JPS58100369A - Electrolyte matrix for fuel cell - Google Patents

Electrolyte matrix for fuel cell

Info

Publication number
JPS58100369A
JPS58100369A JP56196368A JP19636881A JPS58100369A JP S58100369 A JPS58100369 A JP S58100369A JP 56196368 A JP56196368 A JP 56196368A JP 19636881 A JP19636881 A JP 19636881A JP S58100369 A JPS58100369 A JP S58100369A
Authority
JP
Japan
Prior art keywords
matrix
phosphoric acid
fuel cell
hydrogen ion
ion conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56196368A
Other languages
Japanese (ja)
Other versions
JPH0258742B2 (en
Inventor
Sanji Ueno
上野 三司
Tamotsu Shirogami
城上 保
Tadanori Maoka
忠則 真岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56196368A priority Critical patent/JPS58100369A/en
Publication of JPS58100369A publication Critical patent/JPS58100369A/en
Publication of JPH0258742B2 publication Critical patent/JPH0258742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a matrix having large content of phosphoric acid, high bubbling pressure, high hydrogen ion conductivity, and easy handling by using fluorocarbon having a specific chemical formula, highly concentrated phosphoric acid, and polymer affiliated to fluoride as a binder. CONSTITUTION:A various amounts of 95% phosphoric acid are added to 100 pts.wt. white fluorocarbon powder indicated as (CF)n powder and 3pts.wt. polyfluoroethylene used as a binder, and kneaded, then compressed at 3kg/cm<3> to form about a 0.15mm. thick sheet-shape matrix. The bubbling pressure of this matrix is slightly decreased as the amount of phosphoric acid is increased as shown by a solid line 11, and the bubbling pressure of 0.3 atmospheric pressure is indicated at 120% addition. A hydrogen ion conductivity is increased with the amounts of phosphoric acid as shown by line 12. The matrix containing 120% of phosphoric acid is semisolid, and does not break under gravitation when it is held at both ends.

Description

【発明の詳細な説明】 発明の分野 本発明は、)ん酸を電解質とする燃料電池用電解質マト
リックスに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrolyte matrix for fuel cells having phosphoric acid as the electrolyte.

発−の技術的背景とその問題点 周知の通)シん酸電解*m燃料電池は対向して配置され
たガス拡散電極の関に液体)ん酸を電解質として保持し
ft!トリックスを配し、ガス拡散電極にそれすれ水素
管含有するlス會燃料ガスとしてオ皮酸素を含有するた
とえば空気vte化剤ガスとして通流させて使用する。
The technical background and problems of phosphoric acid electrolysis*m Fuel cells hold liquid phosphoric acid as an electrolyte between gas diffusion electrodes placed opposite each other.ft! It is used by disposing a gas diffusion electrode and passing it through a hydrogen pipe as a fuel gas containing keratin oxygen, such as an air VTE converting agent gas.

〕んat電解質とする燃料電池では、電池特性の向上、
及びその長期的安定性を図る上で、電解質マトリックス
は重−喪な構成要素の一つである。
] In fuel cells using AT electrolyte, improvement of cell characteristics,
The electrolyte matrix is one of the most important components in achieving long-term stability.

この電解質マトリックスが燃料電池を最適の状態で作動
させるためにマトリックス基材が具備すべき特性として
は以下の機能が挙−けられる。
In order for this electrolyte matrix to operate the fuel cell in an optimal state, the matrix base material must have the following functions.

l)燃料電池の作動条件(150°0〜zoo’o・、
95〜100嘩H,PO,)で熱的、化学的に安定であ
る −こと。
l) Operating conditions of fuel cell (150°0~zoo'o・,
It is thermally and chemically stable at 95 to 100 degrees H, PO,).

2)電解質に対して温潤性があり、且一つ十分な水素イ
オン導電性があること。
2) It must be warm to the electrolyte and have sufficient hydrogen ion conductivity.

3)電子的絶縁体であること。3) Be an electronic insulator.

