JPS5940473A - Electrochemical power generating element made of acid electrolyte - Google Patents

Electrochemical power generating element made of acid electrolyte

Info

Publication number
JPS5940473A
JPS5940473A JP57149983A JP14998382A JPS5940473A JP S5940473 A JPS5940473 A JP S5940473A JP 57149983 A JP57149983 A JP 57149983A JP 14998382 A JP14998382 A JP 14998382A JP S5940473 A JPS5940473 A JP S5940473A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
power generating
power generation
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57149983A
Other languages
Japanese (ja)
Inventor
Tamotsu Shirogami
城上 保
Sanji Ueno
上野 三司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57149983A priority Critical patent/JPS5940473A/en
Publication of JPS5940473A publication Critical patent/JPS5940473A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To safely operate an electrochemical power generating element over a long period of time by partitioning a gas passage provided on a negative electrode with bank parts, providing closed grooves on the partitioning banks, and filling said grooves with paste from an electrolyte supply source. CONSTITUTION:In a porous carbon negative electrode substrate 10 bearing a negative electrode catalytic layer 5, outward and inward passages 11 for active material gas are partitioned with banks, and closed grooves 15, 16 are provided on these partitioning banks. Said closed grooves 15, 16 are filled with replenishing electrolyte paste 31 obtained by blending and kneading the heat resistant and phosphatic inorganic material fine powder and concentrated phosphoric acid. A unit power generating element is formed by allowing said negative electrode and the positive electrode of a substrate 20 bearing a positive electrode catalytic layer to face via an electrolyte matrix layer 6 and be closely united in a body. This electrochemical power generating element of acid electrolyte is excellent in its electrolyte bearing capability and durability.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は酸性電解質を有し、水素を主成分とするガスを
負極活物質とし、酸素(空気)を正極活物質とする電気
化学発電素子の改良に係り、反応を効率的に進行せしめ
て、負極活物質の高い利用率を維持し、さらに、電解液
の保持能力を増強して長期間に亘り、商い性能を維持す
る酸性電解質電気化学発電素子に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electrochemical power generation element having an acidic electrolyte, using a gas mainly composed of hydrogen as a negative electrode active material, and using oxygen (air) as a positive electrode active material. The improvements include acid electrolyte electrochemical power generation that allows the reaction to proceed efficiently, maintains a high utilization rate of the negative electrode active material, and further enhances the electrolyte retention capacity to maintain commercial performance over a long period of time. Regarding elements.

〔発明の技術的背景〕[Technical background of the invention]

水素のごときM化され易いガスと酸素のごとき酸化力Ω
あるガスとを電気化学反応プロセスを経て化合させ、ギ
プスの自由エネルギーの放出分を直流電力として供給す
る電気化学発電装置は、効率が高く、騒音が少なく公害
要因の排出物が少ない優れた発電装置であることが、当
技術分野に於いて良く知られている。
Gases that are easily converted to M such as hydrogen and oxidizing power such as oxygen Ω
An electrochemical power generation device that combines certain gases through an electrochemical reaction process and supplies the released free energy of the cast as DC power is an excellent power generation device with high efficiency, low noise, and low emissions that cause pollution. It is well known in the art that

かかる発電素子の本体ユニットは一般に濃厚硫酸溶液や
濃厚リン酸溶液などからなる電解液を含有する耐薬品性
、耐熱性、耐酸化性に優れた含浸材層を中間にして正極
となる多孔性炭素板と負極となる多孔性炭素板とが相対
して密着一体化され単位発電素子が構成されている。ま
だ、これらの電極には反応を円滑に進めるために、白金
などの触媒が付与されるとともにポリテトラフルオロエ
チレンなどによる防水処理がなされている。しかし、こ
れら発電素子は単位素子の起゛醒力が高くても1v%”
a度であり、実用発電装置を構成するには数十、数百の
°多数の素子を積層化することが必要である。
The main unit of such a power generating element is generally made of porous carbon, which serves as the positive electrode, with an impregnated material layer having excellent chemical resistance, heat resistance, and oxidation resistance in the middle containing an electrolyte such as a concentrated sulfuric acid solution or a concentrated phosphoric acid solution. The plate and a porous carbon plate serving as a negative electrode are closely integrated with each other to form a unit power generation element. These electrodes are still coated with catalysts such as platinum and waterproofed with polytetrafluoroethylene to facilitate the reaction. However, in these power generating elements, even if the starting force of the unit element is high, it is 1v%.
To construct a practical power generation device, it is necessary to laminate tens or hundreds of elements.

