JPS6224566A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPS6224566A
JPS6224566A JP60163152A JP16315285A JPS6224566A JP S6224566 A JPS6224566 A JP S6224566A JP 60163152 A JP60163152 A JP 60163152A JP 16315285 A JP16315285 A JP 16315285A JP S6224566 A JPS6224566 A JP S6224566A
Authority
JP
Japan
Prior art keywords
electrolyte layer
layer
gas diffusion
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60163152A
Other languages
Japanese (ja)
Other versions
JPH0799695B2 (en
Inventor
Atsuo Muneuchi
篤夫 宗内
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60163152A priority Critical patent/JPH0799695B2/en
Publication of JPS6224566A publication Critical patent/JPS6224566A/en
Publication of JPH0799695B2 publication Critical patent/JPH0799695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent a decrease in cell performance even when an electrolyte layer produced at low temperature and low pressure is used by forming a microporous layer on the surface, which is in contact with an electrolyte layer, of a fuel gas diffusion electrode, and filling the microporous layer with mixed carbonate. CONSTITUTION:A molten carbonate fuel cell consists of an electrolyte layer in which mixed carbonate is held in ceramic fine powder and fibers, a fuel gas diffusion electrode which is arranged on one side of the electrolyte layer, and an oxidizing gas diffusion electrode which is arranged on the other side of the electrolyte layer. In this fuel cell, a microporous layer is formed on the surface, which is in contact with the electrolyte layer, of the fuel gas diffusion electrode, and is filled with mixed carbonate. A unit cell is constituted by arranging the fuel electrode 2 and the oxidizing agent electrode 3 on each side of the electrolyte layer 1. The fuel electrode 2 consists of a fuel electrode substrate 4 and a microporous layer 5 which is formed on the substrate 4.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特性に優れ大形化が可能で、かつ製作性に優
れた溶融炭酸塩型燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a molten carbonate fuel cell that has excellent characteristics, can be made large-sized, and is easy to manufacture.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、開発が進められている溶融炭酸塩型燃料電池は、
炭酸塩からなる電解質を高温下で溶融状態にし電極反応
を生起させるもので、リン酸型、固体電解質型等の他の
燃料電池に比べ電極反応が起り易く、発電熱効率が高い
うえ、高価な貴金属触媒を必要としない等の特長を有し
ている。
Molten carbonate fuel cells, which have been under development in recent years, are
The electrolyte made of carbonate is molten at high temperature to cause an electrode reaction.Compared to other fuel cells such as phosphoric acid type and solid electrolyte type, the electrode reaction occurs more easily and the heat generation efficiency is high, and it uses expensive precious metals. It has features such as not requiring a catalyst.

ところで、このような溶融炭酸塩型燃料電池では1つの
燃料電池で得られる起電力がIVと低いため、高出力の
発電プラントを構成するには、複数の単位電池を直列に
積層して燃料電池本体を構成し、各単位電池の加算出力
を得るようにしなければならない。したがって、この種
の燃料電池は次のように構成され”る。
By the way, in such a molten carbonate fuel cell, the electromotive force obtained by one fuel cell is as low as IV, so in order to configure a high output power generation plant, it is necessary to stack multiple unit cells in series to form a fuel cell. The main body must be configured to obtain the summed output of each unit battery. Therefore, this type of fuel cell is constructed as follows.

すなわち、各単位電池は一対のガス拡散電極板、すなわ
ち燃料極および酸化剤極と、これらの間に介在されたア
ルカリ炭酸塩からなる電解質層とで構成される。これら
各単位電池は、単位電池間の電気的な接続機能と、各電
極板への反応ガスの通路を形成する機能とを兼備えたセ
パレータを介して積層される。
That is, each unit cell is composed of a pair of gas diffusion electrode plates, that is, a fuel electrode and an oxidizer electrode, and an electrolyte layer made of an alkali carbonate interposed between them. Each of these unit cells is stacked with a separator interposed therebetween, which has both the function of electrical connection between the unit cells and the function of forming a passage for reaction gas to each electrode plate.