4)燃料ガスと酸化剤ガスがマトリックスtaして拡散
、透過するのt−U止OK十分1に池圧力を有すること
4) The pond pressure must be sufficiently high to prevent the fuel gas and oxidant gas from diffusing and permeating through the matrix.

5)出来るだけ薄く、且つ適度Oamを有する仁と。5) The kernels are as thin as possible and have a moderate Oam.

従来、使用されて来光マトリックス基材の一つにフェノ
ール樹脂不繊布がある。フェノール樹脂は高温の)ん酸
中(180°0以上)K長期開−されていると、徐々に
酸化反応をう妙る為に、燃料電亀出力の長期的安定性に
欠ける問題かあった0又他Oマトリツクス基材として五
酸化夕/タシ(Ta*Os)中酸化ジルコニウム(Zr
O*)のクロス十五酸化−ンIシ中酸化ジ般コニウ五を
高分子固着剤を使用して緒合し、シート化し友ものが報
告されている。
One of the conventional matrix substrates used is phenolic resin nonwoven fabric. When phenolic resin is exposed to high-temperature phosphoric acid (over 180°0) for a long period of time, it gradually undergoes an oxidation reaction, which may result in a lack of long-term stability in fuel output. Zirconium oxide (Zr
It has been reported that a cross of 15 oxides (O*) and 15 oxides of 15 oxides are combined together using a polymeric binder to form a sheet.

−しかじ、これらの酸化物は高温のシん酸に対して化学
的に安定であるが電解質保持性に間層がある。さもに、
これらの酸化物は高価である為に多量KIll用する大
容量歯科電電のマトリックス材料としては不適で−ある
-However, although these oxides are chemically stable against high-temperature cynic acid, there are gaps in electrolyte retention. Besides,
Since these oxides are expensive, they are not suitable as matrix materials for large-capacity dental electronics that are used in large quantities.

一方、燃料11aの作動温度及び電極の開路電圧におい
て、電気化学的に安定でToシ長期間安定で6塾、かつ
多量に各分野で使用されて詐るので、安価な炭化i!I
(8ic)lv)リツクス鍵科として用いた燃料電池が
知られている。
On the other hand, at the operating temperature of the fuel 11a and the open circuit voltage of the electrode, it is electrochemically stable, stable for a long period of time, and is used in large quantities in various fields, so it is inexpensive. I
(8ic)lv) A fuel cell used as a fuel cell is known.

炭化珪素を用い友電解質マトリックスの製造法としては
、粒状乃Nは、繊維状の炭化珪素に高分子、−着剤及び
溶1st適量加えて混合し、これを四−&IIM、吹付
け、塗布、薄膜プリ7トなどにより電極表面に付加し、
乾燥して#厳t−除去し、これに9ん酸を含浸する製造
方法が行なわれていた。又、他の方法として本実明看等
によ)炭化珪素、固着剤及び、シん酸の温練物t[接電
極表面に塗布する方法が提案されてiる。
The method for producing a friendly electrolyte matrix using silicon carbide is as follows: granular N is prepared by adding and mixing appropriate amounts of a polymer, an adhesive, and a solution to fibrous silicon carbide, and then mixing the mixture with 4-&IIM, spraying, coating, Added to the electrode surface using thin film pre-7 etc.
The manufacturing method used was to dry it, remove it under strict conditions, and then impregnate it with 9-acid. In addition, as another method, a method has been proposed in which a warmed product of silicon carbide, a fixing agent, and cynic acid is applied to the surface of the electrode.

これ等の炭化珪素管用い友電解質マトリックスは、これ
壜でのマトリックス材料に比して、水嵩イオン伝導度、
電圧力などの特性に於いて秀れたマトリックスでめあと
いえる。しかし、燃料電池としての電池特性をさらに向
上させるにはマトリックスの水素イオン伝導度を高めゐ
ことが必要であり、その為には、りン鐵量を多く添加す
ることが必要である。
These electrolyte matrices used in silicon carbide tubes have higher bulk ionic conductivity than the matrix material in these bottles.
It can be said that the matrix has excellent characteristics such as voltage power. However, in order to further improve the cell characteristics as a fuel cell, it is necessary to increase the hydrogen ion conductivity of the matrix, and for this purpose it is necessary to add a large amount of phosphorous iron.