この一つの方法として、高密度の溝付導電性炭素板の使
用例が知られている。
One known method is to use a high-density grooved conductive carbon plate.

一枚の導電性炭素板の上面と下面とには夫々異なる方向
のガス流通路が設けられておp1上面は一つの発電素子
の正極(又は負極)を形成している多孔性炭素板と接し
ており、下面は次の発電素子の負極(又は正極)を形成
している多孔性炭素板と接して、発電素子の積層化を行
なうとともに、積層化素子の溝を経由して夫々の発電素
子へ反応ガスが供給され、反応生成物の除去がなされて
いる。
Gas flow passages in different directions are provided on the upper and lower surfaces of one conductive carbon plate, respectively, and the upper surface of P1 is in contact with the porous carbon plate forming the positive electrode (or negative electrode) of one power generation element. The lower surface is in contact with the porous carbon plate forming the negative electrode (or positive electrode) of the next power generating element, and the power generating elements are laminated, and each power generating element is connected via the groove of the laminated element. A reaction gas is supplied to the reactor, and reaction products are removed.

〔背景技術の問題点〕[Problems with background technology]

前記発電素子において、負極活物質の高いオi用率を維
持しながら、長期に亘り安定した起電反応を維持するた
めには、電極面への反応ガスの十分な供給と反応生成物
の迅速なる除去が必要である。
In the power generation element, in order to maintain a stable electromotive reaction over a long period of time while maintaining a high oil usage rate of the negative electrode active material, it is necessary to supply a sufficient amount of reaction gas to the electrode surface and to quickly release the reaction products. It is necessary to remove the

また高い発電の効率を維持するためには、高い電極反応
性を確保するとともに、電池内部のオーム損をできるだ
け低減することが重要である。
Furthermore, in order to maintain high power generation efficiency, it is important to ensure high electrode reactivity and to reduce ohmic loss inside the battery as much as possible.

負極活物質に用いるガスは、一般に水素が60〜90%
を占めその他炭酸ガスや水蒸気が含まれているものが使
用される例が多いが、発電素子としては、この水素の利
用効率が高いことが望まれる。
The gas used for the negative electrode active material generally contains 60 to 90% hydrogen.
In many cases, hydrogen containing carbon dioxide gas and water vapor is used, but it is desired that this hydrogen be used efficiently as a power generating element.

負極での水素の電気化学反応による酸化はできるだけ水
素が反応に与かる径路の長いことが望ましい。これには
、電極面の一部を境にして、反応ガスを回帰させること
が有効である。しかし、このガス流では往路・復路が完
全に分離されていなければ、水素成分の多いガスが途中
で復路に混入し水素の利用率低下の原因になる。
In the oxidation of hydrogen by electrochemical reaction at the negative electrode, it is desirable that the path through which hydrogen participates in the reaction be as long as possible. For this purpose, it is effective to cause the reactive gas to return to a part of the electrode surface. However, in this gas flow, if the outgoing and returning paths are not completely separated, gas with a large hydrogen component will mix into the returning path midway, causing a decrease in the hydrogen utilization rate.

また、電解質層のオーム損は、マトリックス中の電解液
量によって大きく変動するので、電解質保持マトリック
ス層以外にも電解液を貯えておき、長期に亘る発電にお
いても電解質層には常に十分な電解液が存在する状態が
維持できることが望ましい。
In addition, the ohmic loss of the electrolyte layer varies greatly depending on the amount of electrolyte in the matrix, so by storing electrolyte in addition to the electrolyte-retaining matrix layer, there is always enough electrolyte in the electrolyte layer even during long-term power generation. It is desirable to be able to maintain a state in which

しかし、従来型の黒鉛繊維の薄板を電極基体とする電気
化学発電素子では、反応ガスを往路・復路に分離する機
能を電極基体に備えることは難しく、Uターンフローに
際してはインターコネクター側に分離機4411を具備
せざるを得なかった。このためインターコネクターの加
工がコスト筒になり、燃料′賊池発′1iプラント実用
化の障害になっていた。
However, in conventional electrochemical power generation devices that use graphite fiber thin plates as electrode bases, it is difficult to provide the electrode base with a function to separate the reactant gas into the outbound and return routes, and in the case of U-turn flow, a separator is installed on the interconnector side. 4411 had no choice but to be equipped. For this reason, the processing of the interconnector became costly and was an obstacle to the practical implementation of the fuel oil pond-based 1i plant.