燃料電池本体の4つの側面には、反応ガスの分配、回収
機能を有するマニホールドが当てがわれ、これらマニホ
ールドのうちの一つに酸化剤ガスを供給するとともに隣
接するマニホールドに燃料ガスを供給し、単位電池の両
面に両ガスを例えば直交するように通流させる。そして
、燃料極において、 H2+CO32−−H20+CO2+2e−なる反応を
、また酸化剤極において、 1/202 +CO2+2e−−CO32−なる反応を
生起せしめ、直流出力を得た後、それぞれの対向するマ
ニホールドからガスを排出させるようにしている。
Manifolds having reactive gas distribution and recovery functions are applied to the four sides of the fuel cell main body, and one of these manifolds is supplied with oxidizing gas, and the adjacent manifold is supplied with fuel gas, Both gases are made to flow, for example, perpendicularly to both sides of the unit cell. Then, at the fuel electrode, a reaction of H2+CO32--H20+CO2+2e- is caused, and at the oxidizer electrode, a reaction of 1/202 +CO2+2e--CO32- is caused, and after obtaining a DC output, gas is released from each opposing manifold. I'm trying to get it out.

ところで、電解質層両側を通流する反応ガスの交差混合
防止という点からは、電解質層がち密な薄板であること
望ましい。気孔を多く含んでいると反応ガスは上記気孔
を介して交差してしまうからである。このような点から
、従来は電解質層として電解質保持用の骨材と炭酸塩と
を混合し、400℃〜500℃、200〜500に’1
lldの条件でホットプレスして得た、いわゆる電解質
タイルと称されるち密な板状体を用いるようにしていた
。この電解質層は、気孔率が5vo1%以下と極めて少
ないため、溶融状態の炭酸塩によって反応ガスを完全に
分離でき、反応ガスの交差混合が防止できる。
Incidentally, from the point of view of preventing cross-mixing of the reaction gas flowing through both sides of the electrolyte layer, it is desirable that the electrolyte layer be a dense thin plate. This is because if the material contains a large number of pores, the reaction gases will cross each other through the pores. From this point of view, conventionally, the electrolyte layer is made by mixing aggregate for electrolyte retention with carbonate,
A dense plate-like body, called an electrolyte tile, obtained by hot pressing under the conditions of lld was used. Since this electrolyte layer has an extremely low porosity of 5 vol % or less, the reaction gas can be completely separated by the molten carbonate, and cross-mixing of the reaction gas can be prevented.

しかしながら、ホットプレスによって電解質層を成形す
るには、単位体積当りの付与圧力を高くとる必要がある
ため、大形のプレス装置を使用しなければならず、設備
費の増加は免れ得ない。しかも、ホットプレスの場合、
骨材と炭酸塩との混合体の加熱に時間がかかるうえ、プ
レス加工時に急激な機械的衝撃を与えられないので、1
枚当りの生産速度を高めることが困難であり、極めて生
産性が悪いという問題があった。
However, in order to form the electrolyte layer by hot pressing, it is necessary to apply a high pressure per unit volume, and therefore a large-sized press apparatus must be used, which inevitably increases equipment costs. Moreover, in the case of hot press,
It takes time to heat the mixture of aggregate and carbonate, and sudden mechanical shock cannot be applied during pressing, so 1.
There was a problem in that it was difficult to increase the production speed per sheet, and the productivity was extremely poor.