しかしながら、シん酸量をさらに多く添加すると水素イ
オン伝導度は、増加するものの、逆KIllI圧力が低
くなるという楓象が見られ良。又、マトリックスの厚さ
を薄くすることによ)、水素イオンの抵抗を小さくする
ことが出来る%t)0.電圧力が低くなシ、又、機械的
強11%低下し友。さらに、りん酸の絶対量が少なくな
る為に、電池としてO寿命が低下するなどの現象が見ら
れた。
However, when a larger amount of phosphoric acid is added, the hydrogen ion conductivity increases, but the reverse KIllI pressure decreases, which is a good phenomenon. Also, by reducing the thickness of the matrix, the resistance of hydrogen ions can be reduced.%t)0. The voltage force is low, and the mechanical strength is reduced by 11%. Furthermore, since the absolute amount of phosphoric acid decreased, phenomena such as a decrease in the life span of the battery were observed.

以上の事は、炭化珪素tmいたマトリックスでは、水素
イオン伝導度、電圧力、電池寿命などの観点から、l1
lcfkとしての4I惟を向上させるとで、眼界が参る
仁とを示している。
The above means that in a matrix made of silicon carbide tm, l1
By improving the 4I power as an LCFK, it shows that the world of eyes is coming.

本*Iij!者等は、以上の状況の中で、炭化珪素に代
−る嵐好なマトリックス材料を種々探索したところ、7
ツ化炭素が良好な特性を有すること管見い出し友。フッ
化縦素は、化学式で一般に(OFm)”(0≦X≦1)
で表わされる層間化合物の一種で今まで、潤滑材などと
して一部検討堪れ*、ことがあ為が工業的(は殆んど使
用されてφない新材料で、今回初めてす/酸電解質のマ
トリックスとして使用するものである。
Book*Iij! Under the above circumstances, the authors searched for various suitable matrix materials to replace silicon carbide, and found 7
The tube found that carbon tsunide has good properties. Vertical fluoride generally has the chemical formula (OFm)” (0≦X≦1)
It is a type of intercalation compound represented by It is used as a matrix.

本材料を種々の一点よシ調査し九ところ以下の機能を具
備していることが明らかになり九。
After investigating this material at various points, it became clear that it has the following functions.9.

l)第1図に示すように、40060以上まで分解など
起こらず、非常に安定であり、又、化学的にも安定であ
る。
l) As shown in FIG. 1, it is extremely stable and chemically stable, with no decomposition occurring up to 40,060 or more.

2)りん酸に対して湿潤性があシ、且つ、十分な水嵩イ
オン導電性がある。
2) It has good wettability with phosphoric acid and sufficient bulk ionic conductivity.

3)  (OFx)nでx=1の物では、白色で、電子
的に絶縁体である。
3) (OFx) In the case of n and x=1, it is white and is an electronic insulator.

4)龜わめて秀れた電圧力を有して−る05)薄く加工
出来、且つ適toWJAII!を有している。
4) It has extremely excellent voltage power. 05) It can be processed thinly and is suitable for WJA II! have.

しかも上記の機能は、炭化珪素をマトリックス材料とじ
良場合に比して、種々の点で秀れていることが判明した
0 発明の目的 本発明は、特に2) *4)で述べ友如く、池圧力會下
げることなく、りん酸を多量含浸し、水素イオン伝導度
の高いマトリックス材料を提供するものである。
Moreover, it has been found that the above-mentioned functions are superior in various respects compared to cases where silicon carbide is used as a matrix material. This provides a matrix material that is impregnated with a large amount of phosphoric acid and has high hydrogen ion conductivity without reducing the pond pressure.

発明の実施例 以下、本発明を実施例によ)1m@する。Examples of the invention Hereinafter, the present invention will be described as an example).