また、従来型発電素子では、電解質保持マ) IJック
ス層層外外電解液を保持させることが困難で、長期運転
に耐えないという問題もあった。
Further, in the conventional power generation element, it is difficult to retain the electrolyte solution outside the IJ layer (electrolyte holding layer), and there is also a problem that it cannot withstand long-term operation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高効率で長期間安定運転のできる電気
化学的発電素子を提供することにある。
An object of the present invention is to provide an electrochemical power generating element that is highly efficient and capable of stable operation for a long period of time.

〔発明の概要〕[Summary of the invention]

詳しくは、単位発電素子を構成する負極電極の基体にガ
ス流路となる溝付の多孔性炭素プレートを用いて、ガス
流路溝の土手部に電解液の貯蔵機能を維持させるのみな
らず、電極反応を円滑に進めるため負極活物質ガスの供
給にUターンフローを採用し、この往路・復路を仕切る
ため仕切用の土手部を設ける。なお、この仕切り土手の
左・右の溝群には夫々、わたり溝を設けてガスフローの
均一化を図ってもよい。この仕切土手にクローズ溝を設
け、ここに耐熱リン酸の無機材料粉末と濃厚リン酸との
ペーストを充填しておき、′電解液の補給源とする。な
おこのペーストにはテフロンを添加して結着性を持たせ
ておいてもよい。
Specifically, by using a grooved porous carbon plate that serves as a gas flow path in the base of the negative electrode that constitutes the unit power generation element, the bank of the gas flow path not only maintains the electrolyte storage function, but also In order to smoothly proceed with the electrode reaction, a U-turn flow is adopted for supplying the negative electrode active material gas, and a dividing bank is provided to separate the outbound and return routes. Note that crossing grooves may be provided in the left and right groove groups of this partition bank, respectively, to make the gas flow uniform. A closed groove is provided in this partition bank, and this groove is filled with a paste of heat-resistant phosphoric acid inorganic material powder and concentrated phosphoric acid to serve as a replenishment source for the electrolyte. Note that Teflon may be added to this paste to give it binding properties.

さらに、ガス流路溝と平行な端部の土手にもクローズ溝
を設け、ここに電解液補給用のペーストを充填すれば、
電解液の補給はさらに容易になり長期間に亘って低い内
部抵抗を維持することができる。なおガス流路溝の底面
ならびに側面には、電極反応を円滑に進めるだめ多孔性
弗素樹脂膜の被覆が好まj7い。また、溝は面の裏面に
は、電解反応を促進せしめるため、白金属元素を含む触
媒層を形成しておくことが必要である。このように構成
した負極と、電極触媒層を担持しガスの透過が容易なよ
うに、拡散路の短かい、すなわち、薄い基板を用いた正
極ならびに、酸性1解質層とからなる電気化学発電素子
を提供するものである。
Furthermore, if a closed groove is also provided on the bank at the end parallel to the gas flow groove and filled with paste for electrolyte replenishment,
Replenishment of electrolyte becomes easier, and low internal resistance can be maintained for a long period of time. Note that the bottom and side surfaces of the gas flow groove are preferably coated with a porous fluororesin membrane in order to facilitate the electrode reaction. Further, it is necessary to form a catalyst layer containing a platinum metal element on the back side of the groove surface in order to promote the electrolytic reaction. Electrochemical power generation consists of a negative electrode constructed in this way, a positive electrode using a thin substrate with a short diffusion path to support an electrode catalyst layer and easy gas permeation, and an acidic solute layer. It provides an element.

なお、該発電素子において、正極には多孔性が高く薄い
炭素基体を用いなければならない。特に酸化剤として空
気を用いる発′祇素子において、その必要性が高い、発
電素子の活物質として使用できる酸素は大気中の約20
q6を占めているのに過ぎない上に、負極活物質である
水素に比べ質液が高く、拡散に対する抵抗を強く受ける
。さらに、起電反応により生成する水の除去も大半が正
極側を経由しておこなわれるので、これらの透過を阻害
しないように正極は負極よりもガスの拡散が容易にでき
ることが重要である。
In addition, in the power generating element, a highly porous and thin carbon substrate must be used for the positive electrode. Particularly in power generation elements that use air as an oxidizing agent, the oxygen that can be used as an active material in the power generation element is about 20% in the atmosphere.
In addition, it only occupies q6, and its liquid content is higher than that of hydrogen, which is the negative electrode active material, so it faces strong resistance to diffusion. Furthermore, since most of the water produced by the electromotive reaction is removed via the positive electrode, it is important that the positive electrode allows gas to diffuse more easily than the negative electrode so as not to impede the permeation of the water.