かといって、低温低圧で電解質層を成形すれば、前述し
たように、電解質層に例えば10vo1%〜50vo1
%という多くの気孔を含んでしまい、反応ガスの交差混
合を生じて良好な特性が得られない。
However, if the electrolyte layer is formed at low temperature and low pressure, as mentioned above, the electrolyte layer contains, for example, 10vol% to 50vol%.
%, and cross-mixing of the reactant gases occurs, making it impossible to obtain good properties.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の事情に基づきなされたもので、製作上
有利な方法である低温低圧で製造した電解質層を用いて
も、なんら電池性能の低下を来たすことかない溶融炭酸
塩型燃料電池を提供することにある。
The present invention has been made based on the above circumstances, and provides a molten carbonate fuel cell that does not cause any deterioration in cell performance even when using an electrolyte layer manufactured at low temperature and low pressure, which is an advantageous manufacturing method. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明は、混合炭酸塩をセラミック微粉末および繊維で
保持してなる電解質層と、この電解質層の一方の面に配
置された燃料ガス拡散電極と、前記電解質層の他方の面
に配置された酸化剤ガス拡散電極とを具備してなる溶融
炭酸塩型燃料電池において、前記燃料ガス拡散電極の前
記電解質層に接触する面に微細孔層を形成するとともに
、上記微細孔層を前記混合炭酸塩で満たしてなることを
特徴としている。
The present invention provides an electrolyte layer formed by holding a mixed carbonate with ceramic fine powder and fibers, a fuel gas diffusion electrode disposed on one surface of the electrolyte layer, and an electrolyte layer disposed on the other surface of the electrolyte layer. In a molten carbonate fuel cell comprising an oxidant gas diffusion electrode, a microporous layer is formed on a surface of the fuel gas diffusion electrode that contacts the electrolyte layer, and the microporous layer is formed with the mixed carbonate. It is characterized by being filled with

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料ガス拡散電極上に形成された微細
孔層に炭酸塩が含有され、これが微細孔層の細孔内に表
面張力により保持される。したかって、ここが反応ガス
の透過防止層として作用するので、反応ガスの交差混合
は殆ど発生しなくなり、電池性能は良好なものとなる。
According to the present invention, carbonate is contained in the microporous layer formed on the fuel gas diffusion electrode, and is held within the pores of the microporous layer by surface tension. Therefore, since this acts as a permeation-preventing layer for reactive gases, cross-mixing of reactive gases hardly occurs, resulting in good battery performance.

このような構成であると、電解質層を特にち密な構造に
しなくても良いので、ホットプレスによって電解質層を
形成する必要がなくなる。したがって、電解質層に例え
ば有機バインダーを用い、これによって混合炭酸塩電解
質とセラミック微粉末および繊維とを結合させることが
可能である。
With such a configuration, the electrolyte layer does not need to have a particularly dense structure, so there is no need to form the electrolyte layer by hot pressing. It is therefore possible to use, for example, an organic binder in the electrolyte layer, thereby binding the mixed carbonate electrolyte to the ceramic fine powder and fibers.

この場合には、ホットプレス1.、よる結合と異なり、
電解質層を200℃以下の低温低圧で形成することがで
きる。このため、1枚当りの電解質層の加工速度を高め
ることができる。
In this case, hot press 1. , unlike the join by
The electrolyte layer can be formed at a low temperature and pressure of 200° C. or less. Therefore, the processing speed of each electrolyte layer can be increased.

〔発明の実施例〕[Embodiments of the invention]

〈実施例〉 比表面積29yd/gのβ−リチウムアルミネート扮末
35gと、混合炭酸塩60gとをアセトンを溶媒として
ボールミルにより十分混合し、次にリチウムアルミネー
ト繊維5gを加え、さらに1時間混合した。次に有機バ
インダーであるポリエチレンを20g加えて1時間混合
した。しかる後アセトンを除去して電解質混合剤を製作
した。この電解質混合剤を金型に充填して、160℃、
100Kgの低温低圧条件で成形し、薄板状の電解質層
を得た。得られた電解質層の気孔率は35%であった。
<Example> 35 g of β-lithium aluminate powder with a specific surface area of 29 yd/g and 60 g of mixed carbonate were thoroughly mixed in a ball mill using acetone as a solvent, then 5 g of lithium aluminate fiber was added and further mixed for 1 hour. did. Next, 20 g of polyethylene as an organic binder was added and mixed for 1 hour. Thereafter, acetone was removed to prepare an electrolyte mixture. This electrolyte mixture was filled into a mold and heated to 160°C.
It was molded under low temperature and low pressure conditions of 100 kg to obtain a thin plate-like electrolyte layer. The resulting electrolyte layer had a porosity of 35%.

