55158734A (en) Analog-digital converter
JPS5631225A (en) A/d converter
JPS5693426A (en) Analogue-digital converter
JPS5713814A (en) Analog-to-digital converting circuit
SU974569A1 (en) Converter of code to pulses of staircase shape
SU858207A1 (en) Reversible analogue-digital converter
JPS6477321A (en) Optional calibration type analog/digital conversion system
JPS55138924A (en) Analog-to-digital converting device
SU782152A1 (en) Integrating analogue-digital converter
JPS58105382A (en) Integration circuit
SU984033A1 (en) Analogue-digital converter
JPS6273275U (en)
JPS56162534A (en) Analog-to-digital and digital-to-analog converter circuit