したがって、本発明においては、反応ガスの透過に対し
比較的負担が少ない、負極側に電解質の貯蔵効果を持た
せるように改善した発電素子を提供するものである。
Therefore, the present invention provides a power generation element that is improved so that the negative electrode side has an electrolyte storage effect, which has a relatively small burden on the permeation of the reactant gas.

また、単位発電素子は、その起電力が高々IV程度なの
で実規模の発電ユニットには多数の発電素子を、正極ガ
スの通路を持ち電気伝導性の積Ifi化素子を用いて積
層化して使用する。
In addition, since the electromotive force of a unit power generation element is at most about IV, a large number of power generation elements are used in a full-scale power generation unit by stacking them using electrically conductive laminated Ifi elements that have a positive electrode gas passage. .

なお、前記発電素子群は形状を一定に維持するため、重
ね合せて圧着締結されているが各単位素子の負極側の電
極基板が圧縮力吸収ダンパーの作用をはたしてメカニカ
ルに密着し、この結果締結圧力が全数間に均一に分散さ
れるとともに、単位発電素子、積層化素子間に良好な電
気的接続が維持される。
In order to maintain a constant shape, the power generating element group is stacked and crimped and fastened together, but the electrode substrate on the negative electrode side of each unit element acts as a compressive force absorbing damper and mechanically adheres, resulting in fastening. Pressure is uniformly distributed among all units, and good electrical connection is maintained between the unit power generating elements and the laminated elements.

活物質にガスを用いる電気化学的発電素子は、ガスの供
給、反応生成物の搬出が容易に行ない得るように、正方
形又は長方形の形状を採用することが望ましい。
It is desirable that an electrochemical power generation element using a gas as an active material adopt a square or rectangular shape so that gas can be easily supplied and reaction products can be easily carried out.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を説明する。かさ比重が0.28〜0
.78の間にある厚さが2〜4關の多孔性黒鉛プレート
、例えば、フェルト状炭素繊維板あるいは炭素繊維シー
ト板、あるいは繊維化黒鉛を主成分とする焼結多孔板に
電極反応に与かるガスを供給する巾1.2〜2.5yu
+で深さ1.5〜2.5龍の溝を4〜5 mmのピッチ
で切り込んで構成した基体を負極基板に用いる。この基
体の溝と平行な端部に巾が2.5〜7.5 +++mで
深さ1.0〜2.Omyrtのクローズ溝を設ける。さ
らに、負極活物質の利用率向上のためには負極の活物質
ガスはUターンフローさせることが有効である。このU
ターンフローさせる際には往路と復路とを仕切るために
、太い土手を設けるがこの土手部にもクローズ溝を設け
る。
An embodiment of the present invention will be described. Bulk specific gravity is 0.28~0
.. A porous graphite plate having a thickness between 78 and 2 to 4 mm, such as a felt-like carbon fiber board or a carbon fiber sheet board, or a sintered porous board whose main component is fibrous graphite, takes part in the electrode reaction. Gas supply width 1.2-2.5yu
A substrate formed by cutting grooves with a depth of 1.5 to 2.5 mm at a pitch of 4 to 5 mm is used as the negative electrode substrate. The end portion of this base body parallel to the groove has a width of 2.5 to 7.5 +++ m and a depth of 1.0 to 2.0 m. Provide Omyrt's closing groove. Furthermore, in order to improve the utilization rate of the negative electrode active material, it is effective to cause the negative electrode active material gas to flow in a U-turn. This U
When making a turn flow, a thick bank is provided to separate the outward and return paths, and a closed groove is also provided in this bank.

Uターンフローの仕切り土手の左右の土手は、ガスの均
一流を図るため夫々わたり溝を設けてもよい。
The left and right banks of the partition bank of the U-turn flow may be provided with grooves, respectively, in order to ensure a uniform flow of gas.