次に、燃料極(燃料ガス拡散電極)を以下のように形成
した。すなわち、気孔率65%、平均細孔径4,5pの
ニッケル−10w%Cr粉末多孔質体を基体として用い
、これに平均粒径0.8mの微細ニッケル粉末を吸引塗
布し、820℃で1時間、水素気流中で焼結処理を施し
、平均細孔径0,8塵の微細孔層を形成した。この多孔
質体に、混合炭酸塩(L i2 CO3(62mo 1
%)−に2 CO3(38mo 1%))を11当り5
5ηとなる重量だけ塗布し、600°Cに昇温しで多孔
質体に含浸させた。なお、この含浸は二酸化炭素雰囲気
中にて行なった。
Next, a fuel electrode (fuel gas diffusion electrode) was formed as follows. That is, a nickel-10w%Cr powder porous body with a porosity of 65% and an average pore size of 4.5p was used as a substrate, fine nickel powder with an average particle size of 0.8m was applied by suction to this, and the mixture was heated at 820°C for 1 hour. A sintering treatment was performed in a hydrogen stream to form a microporous layer with an average pore diameter of 0.8 dust. Mixed carbonate (L i2 CO3 (62 mo 1
%) - to 2 CO3 (38mo 1%)) per 11
A weight of 5η was applied, and the temperature was raised to 600°C to impregnate the porous body. Note that this impregnation was performed in a carbon dioxide atmosphere.

さらに、気孔率70%、平均孔径13pのニッケル多孔
質体を酸化剤極(酸化剤ガス拡散電極)として用意した
Furthermore, a nickel porous body with a porosity of 70% and an average pore diameter of 13p was prepared as an oxidant electrode (oxidant gas diffusion electrode).

そして、第1図に示すように上記電解質層1の両面に燃
料極2および酸化剤極3を配置して、単セルを構成した
。なお、図中4は燃料極基体を、また5はこの」二面に
形成された微細孔層5をそれぞれ示している。
Then, as shown in FIG. 1, a fuel electrode 2 and an oxidizer electrode 3 were placed on both sides of the electrolyte layer 1 to form a single cell. In the figure, numeral 4 indicates a fuel electrode substrate, and numeral 5 indicates a microporous layer 5 formed on two sides of the fuel electrode.

このようにして得られた単セルの150771A/〜に
おけるセル電圧を調べたところ、第2図に示すような結
果を得た。第2図においてalは開路時のセル電圧、a
2は15071LA/i通流下におけるセル電圧である
。なお、図中bl、b2は比較のため、従来の燃料極を
使用した場合の上記と同様な条件下でのセル電圧である
。この図から明らかなように、本実施例の単セルは従来
のものに比べて高い出力電圧が得られ、その経時特性も
良好であることが確認できた。
When the cell voltage of the single cell thus obtained at 150771A/~ was investigated, the results shown in FIG. 2 were obtained. In Fig. 2, al is the cell voltage when open circuit, a
2 is the cell voltage under 15071LA/i current flow. For comparison, bl and b2 in the figure are cell voltages under the same conditions as above when a conventional fuel electrode is used. As is clear from this figure, it was confirmed that the single cell of this example can obtain a higher output voltage than the conventional one, and its aging characteristics are also good.

また、上記本実施例に係る燃料電池と従来例の燃料電池
の反応ガスの交差混合量(酸化剤極側出口ガスに含まれ
る水素量)の経時変化を調べたところ、第3図に示す結
果を得た。この図から明らかなように、本実施例に係る
単セルでは、交差混合量も従来例のセルに比べて非常に
小さい。これは本実施例のものでは基体表面に微細孔層
が形成されており、ここに炭酸塩を含有しているので、
微細孔内に炭酸塩が保持されて、これが反応ガス透過防
止層となっているからである。
In addition, when we investigated the change over time in the amount of cross-mixing of reactant gases (the amount of hydrogen contained in the oxidizer electrode side outlet gas) of the fuel cell according to the present example and the fuel cell of the conventional example, the results are shown in Fig. 3. I got it. As is clear from this figure, in the single cell according to this example, the amount of cross-mixing is also very small compared to the conventional cell. This is because in this example, a microporous layer is formed on the surface of the substrate, and this layer contains carbonate.
This is because the carbonate is retained within the micropores and serves as a reaction gas permeation prevention layer.