実施例1 重量比で(OF)nで表わされる白色t)fll*7フ
化巌票100部、固着剤としてポリテトツフシオロエチ
レyago*剤に、95−濃goりん酸の添加量を変え
て混練し、3#/al”の圧力を加えて厚さ約0.15
簡のシート状マトリックスを製造した。このマトリック
スの電圧力と150°Cに於けるイオン伝導&をそれぞ
れ第1図、第2図に実線11.12で示す。又、比較例
として炭化珪素を同様の条件で製造したシート状マトリ
ックスについて電圧力、イオン伝導tをそれぞれ纂1図
、第2図にそれぞれ砿−纏21.22で示す。
Example 1 100 parts of white t)fll*7 fluoride tablet expressed as (OF)n in weight ratio, polytetrafluoroethylene yago* agent as a fixing agent, and varying amounts of 95-concentrated phosphoric acid. Knead with a pressure of 3#/al" to a thickness of about 0.15
A simple sheet matrix was produced. The voltage force of this matrix and the ionic conduction at 150° C. are shown by solid lines 11.12 in FIGS. 1 and 2, respectively. Further, as a comparative example, the voltage force and the ionic conductivity t of a sheet-like matrix made of silicon carbide under the same conditions are shown in Fig. 1 and Fig. 2, respectively, with a line of 21.22.

本発明マトリックスでは電圧力は、#IIWJK示す如
くリン酸量が増加するにつれて、わずかに減少傾向にあ
るが、12〇−添加でも0.3気圧の電圧力を示してい
た。一方比較例のマトリックスでは1OO−のリン酸以
上の添加で顕著な電圧力の減少が見られ、1201Gで
は0.03気圧の電圧力で、本発明マトリックスの1/
1g  Kなつ九。
In the matrix of the present invention, the voltage force slightly decreased as the amount of phosphoric acid increased as shown by #IIWJK, but even when 120- was added, the voltage force was 0.3 atm. On the other hand, in the matrix of the comparative example, a remarkable decrease in voltage force was observed when phosphoric acid of 100- or more was added, and in 1201G, the voltage force was 0.03 atm, which was 1/1/2 that of the matrix of the present invention.
1g KNatsu9.

又、水素イオン伝導fは、第2図に示す如く、本発明、
比較例共にリン酸量の増加につれて増加するが、伝導f
は本実1jlff)リツクスが高いとと【示している。
In addition, the hydrogen ion conduction f is as shown in FIG.
In both comparative examples, the conduction f increases as the amount of phosphoric acid increases, but
This indicates that the real value is high.

又、本発明では120 mのリン酸tII加しても、マ
トリックスが半固体状でらシ、両端を持って−した場合
自重にて破壊しないのに対して、比較例では120饅の
リン酸を添加した場合、流動性が有遊離リン酸が表面に
浮き出しており、又、同様に両端を持って喬した場合自
重にて破壊した。
In addition, in the present invention, even if 120 m of phosphoric acid tII is added, if the matrix is semi-solid and held at both ends, it will not break under its own weight, whereas in the comparative example, 120 m of phosphoric acid tII was added. When it was added, free phosphoric acid with fluidity stood out on the surface, and when it was held at both ends, it broke under its own weight.

以上示し九如く、本発明マトリックスは従来の炭化珪素
マトリックスに比して、リン酸保持量が多く、水素イオ
ン伝導度が高く、機械的強fK秀れていることが判った
@ 実施例2 実施例1で示した重量比で、フッ化炭素10011゜ポ
リテトヲルオ四エチレン311,951111度の97
9110部より成る合剤t3#/fi”で加圧成型レシ
ート化し友ものをマトリックスとして、第3図(主要部
を示す燃料電池スタックを組み立て友。第3図で、(1
)は燃料極触媒層、(2)は触媒層を担持する支持体で
、通常用いられるカーメンペーパーを用いた。(3)は
空気極触媒層(4)鉱そO支持体で通常用いられるカー
メンペーパーを用いた。(5)は本発明による電解質保
持用マトリックスである。(6)は双極性隔離板で、燃
料ガスと空気等の酸化剤ガス會供給する為0#1(7)
(8) t−互一に直交方向に設は次4hので、隣豪す
る各単位電池は、これ【介して積層される。
As shown above, it was found that the matrix of the present invention has a higher retention amount of phosphoric acid, higher hydrogen ion conductivity, and superior mechanical strength fK than the conventional silicon carbide matrix @Example 2 Implementation At the weight ratio shown in Example 1, fluorocarbon 10011 degrees polytetrotetraethylene 311,951111 degrees 97
9110 parts of the mixture t3#/fi'' was pressure-molded into a receipt, and assembling the fuel cell stack shown in Figure 3 (main parts shown).In Figure 3, (1
) is the fuel electrode catalyst layer, and (2) is the support supporting the catalyst layer, and the commonly used carmen paper was used. For (3), Carmen paper, which is commonly used in the air electrode catalyst layer (4) mineral O support, was used. (5) is an electrolyte retention matrix according to the present invention. (6) is a bipolar separator, and 0#1 (7) is used to supply fuel gas and oxidizer gas such as air.
(8) Since the batteries are placed in the orthogonal direction one after the other, adjacent unit batteries are stacked through this.

上記のように構成され九燃料電池の作動特性の一例tj
141i0に示す。図は、単位面積轟ヤの放電11mK
伴う単位電池の電圧変化を示して番p1夷−Iが本発明
の特性を示すものt’6る。又、比較例として炭化珪1
lt−用いて本発明と同様の条件でマトリックスとし、
同様に構成した燃料電池の特性例を破纏厘で示し九〇 図より明らかな如く、単位電池の電圧は電流値が大きく
なるにつれて減少するが、本発明マトリックスを用いた
燃料電池の電圧減少が、比較例のそれよりも小’75 
Vh 6即ち、本発明マトリックスの水嵩イオン伝4m
が1116%fh為に水素イオン抵抗に伴う電圧減少を
小さくすることが出来、結果として作動電圧の高い燃料
電池を得ることが出来た。
An example of the operating characteristics of the nine fuel cells constructed as above tj
141i0. The figure shows a discharge of 11 mK per unit area.
The number p1-I shows the characteristics of the present invention, showing the voltage change of the unit battery. Also, as a comparative example, silicon carbide 1
lt- as a matrix under the same conditions as in the present invention,
As is clear from Figure 90, which shows an example of the characteristics of a similarly configured fuel cell, the voltage of the unit cell decreases as the current value increases, but the voltage decrease of the fuel cell using the matrix of the present invention is , smaller than that of the comparative example '75
Vh 6, i.e., the water volume of the matrix of the present invention 4m
Since the fuel cell was 1116%fh, it was possible to reduce the voltage decrease due to hydrogen ion resistance, and as a result, it was possible to obtain a fuel cell with a high operating voltage.

尭明の効果 以上の如<、(OF)nよシ表わ1れる7ツ化炭素と9
5慢以上の**のリン酸と、固着剤としてフッ素系ポリ
マーを用いたマトリックスは、夛ん酸の含有量が多く、
重圧カ、水嵩イオン伝導&が高く、カつ堆扱い答易なマ
トリックスで参り、これを使用することにより、長期的
安定性に優れた大容量燃料電池が製造可能となる。
More than the effect of Yamei, (OF)n shows 1 carbon heptide and 9
The matrix using phosphoric acid of 5 or higher and fluorine-based polymer as a fixing agent has a high content of phosphoric acid,
The matrix has high pressure force, high water bulk ion conductivity, and is easy to handle. By using this matrix, it is possible to manufacture large-capacity fuel cells with excellent long-term stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明に係る燃料wi1Mk・用電解
質マトリックスの一実施例のリン酸量に対すJblIK
圧力、伝導度を示す特性図、#I3図は本発明の電解質
マトリックスを用いた燃料電電t−st切欠いて示す斜
視図、11N4図は第35gで示した燃料電池の作動状
ll1t−示す特性図で参る。 1・・・燃料極触媒層 3・・・空気極触媒層 6・・・電解質保持用マトリックス 6・・・双極性隔離板 代理人 弁理士 則 近 憲 佑(はか1名)第1図 11)叫(ル) 第8図 第4図
Figures 1 and 2 show JblIK versus phosphoric acid amount in an example of the electrolyte matrix for fuel wi1Mk according to the present invention.
Characteristic diagram showing pressure and conductivity, Figure #I3 is a cutaway perspective view of the fuel cell using the electrolyte matrix of the present invention, and Figure 11N4 is a characteristic diagram showing the operating state of the fuel cell shown in No. 35g. I'll come. 1... Fuel electrode catalyst layer 3... Air electrode catalyst layer 6... Electrolyte holding matrix 6... Bipolar separator agent Patent attorney Noriyuki Chika (1 person) Figure 1 11 ) Shout (ru) Figure 8 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 化学式(OF)nより成る7ツ化炭素と、渦度の高いリ
ン酸と、固着剤としてフッ素系ポリ!−とを含む混合物
より成ることt−特徴とする燃料電池用電解質マトリッ
クス。
Carbon heptide consisting of the chemical formula (OF) n, phosphoric acid with high vorticity, and fluorine-based poly as a fixing agent! - An electrolyte matrix for a fuel cell, comprising a mixture comprising:
JP56196368A 1981-12-08 1981-12-08 Electrolyte matrix for fuel cell Granted JPS58100369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196368A JPS58100369A (en) 1981-12-08 1981-12-08 Electrolyte matrix for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196368A JPS58100369A (en) 1981-12-08 1981-12-08 Electrolyte matrix for fuel cell

Publications (2)

Publication Number Publication Date
JPS58100369A true JPS58100369A (en) 1983-06-15
JPH0258742B2 JPH0258742B2 (en) 1990-12-10

Family

ID=16356687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196368A Granted JPS58100369A (en) 1981-12-08 1981-12-08 Electrolyte matrix for fuel cell

Country Status (1)

Country Link
JP (1) JPS58100369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697813B1 (en) * 2004-07-21 2007-03-20 삼성에스디아이 주식회사 Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell using the same and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697813B1 (en) * 2004-07-21 2007-03-20 삼성에스디아이 주식회사 Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell using the same and method of producing the same

Also Published As

Publication number Publication date
JPH0258742B2 (en) 1990-12-10

Similar Documents

Publication Publication Date Title
JP3350167B2 (en) Molten carbonate fuel cell
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
JP4349826B2 (en) Fuel cell and fuel cell
EP1977996A1 (en) Phosphate-metal-containing complex and dense material comprising the same
US5256498A (en) Molten carbonate fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
US4276356A (en) Matrix member for containing fuel cell acid electrolyte
Reed et al. Porous carbon for fuel cell electrodes
JPS58100369A (en) Electrolyte matrix for fuel cell
JPS6046515B2 (en) Method for manufacturing electrolyte retention matrix for fuel cells
JP2002075406A (en) Fuel battery cell unit and manufacturing method
JPH03116659A (en) Solid electrolyte type fuel battery
JPH0479163A (en) Solid electrolyte type fuel cell
JPH0258741B2 (en)
JPS59181463A (en) Gas diffusion electrode
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPS6224566A (en) Molten carbonate fuel cell
JPH0696777A (en) Solid polymer electrolytic fuel cell
JPS5956363A (en) Electrolyte matrix for fuel cell
JPS5975565A (en) Fuel cell and its manufacturing method
JPS5975563A (en) Fuel cell and its manufacturing method
JPS5975564A (en) Fuel cell and its manufacturing method
JPS5842181A (en) Fuel battery
JPS5940473A (en) Electrochemical power generating element made of acid electrolyte
JPS61259460A (en) Matrix for phosphoric-acid fuel cell