なお、ガスの流路を形成する溝に底面ならびに側面にテ
トラフルオロエチレンなどの多孔性フッ素系樹脂膜を形
成するとともに、電極反応を促進するための触媒層を溝
が設けられていない面に形成させて負極を構成する。こ
の負極とフッ素系樹脂のM濁液を含浸して防水処理をほ
どこした正極触媒層を担持する炭素繊維シート正極とを
、シリコンカーバイト、タンタルオキサイド、ジルコニ
ア等の無機微粉末に濃厚シん酸を含浸させた寛解質マ)
 IIJックス層を介して、触媒面が相対向するように
密着一体化して単位発電素子を形成する。
In addition, a porous fluororesin film such as tetrafluoroethylene is formed on the bottom and side surfaces of the grooves that form the gas flow path, and a catalyst layer is formed on the surface where the grooves are not provided to promote the electrode reaction. to form a negative electrode. This negative electrode and a carbon fiber sheet positive electrode supporting a positive electrode catalyst layer impregnated with M suspension of fluororesin and subjected to waterproof treatment are mixed with concentrated phosphoric acid in inorganic fine powder such as silicon carbide, tantalum oxide, and zirconia. (relaxant ma) impregnated with
A unit power generation element is formed by closely integrating the catalyst surfaces with the IIJx layer interposed therebetween so that they face each other.

さらに、シリコンカーバイト、タンタルオキサイド、ジ
ルコニア等の微粉末あるいはそのりん酸塩を単独あるい
は複合させて用い、これに濃厚りん酸を混練したのち、
負極のクローズ溝に充填したのち、かさ密度1.6〜1
.95で厚さが3〜6朋の黒鉛粉末にフェノール系樹脂
をブレンドして加圧熱成形し、片面に巾1.2〜1.5
 urnで深さ1.3〜2.5 mmの溝が4〜6 m
mピッチで設けられている積層化素子を用い、積層化素
子の正極に接する側にガス流路として作用する溝が来る
ように配置して積層素子と単位発電素子とを交互に積み
重ねて、発電ユニットを形成する。かかる方式で構成し
た発電ユニットは、電解質の一部が負極のガス流路の土
手部にも貯えられているばかりでなく、クローズ溝にも
充分に貯えられるので、マトリックス層の電解液濃度は
長期間に亘って均一であり、発電素子の電解質層のオー
ム損に起因する性能の経時劣化はほとんどみとめられな
かった。
Furthermore, fine powders of silicon carbide, tantalum oxide, zirconia, etc. or their phosphates are used alone or in combination, and after kneading concentrated phosphoric acid,
After filling the closed groove of the negative electrode, the bulk density is 1.6 to 1.
.. 95, phenolic resin is blended with graphite powder with a thickness of 3 to 6 mm, pressure molded, and one side has a width of 1.2 to 1.5 mm.
A groove with a depth of 1.3 to 2.5 mm is 4 to 6 m in urn.
Using laminated elements arranged at m pitches, the laminated elements and unit power generation elements are alternately stacked with the grooves acting as gas flow paths placed on the side in contact with the positive electrode of the laminated elements to generate power. form a unit. In a power generation unit constructed using this method, a portion of the electrolyte is not only stored on the bank of the negative electrode gas flow path, but also sufficiently stored in the closed groove, so that the electrolyte concentration in the matrix layer remains constant for a long time. It was uniform over a period of time, and almost no deterioration in performance over time due to ohmic loss in the electrolyte layer of the power generation element was observed.

本発明を図でもって説明する。The present invention will be explained using figures.

図において酸化剤ガスはB−B’の方向に流れており、
還元性ガスはA −+ A’を経由してA“→A″′の
方向に流れている。補充用の電解液ペーストを充填する
だめのクローズ溝15及び16が設けられ、さらに側面
ならびに底面にフッ素樹脂による防水処理がなされてい
る還元性ガス流路11が設けられている厚さ2〜4關の
多孔性炭素負極基体10に負極触媒層5を担持させてな
る負極と、酸化剤の反応を促進する正極触媒層を担持し
たテトラフルオロエチレンなどのフッ素樹脂で防水処理
がなされた厚さQ、4mm程度の炭素繊維ペーパー基体
即ち多孔性炭素繊維正極基体20の正極とを、シリコン
カーバイト又はタンタルオキサイド、ジルコニウムオキ
サト等の粉末に濃厚りん酸溶液を含浸させた電解質マ)
 IJックス層6を介して、触媒面が相対するように対
向させて密着一体化し単位発電素子を形成する。クロー
ズ溝15及び16にシリココ/カーバイト、タンタルオ
キサイド、ジルコニア微粉末あるいはリン酸ジルコニウ
ム粉末の混合物と濃厚りん酸液との混練ペーストである
。補充用電解液31を充填したのち、この単位発電素子
群を積層化するためB −B’力方向酸化剤ガス流路2
2が設けられている炭素材の積層化素子基体21が用い
られ、両者が交互に積み重ねられて電気化学的発電ユニ
ットが形成される。なお積層化素子基体21は気液密の
電導性を有する炭素板で形成される。
In the figure, the oxidant gas is flowing in the direction of B-B',
The reducing gas is flowing in the direction of A"→A"' via A-+A'. Closed grooves 15 and 16 for filling electrolyte paste for replenishment are provided, and reducing gas passages 11 waterproofed with fluororesin are provided on the side and bottom surfaces, and the thickness is 2 to 4. A negative electrode formed by supporting a negative electrode catalyst layer 5 on a porous carbon negative electrode substrate 10 and a fluororesin such as tetrafluoroethylene supporting a positive electrode catalyst layer that promotes the reaction of an oxidizing agent have a thickness Q. , a carbon fiber paper substrate of about 4 mm, that is, a positive electrode of a porous carbon fiber positive electrode substrate 20, and an electrolyte matrix in which powder of silicon carbide, tantalum oxide, zirconium oxato, etc. is impregnated with a concentrated phosphoric acid solution).
They are closely integrated with each other with the catalyst surfaces facing each other via the IJx layer 6 to form a unit power generation element. The closed grooves 15 and 16 are filled with a kneaded paste of a mixture of silicoco/carbide, tantalum oxide, zirconia fine powder, or zirconium phosphate powder and concentrated phosphoric acid solution. After filling the replenishing electrolyte 31, the B-B' force direction oxidizing gas flow path 2 is used to stack the unit power generating element groups.
A laminated element substrate 21 made of a carbon material is used, and the two are alternately stacked to form an electrochemical power generation unit. Note that the laminated element substrate 21 is formed of an air-liquid-tight conductive carbon plate.

かさ比重が、0.52〜0.56で厚さが2.5朋のフ
ェルト状炭紫繊維板閉鎖エツジに近接する両側と、負極
活物質のUターンフローを分離する巾10闘の土手に巾
5朋で深さ1.5朋のクローズ溝を設け、この溝と平行
に巾1.5mmビ、チ3.5朋で深さ2玉のガス流路溝
ならびに巾1.5mmで深さ2朋のわた9みぞを切り込
んだ電極基板のガス流路溝の底面。
Felt-like charcoal fiberboard with a bulk specific gravity of 0.52 to 0.56 and a thickness of 2.5 mm on both sides close to the closing edge and on banks with a width of 10 mm separating the U-turn flow of the negative electrode active material. A closed groove with a width of 5 mm and a depth of 1.5 mm is provided, and parallel to this groove there is a gas passage groove with a width of 1.5 mm, a width of 3.5 mm and a depth of 2 mm, and a gas passage groove with a width of 1.5 mm and a depth of 2 mm. The bottom surface of the gas flow groove of the electrode substrate with 9 grooves cut into it.

側面に10%のポリナト2フルオロエチレンデスバージ
四ン液を被覆・乾燥させたのち溝のない側の面に、活性
炭に担持させた白金触媒の層を塗着させたのち数ミクロ
ン程度のシリコンカーバイド40wt%に5 Qwt%
の105%シん酸液を混練したペーストを寛解質として
用いて、単位発電素子を形成するとともに、クローズ溝
にシリコンカーバイト40wt%、105%濃度のりん
酸液60wt%のペーストを充填して、積層化した発電
ユニットは単位素子あたりの内部抵抗の経時変化は表1
に実施例1として示すように、比較の為に製作した従来
型の両面溝付のリジットな積層化素子を用いた発電素子
に比べ長期間変化がなく、安定な性能を維持しているこ
とが明らかである。なお、電極触媒は負極・正極とも活
性炭に担持させた白金であり、付与量は正極は0.6m
り温2.負極は0.3 ”/、L2である。
After coating the side surface with 10% polynato 2 fluoroethylene desverge solution and drying it, a layer of platinum catalyst supported on activated carbon was applied to the side without grooves, and then a layer of silicon carbide of several microns was applied. 5 Qwt% to 40wt%
A unit power generation element was formed using a paste prepared by kneading 105% phosphoric acid solution as a pacifier, and the closed groove was filled with a paste containing 40 wt% silicon carbide and 60 wt% 105% phosphoric acid solution. , the change in internal resistance per unit element of the stacked power generation unit over time is shown in Table 1.
As shown in Example 1, compared to the conventional power generation element using a rigid laminated element with grooves on both sides, which was manufactured for comparison, there was no change over a long period of time and stable performance was maintained. it is obvious. The electrode catalyst is platinum supported on activated carbon for both the negative and positive electrodes, and the amount applied is 0.6 m for the positive electrode.
Warm 2. The negative electrode is 0.3''/, L2.

さらに、負極活物質としては、水素75モルチ。Furthermore, as the negative electrode active material, 75 mol of hydrogen was used.

炭酸ガス15モルチ、水蒸気10モルチの混合ガスを用
い、正極活物質に空気を用い、200℃+ 2−5 ”
/cm2aで゛、電流密度250mA/、L2での連続
発電においても表2に示すように、端子電位の低下が少
なく、従来型発電素子に比較して、本発明による発電素
子がきわめて優れた性能を有している。
A mixed gas of 15 mol of carbon dioxide and 10 mol of water vapor was used, air was used as the positive electrode active material, and the temperature was 200°C + 2-5".
/cm2a, current density 250mA/, and continuous power generation at L2, as shown in Table 2, the terminal potential decreases little, and the power generation element according to the present invention has extremely superior performance compared to conventional power generation elements. have.

なお上記実施例で用いた多孔性黒鉛板を次のように構成
し、他は同じとした第2の実施例、即ちチップ状黒鉛粉
末にパルプ材ならびにポリビニールアルコールバインダ
ーを混練して1800″Cで焼結したかさ比重0.48
〜0.56で厚みが2間の焼結多孔板に巾1.8*m深
さ1.6市ピツチ4朋の溝を設け、同形状のわたり溝を
20cmおきに設け、さらに、巾5 mm深さ1.5 
m11Iのクローズ溝を設け、これに径がミクロン単位
のリン酸ジルコニウム微粉末と、100チ濃度のリン酸
とを夫々重量比で1=2の割合で混練したペーストを充
填し他は第1の実施例と同じとしたものでも第1の実施
例と同様に表1、表2に示すように従来型のものより優
れ、発電素子の積層締結でも同様不具合は生じなかった
A second example was prepared in which the porous graphite plate used in the above example was constructed as follows and other things were the same, that is, chip-shaped graphite powder was kneaded with pulp material and a polyvinyl alcohol binder and heated to 1800''C. Bulk specific gravity 0.48 sintered with
A groove of width 1.8 * m depth 1.6 city pitch 4 was provided on a sintered porous plate with a thickness of ~0.56 and 2 mm, cross grooves of the same shape were provided every 20 cm, and a width 5 mm depth 1.5
A closed groove of m11I was provided, and it was filled with a paste prepared by kneading fine zirconium phosphate powder with a diameter of microns and phosphoric acid with a concentration of 100% in a weight ratio of 1 = 2, and the other parts were the same as the first groove. As shown in Tables 1 and 2, similar to the first example, the results were superior to the conventional type, and similar problems did not occur even when the power generating elements were stacked and fastened.

〔発明の効果〕〔Effect of the invention〕

以上に示すように、本発明になる発電素子は、従来型発
電素子に比較して、性能も扁<、メカニカルにも、耐久
性にも優れている。似Tib表1 本発明の発電素子の
内部抵抗の経時変化(200℃) 表2 本発明の発電素子の放電中の電位変化(200℃
) 2.5kli/crn2G 250re−に10n
2である。
As shown above, the power generating element of the present invention is superior in performance, mechanical properties, and durability compared to conventional power generating elements. Similar Tib Table 1 Change in internal resistance of the power generating element of the present invention over time (200°C) Table 2 Change in potential during discharge of the power generating element of the present invention (200°C
) 2.5kli/crn2G 250re-10n
It is 2.