以上のように、低温低圧成形による電解質層と、基体上
に微細孔層を形成しこの微細孔層に炭酸塩を含浸した燃
料極を用いれば、加工性に優れ、しかも特性の良好な燃
料電池が得られる。
As described above, by using an electrolyte layer formed by low-temperature, low-pressure molding and a fuel electrode in which a microporous layer is formed on a substrate and this microporous layer is impregnated with carbonate, a fuel cell with excellent processability and good characteristics can be achieved. is obtained.

なお、本発明は上述した実施例に限定されるものではな
い。
Note that the present invention is not limited to the embodiments described above.

すなわち、上記実施例では微細孔層の孔径が0.8間の
ものを示したが、この孔径に限定されるものではない。
That is, in the above embodiments, the pore diameter of the microporous layer is between 0.8 and 0.8, but the pore diameter is not limited to this.

しかし、°孔径が1pを超えるものでは、交差混合量を
示す泡出力が小さくなるため、1虜以下が望ましい。ま
た、微細孔層に溶融炭酸塩を含浸させる際には、燃料極
の反りの発生を防止するため、加圧するようにしても良
い。
However, if the pore diameter exceeds 1p, the foam output indicating the cross-mixing amount will be small, so it is desirable that the pore diameter be 1p or less. Further, when impregnating the microporous layer with molten carbonate, pressure may be applied to prevent warping of the fuel electrode.

また、上述した実施例では混合炭酸塩をIC7j当・す
5511gとしたが、燃料極の微細孔層を満たす重は以
上の含浸量であればよい。この量としては燃料極の全細
孔容量の5%以上を満たす炭酸塩重量が最低必要となる
であろう。
Further, in the above embodiment, the mixed carbonate was 5511 g per IC7j, but the amount of impregnation that fills the microporous layer of the fuel electrode may be as long as the above amount. This amount would require a minimum carbonate weight that satisfies 5% or more of the total pore volume of the fuel electrode.

なお、上述した実施例では燃料極としてニッケルとクロ
ムの混合物を使用したが、ニッケルーコバルト合金、銅
等を使用しても良い。
In the above-described embodiments, a mixture of nickel and chromium was used as the fuel electrode, but a nickel-cobalt alloy, copper, etc. may also be used.

また、電解質層に使用されるセラミック微粉末および繊
維は、特にリチウムアルミネートに限定されるものでは
なく、たとえばセラミック繊維としてジルコニア、アル
ミナ、ジルコン酸リチウム、チタン酸リチウム、窒化ホ
ウ素等、また、セラミック微粉末としてストロンチウム
チタネート、酸化セシウムなとを用いても良い。また、
有機バイダーとしては、ポニビニルブチラール、ポリエ
チレン、シリコンゴム、ポリエチレングリコール、ポリ
メタクリル酸メチルなどでも良く、非水溶媒としては0
2〜C6までのアルコール、トルエン、アセトンなどを
用いても良い。
Furthermore, the ceramic fine powder and fibers used in the electrolyte layer are not particularly limited to lithium aluminate, but include ceramic fibers such as zirconia, alumina, lithium zirconate, lithium titanate, and boron nitride. Strontium titanate, cesium oxide, etc. may be used as fine powder. Also,
As the organic binder, ponyvinyl butyral, polyethylene, silicone rubber, polyethylene glycol, polymethyl methacrylate, etc. may be used, and as the non-aqueous solvent,
Alcohols of 2 to C6, toluene, acetone, etc. may also be used.