5・・負極触媒層    6・・・電解質マトリックス
層10・・負極      11 負極ガス流路12.
14・・クローズ溝閉壁 15.16  クローズ溝13 ・わだ!ll溝20・
・・正極      21・・・)責、1化素子22 
・正極活物質流路 31・・・補充用電解質ペースト代
理人 弁理士 則近憲佑 (ほか1名)
5... Negative electrode catalyst layer 6... Electrolyte matrix layer 10... Negative electrode 11 Negative electrode gas flow path 12.
14...Closed groove closing wall 15.16 Closed groove 13 - Wad! ll groove 20・
...Positive electrode 21...) Responsible element, 1 element 22
・Cathode active material flow path 31...Replenishment electrolyte paste Agent Patent attorney Norichika Kensuke (and one other person)

Claims (2)

【特許請求の範囲】[Claims] (1)水素を主成分とするガスを負極活物質とし、酸化
性のガス類を正極活物質として使用して起電させる軍気
化学発′亀素子において、負極は活物質ガスが往復通流
して反応するように構成され、この往路・復路を仕切る
ための土手と、この土手に平行なガス流路群が設けられ
ている多孔性炭素板から構成され、さらにこの仕切り土
手にはクローズ溝が設けられて、′電解液マ) IJッ
クス層に電解液の補給を行なうべく耐熱リン酸性の無機
材料微粉末と濃厚リン酸とのペーストが充填されている
ことを特徴とする酸性電解質電気化学発電素子。
(1) In a military chemical generator that generates electricity by using hydrogen-based gas as the negative electrode active material and oxidizing gases as the positive electrode active material, the active material gas flows back and forth through the negative electrode. It is composed of a bank to separate the outbound and return paths, and a porous carbon plate with a group of gas channels parallel to the bank, and a closed groove in the partition bank. Acidic electrolyte electrochemical power generation characterized in that the IJ layer is filled with a paste of heat-resistant phosphoric acid-resistant inorganic material fine powder and concentrated phosphoric acid to replenish the electrolyte. element.
(2)負極の溝と平行な両側端部の土手にクローズ溝を
設けて電解液補給用の電解質ペーストを充填してなるこ
とを特徴とする特許請求の範囲第1項記載の酸性電解質
電気化学発電素子。
(2) Acidic electrolyte electrochemistry according to claim 1, characterized in that closed grooves are provided in the banks at both ends parallel to the grooves of the negative electrode and filled with electrolyte paste for replenishing the electrolyte. Power generation element.
JP57149983A 1982-08-31 1982-08-31 Electrochemical power generating element made of acid electrolyte Pending JPS5940473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149983A JPS5940473A (en) 1982-08-31 1982-08-31 Electrochemical power generating element made of acid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149983A JPS5940473A (en) 1982-08-31 1982-08-31 Electrochemical power generating element made of acid electrolyte

Publications (1)

Publication Number Publication Date
JPS5940473A true JPS5940473A (en) 1984-03-06

Family

ID=15486898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149983A Pending JPS5940473A (en) 1982-08-31 1982-08-31 Electrochemical power generating element made of acid electrolyte

Country Status (1)

Country Link
JP (1) JPS5940473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273571A (en) * 1985-09-27 1987-04-04 Toshiba Corp Fuel cell
JPS6273570A (en) * 1985-09-27 1987-04-04 Toshiba Corp Manufacture of fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273571A (en) * 1985-09-27 1987-04-04 Toshiba Corp Fuel cell
JPS6273570A (en) * 1985-09-27 1987-04-04 Toshiba Corp Manufacture of fuel cell

Similar Documents

Publication Publication Date Title
US9537169B2 (en) Electrochemical device comprising composite bipolar plate and method of using the same
Vincent et al. Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives
TWI239114B (en) Fuel cell and manufacturing method thereof
JPS5940471A (en) Electrochemical power generating element
US3364071A (en) Fuel cell with capillary supply means
US4766043A (en) Fuel cell
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JPS5889780A (en) Electrochemical power generating equipment
JPS60500190A (en) electrochemical cell with at least one gas electrode
JPH0258740B2 (en)
JPS5940473A (en) Electrochemical power generating element made of acid electrolyte
EP0262961B1 (en) Fuel cell with electrolyte matrix assembly
JPS6028172A (en) Electro-chemical power generating element
JPH0258741B2 (en)
US3522096A (en) Long life fuel cell and electrode therefor
JPS63237363A (en) Methanol fuel cell
RU2329571C1 (en) Fuel component
JPS6023977A (en) Fuel cell
JPH0696781A (en) Solid polymer electrolytic fuel cell
JPS63143751A (en) Manufacture of positive electrode gas diffusion electrode for fuel battery
JPS6386363A (en) Manufacture of electrode supporting plate for molten carbonate fuel cell
JPS6255872A (en) Fuel cell
JPS5983358A (en) Fuel battery
JPS5940472A (en) Electrochemical power generating device
JPS628453A (en) Fuel cell