また、使用される混合炭酸塩としては、以下に示すもの
を用いることができる。
Moreover, as the mixed carbonate to be used, those shown below can be used.

L i2 CO3/に2 C03 L 12CO3/に2 CO3/Na2CO3Na2C
O3/に2 C03 L i2 CO3/に2 CO3/S r C03L 
i2 CO3/に2 CO3/CaCO3このように、
本発明はその要旨を逸脱しない範囲で種々変更して実施
することができる。
L i2 CO3/2 C03 L 12CO3/2 CO3/Na2CO3Na2C
O3/2 C03 L i2 CO3/2 CO3/S r C03L
i2 CO3/ni2 CO3/CaCO3 Thus,
The present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の単位電池の一部を示す断面図、第2図は同li位電池
の電池電圧の経時的特性を従来のものと比較して示す特
性図、第3図は酸化剤極出口ガスに含まれる水素濃度の
経時的変化を従来のものと比較して示す特性図である。 1・・・電解質層、2・・・燃料極、3・・・酸化剤極
、4・・・燃料極基体、5・・・微細孔層、a、al、
a2・・本発明の一実施例の特性、b、bl、b2・・
・比較例の特性。 出願人代理人 弁理士 鈴江武彦 第1図 作vJ峙固(h)→ ぢ・2図 牙3図
Figure 1 is a cross-sectional view showing a part of a unit cell of a molten carbonate fuel cell according to an embodiment of the present invention, and Figure 2 compares the cell voltage characteristics over time of the same battery with a conventional one. FIG. 3 is a characteristic diagram showing a change over time in the hydrogen concentration contained in the oxidizer electrode outlet gas in comparison with a conventional one. DESCRIPTION OF SYMBOLS 1... Electrolyte layer, 2... Fuel electrode, 3... Oxidizer electrode, 4... Fuel electrode base, 5... Microporous layer, a, al,
a2...Characteristics of an embodiment of the present invention, b, bl, b2...
・Characteristics of comparative example. Applicant's agent Patent attorney Takehiko Suzue 1st drawing vJ Chiku (h) → 2nd drawing Fang 3rd drawing

Claims (4)

【特許請求の範囲】[Claims] (1)混合炭酸塩をセラミック微粉末および繊維で保持
してなる電解質層と、この電解質層の一方の面に配置さ
れた燃料ガス拡散電極と、前記電解質層の他方の面に配
置された酸化剤ガス拡散電極とを具備してなる溶融炭酸
塩型燃料電池において、前記燃料ガス拡散電極の前記電
解質層に接触する面に微細孔層を形成するとともに、上
記微細孔層を前記混合炭酸塩で満たしてなることを特徴
とする溶融炭酸塩型燃料電池。
(1) An electrolyte layer formed by holding a mixed carbonate with ceramic fine powder and fibers, a fuel gas diffusion electrode placed on one side of this electrolyte layer, and an oxidation layer placed on the other side of the electrolyte layer. In a molten carbonate fuel cell comprising a chemical gas diffusion electrode, a microporous layer is formed on a surface of the fuel gas diffusion electrode that contacts the electrolyte layer, and the microporous layer is formed with the mixed carbonate. A molten carbonate fuel cell characterized by:
(2)前記電解質層は、その製造過程において有機バイ
ンダーを含み、低温低圧条件で形成されたものであるこ
とを特徴とする特許請求の範囲第1項記載の溶融炭酸塩
型燃料電池。
(2) The molten carbonate fuel cell according to claim 1, wherein the electrolyte layer contains an organic binder during its manufacturing process and is formed under low temperature and low pressure conditions.
(3)前記燃料ガス拡散電極の微細孔層は、厚み方向に
その空孔径を異ならせたものであることを特徴とする特
許請求の範囲第1項記載の溶融炭酸塩型燃料電池。
(3) The molten carbonate fuel cell according to claim 1, wherein the microporous layer of the fuel gas diffusion electrode has pore diameters that vary in the thickness direction.
(4)前記燃料ガス拡散電極の微細孔層は、その空孔径
が1μm以下であることを特徴とする特許請求の範囲第
1項もしくは第3項記載の溶融炭酸塩型燃料電池。
(4) The molten carbonate fuel cell according to claim 1 or 3, wherein the microporous layer of the fuel gas diffusion electrode has a pore diameter of 1 μm or less.
JP60163152A 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell Expired - Fee Related JPH0799695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163152A JPH0799695B2 (en) 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163152A JPH0799695B2 (en) 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6224566A true JPS6224566A (en) 1987-02-02
JPH0799695B2 JPH0799695B2 (en) 1995-10-25

Family

ID=15768211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163152A Expired - Fee Related JPH0799695B2 (en) 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0799695B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165869A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fused carbonate type fuel cell
JPS6386359A (en) * 1986-09-30 1988-04-16 Toshiba Corp Molten carbonate fuel cell stack
EP0396685A1 (en) * 1988-10-21 1990-11-14 Us Energy Fabrication of dual porosity electrode structure.
JPH0386123U (en) * 1989-12-19 1991-08-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212070A (en) * 1982-04-26 1983-12-09 ゼネラル・エレクトリツク・カンパニイ Cathode composite for fusible carbonate fuel battery
JPS60101876A (en) * 1983-11-08 1985-06-05 Agency Of Ind Science & Technol Manufacture method of fused carbonate salts type fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212070A (en) * 1982-04-26 1983-12-09 ゼネラル・エレクトリツク・カンパニイ Cathode composite for fusible carbonate fuel battery
JPS60101876A (en) * 1983-11-08 1985-06-05 Agency Of Ind Science & Technol Manufacture method of fused carbonate salts type fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165869A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fused carbonate type fuel cell
JPS6386359A (en) * 1986-09-30 1988-04-16 Toshiba Corp Molten carbonate fuel cell stack
EP0396685A1 (en) * 1988-10-21 1990-11-14 Us Energy Fabrication of dual porosity electrode structure.
JPH0386123U (en) * 1989-12-19 1991-08-30

Also Published As

Publication number Publication date
JPH0799695B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
Xia et al. A simple and cost‐effective approach to fabrication of dense ceramic membranes on porous substrates
CN108701843B (en) Solid oxide fuel cell
CN111146445B (en) Fuel cell, fuel cell stack, and method for manufacturing the same
EP1326296A1 (en) Fuel cell unit and its manufacturing method
CN108604698A (en) The integrated proton conductive electrochemical appliance and related methods of production reformed
EP2752929B1 (en) Solid oxide fuel cell, cell stack device, fuel cell module, and fuel cell device
CN1462489A (en) Electrode for fuel cell and method of manufacturing the electrode
JPS6224566A (en) Molten carbonate fuel cell
JP2002313371A (en) Cell unit of fuel cell
KR101937919B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell by tape lamination, Fuel Cell Stack and Fuel Cell Power Generation System manufactured by using the cell for fuel cell
CN111244520A (en) Fuel cell stack and method for manufacturing the same
JP2016038984A (en) Solid oxide electrochemical device
JPH0258740B2 (en)
JP2002075406A (en) Fuel battery cell unit and manufacturing method
CN111244498B (en) Fuel cell and fuel cell stack
Weininger et al. Ultrafine porous polymer membranes as battery separators
JPH0652869A (en) Solid electrolyte film of fuel cell and manufacture thereof
JPS61225772A (en) Manufacture of molten carbonate fuel cell
CN114583226B (en) Metal-supported proton conductor solid oxide battery and preparation method thereof
JP3451627B2 (en) Method for manufacturing solid electrolyte fuel cell
JP2003151577A (en) Fuel-cell cell unit
JPH04249864A (en) Solid electrolyte type fuel cell
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
KR20220035719A (en) Anode manufacturing method for protonic ceramics fuel cells using impregnation method and anode for fuel cell manufactured using same
JP2003178773A (en) Fuel-cell unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees