JPS63237363A - Methanol fuel cell - Google Patents

Methanol fuel cell

Info

Publication number
JPS63237363A
JPS63237363A JP62070706A JP7070687A JPS63237363A JP S63237363 A JPS63237363 A JP S63237363A JP 62070706 A JP62070706 A JP 62070706A JP 7070687 A JP7070687 A JP 7070687A JP S63237363 A JPS63237363 A JP S63237363A
Authority
JP
Japan
Prior art keywords
methanol
fuel
electrode
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070706A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝夫
Yuichi Kamo
友一 加茂
Sankichi Takahashi
燦吉 高橋
Katsuya Ebara
江原 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62070706A priority Critical patent/JPS63237363A/en
Publication of JPS63237363A publication Critical patent/JPS63237363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the cell weight by using vapor phase water and methanol as the fuel for power generation. CONSTITUTION:Methanol and water in the vapor phase state are fed to a fuel electrode. The short circuit due to the liquid junction is thereby eliminated, and the cell voltage is increased. The number of laminated unit cells can be decreased accordingly, thus a methanol fuel cell with the reduced cell weight can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メタノールを直接燃料とする酸性電解質型メ
タノール燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an acidic electrolyte methanol fuel cell that uses methanol as direct fuel.

〔従来の技術〕[Conventional technology]

メタノールを燃料とする燃料電池は、燃料の取扱い性が
容易であり電池の小型化が可能である等から、家庭用の
小型電源から数十KW程度までの可搬電源などの用途に
おいての実用化が期待されている。
Fuel cells that use methanol as fuel are easy to handle and can be made compact, so they are being put to practical use in applications ranging from small household power sources to portable power sources of several tens of kilowatts. is expected.

この燃料電池は、白金属元素を含有する触媒を使用した
多孔質電極を酸化剤極及び燃料極とし。
This fuel cell uses a porous electrode using a catalyst containing a platinum metal element as an oxidizer electrode and a fuel electrode.

この間に酸性電解液を含有する電解質をはさんでなる単
位電池を複数個積層して用いられ、酸化剤極には酸化剤
ガス(空気および/あるいは酸素)、燃料極には燃料を
供給して用いられる発電装置である。
During this time, a plurality of unit cells each consisting of an electrolyte containing an acidic electrolyte are stacked and used, and oxidizing gas (air and/or oxygen) is supplied to the oxidizing electrode, and fuel is supplied to the fuel electrode. This is the power generation device used.

この電源システムとしては、大別して2種類の方式の電
池が開発されている。
Broadly speaking, two types of batteries have been developed for this power supply system.

その一つの方式に例えば1981年に開催された国際燃
料電池セミナー(National F uel S 
ellS eminar)で報告されているように、2
50〜450℃の改質器でメタノールを改質し水素を含
むガスを製造し、このガスをリン酸を電解液とする電池
(作動温度約200℃)の燃料極に供給して発電するも
のがある。この方式は先に述べた方式に比べ高温作動型
であり、かつ複雑である等から、数KW〜数士KW用と
して研究開発がされている。また、システムの複雑化を
低減するものとして、電池本体内の燃料極にメタノール
の改質活性を賦与し、電池前段の改質器を省く新しい提
案(特開昭60−224166号)も考えられている。
One such method is, for example, the International Fuel Cell Seminar held in 1981.
As reported in ellS eminar), 2
A device that produces hydrogen-containing gas by reforming methanol in a reformer at 50 to 450°C, and supplies this gas to the fuel electrode of a battery (operating temperature approximately 200°C) that uses phosphoric acid as the electrolyte to generate electricity. There is. Since this system operates at a higher temperature than the above-mentioned systems and is more complicated, it has been researched and developed for applications ranging from several kilowatts to several kilowatts. Additionally, in order to reduce the complexity of the system, a new proposal (Japanese Patent Application Laid-open No. 60-224166) has been proposed in which methanol reforming activity is imparted to the fuel electrode within the battery body, thereby omitting the reformer in the front stage of the battery. ing.

しかし、このようなメタノールの改質工程を必要とする
電源は200℃以上の温度が必要であり、システム的及
び操作性等から高出力の電池にかぎられる。
However, a power source that requires such a methanol reforming step requires a temperature of 200° C. or higher, and is limited to high-output batteries due to system and operability considerations.

また、メタノールの改質反応以外に、副反応も平衡的に
進み、触媒の被毒成分である一酸化炭素の成牛が避けら
れず、電池前段にシフトコンバータが必要になるととも
に、不均化反応(2co−〇+C0z)によりカーボン
の析出による閉塞等を考慮しなければなく、システムが
さらに複雑化する。そこで、他の方式であるメタノール
を直接燃料極に供給するメタノール燃料電池が選択され
ている。
In addition to the methanol reforming reaction, side reactions also proceed in an equilibrium manner, and the production of carbon monoxide, which is a poisonous component of the catalyst, is unavoidable, necessitating a shift converter in front of the battery, and disproportionation. Due to the reaction (2co-〇+C0z), clogging due to carbon precipitation must be taken into consideration, which further complicates the system. Therefore, another method, a methanol fuel cell, in which methanol is directly supplied to the fuel electrode, has been selected.

この電池は、メタノールを直接液体のままで電池の燃料
極に供給し、室温から約60℃程度の低い温度で、硫酸
を電解液とし、空気と電気化学的に反応させて発電する
ものである。これは、低い温度で作動し、効率が高く、
特に装置を小型化することで取扱いに便利な移動可搬型
電源、特に数KW以下用として注目されている。
This battery generates electricity by supplying methanol directly in liquid form to the fuel electrode of the battery, causing it to electrochemically react with air at temperatures as low as room temperature to about 60°C using sulfuric acid as an electrolyte. . It operates at low temperatures, is highly efficient,
In particular, it is attracting attention as a portable power source that is easy to handle due to the miniaturization of the device, especially for power supplies of several kilowatts or less.

一般に電極は、触媒粉末と結着剤及び撥水剤であるポリ
テトラフルオロエチレンの混合物を触媒層として、カー
ボン紙のよ°うな基板上に塗布し、焼成して作製される
。このような電極と電解質に例えばイオン交換膜(硫酸
水溶液電解液を含有)を用いた電池の基本構成である単
位電池は、次のとおりである。中央に酸型に置換された
陽イオン交換膜を介して、酸化剤極と燃料極が位置し、
これらと酸化剤極及び燃料の給排機能を備えるとともに
集電もかねそなえるセパレータ(例えば、膨張黒鉛のプ
レス成形品)で構成される。酸化剤極室には空気(ある
いは酸素)が供給され、燃料極室にはアノライト(メタ
ノール+硫酸水溶液)が供給される。
Generally, electrodes are produced by applying a catalyst layer containing a mixture of catalyst powder, a binder, and polytetrafluoroethylene as a water repellent onto a substrate such as carbon paper, and firing the mixture. A unit cell, which is a basic structure of a battery using, for example, an ion exchange membrane (containing an aqueous sulfuric acid electrolyte) as an electrode and an electrolyte, is as follows. An oxidizer electrode and a fuel electrode are located in the center via a cation exchange membrane substituted with acid type,
It consists of these and an oxidizer electrode and a separator (for example, a press molded product of expanded graphite) that has a function of supplying and discharging fuel and also collects current. Air (or oxygen) is supplied to the oxidizer electrode chamber, and an anolite (methanol + sulfuric acid aqueous solution) is supplied to the fuel electrode chamber.

イオン交換膜は、水素イオンを輸送するとともにメタノ
ールが酸化剤極へ拡散して直接燃焼するのを防止する機
能をもっている。
The ion exchange membrane has the function of transporting hydrogen ions and preventing methanol from diffusing to the oxidizer electrode and being directly burned.

メタノールを直接燃料とし、酸性電解質を用いた燃料電
池の反応は、燃料極反応(1)、酸化剤極反応(2)か
らなり、従って燃料極に供給されるのCH3OH+ H
2O−’)C02+ 68++ 6  e−−(1)6
H++3/20z+6e−−+3H20山(2)は、メ
タノールと水であり発電により炭酸ガスが生成される。
The reaction of a fuel cell using methanol as a direct fuel and using an acidic electrolyte consists of a fuel electrode reaction (1) and an oxidant electrode reaction (2), so that the CH3OH+ H that is supplied to the fuel electrode is
2O-')C02+ 68++ 6 e--(1)6
H++3/20z+6e--+3H20 mountain (2) is methanol and water, and carbon dioxide gas is generated by power generation.

この炭酸ガスを電池外に排出するため、電解質は酸型の
ものが用いられ、特にイオン導電性の高い硫酸やスルフ
ォン酸の水溶液が用いられる。
In order to discharge this carbon dioxide gas to the outside of the battery, an acid-type electrolyte is used, and in particular, an aqueous solution of sulfuric acid or sulfonic acid, which has high ionic conductivity, is used.

イオン導電抵抗の最も小さい硫酸水溶液を電解質とした
場合についてみると、燃料がメタノール水溶液があるの
でメタノールが直接酸化剤極で酸化される。故に電池性
能が低下し、また、燃料と電解質が平衡状態においては
混合してしまうため積層電池では各単位電池が電解液で
短絡してしまう等の技術的wJA題があった。
In the case where an aqueous sulfuric acid solution with the lowest ionic conductive resistance is used as the electrolyte, since the fuel is an aqueous methanol solution, methanol is directly oxidized at the oxidizer electrode. Therefore, the battery performance deteriorates, and since the fuel and electrolyte mix in an equilibrium state, there are technical problems such as short-circuiting of each unit cell due to the electrolyte in a stacked battery.

そこで、燃料の直接酸化を防止するために、電解質とし
て液移動の抵抗体として高分子スルフォン酸を含むイオ
ン交換膜を用いる提案(特開昭54−154048)が
あり、メタノール燃料電池の重要な要素材料となってい
る。
Therefore, in order to prevent direct oxidation of fuel, there was a proposal to use an ion exchange membrane containing polymeric sulfonic acid as an electrolyte and as a resistor for liquid movement (Japanese Patent Application Laid-Open No. 154048/1983), which is an important element of methanol fuel cells. It is a material.

また、液短絡の防止法としては、硫酸にかわる電解質と
して高分子スルフォン酸とイオン交換膜を用いた電池(
特開昭60−62064)、あるいは、積層数の最適化
や燃料液供給構造の改良(特開昭6O−220570)
等の提案がある。
In addition, as a method to prevent liquid short circuits, batteries using polymeric sulfonic acid and ion exchange membranes as electrolytes instead of sulfuric acid (
JP-A-60-62064), or optimization of the number of stacked layers and improvement of the fuel liquid supply structure (JP-A-60-220570)
There are other suggestions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このイオン交換膜の温度とメタノールがイオン
交換膜を透過する透過量の関係は、温度が高くなる程メ
タノール透過量が増大する。このため、電池性能及びメ
タノール利用効率の関係から、約60℃以下での作動温
度が望ましい。これによって、燃料極の反応速度が小さ
く、出力密度が小さくなる(20〜24 mW/a+T
) 。
However, regarding the relationship between the temperature of the ion exchange membrane and the amount of methanol permeated through the ion exchange membrane, the higher the temperature, the greater the amount of methanol permeated. Therefore, in view of battery performance and methanol utilization efficiency, an operating temperature of about 60° C. or lower is desirable. This reduces the reaction rate of the fuel electrode and the power density (20 to 24 mW/a+T
).

ここで、反応温度と酸化剤極、燃料極の単極性能及び単
位電池の性能の関係を示す。酸化剤極は反応温度による
電位の変化が小さい。燃料極は、温度の依存性が大きく
、これは温度が高い程1反応速度が大きいことになる。
Here, the relationship between reaction temperature, monopolar performance of the oxidizer electrode and fuel electrode, and performance of the unit cell will be shown. The oxidizer electrode has a small potential change due to reaction temperature. The fuel electrode is highly dependent on temperature, which means that the higher the temperature, the greater the rate of one reaction.

酸化剤極−電解質(イオン交換膜)−燃料極からなる単
位電池の温度と電圧の関係を、さらに単極の電位差の関
係を示す。単位電池電圧は室温から約60℃において、
単極の電位差とほぼ同じであるが、さらに高温になると
逆に電池電圧は低下してしまう。これは、高温になると
イオン交換膜の液移動の抵抗体としての機能が低下し、
透過するメタノールが多くなり、メタノールが酸化剤極
で直接酸化されることによる整置と考えられる。
The relationship between the temperature and voltage of a unit cell consisting of an oxidizer electrode, electrolyte (ion exchange membrane) and fuel electrode is shown, as well as the relationship between the potential difference of a single electrode. The unit battery voltage is from room temperature to about 60℃,
The potential difference is almost the same as that of a single electrode, but as the temperature rises further, the battery voltage decreases. This is because the function of the ion exchange membrane as a resistor for liquid movement decreases at high temperatures.
This is thought to be due to the fact that more methanol permeates and the methanol is directly oxidized at the oxidizer electrode.

この結果、電池を実用化する上で重要な特性である電池
性能の長期安定性が劣化するという問題がある。なお、
電解質として高分子スルフォン酸の使用は、イオン導電
抵抗による電池圧力の低下を避けることができない。
As a result, there is a problem in that the long-term stability of battery performance, which is an important characteristic for putting batteries into practical use, deteriorates. In addition,
The use of polymeric sulfonic acid as an electrolyte cannot avoid a decrease in battery pressure due to ionic conduction resistance.

また、電池の構成部材の耐久性を考えてみると(1)供
給燃料に電解液を含む液体燃料電池(2)セパレータ、
電極等導電性の炭素材料から構成、の様な場合は、積層
電池を構成する各単位電池間の液絡部に短絡回路が形成
され1例えば単位電池の両端部のセパレータがカーボン
と水との反応により電蝕し損傷してしまう。
Also, considering the durability of the battery components, (1) a liquid fuel cell in which the supplied fuel contains an electrolyte, (2) a separator,
In cases where the electrodes are made of conductive carbon material, a short circuit is formed at the liquid junction between each unit cell that makes up the stacked battery. The reaction causes electrolytic corrosion and damage.

さらに、液体を燃料とする場合、反応に必要なメタノー
ルと水以上に液体(fI&解液も含む)を循環供給する
必要があり、またメタノールの濃度の高い燃料を用いる
と、イオン交換膜を透過するメタノールの影響もあり希
薄な燃料としなければならないほか、出力重量が大きい
ことにより単位電池の出力密度が小さいため多くの積層
数が必要であること等により、軽量化の要請に反し出力
重量が大きくなる。
Furthermore, when using liquid as fuel, it is necessary to circulate and supply more liquid (including fI & decomposition) than the methanol and water required for the reaction, and when using a fuel with a high methanol concentration, it is necessary to circulate and supply more liquid than the methanol and water required for the reaction. In addition, the fuel must be dilute due to the influence of methanol, which has a large output weight, and the output density of the unit cell is low due to the large output weight, which requires a large number of stacked layers. growing.

上記目題点を解決するために、本発明は、メタノールの
短絡がない結果、電池電圧が高くなり、したがって、単
位電池の積層数が少なくできるため電池重量を軽くでき
るメタノール燃料電池を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention provides a methanol fuel cell in which the cell voltage is increased as a result of no methanol short-circuit, and the cell weight can be reduced because the number of stacked unit cells can be reduced. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、電解質を介して酸
化剤極と燃料極が対向配置されてなる単位電池からなり
、発電用燃料が燃料極へ供給され、酸化剤ガスが酸化剤
極へ供給されてなるメタノール燃料電池において、前記
発電用燃料は、気相の水およびメタノールであることを
特徴とするメタノール燃料電池である。
In order to achieve the above object, the present invention consists of a unit cell in which an oxidizer electrode and a fuel electrode are arranged opposite to each other with an electrolyte interposed therebetween. Fuel for power generation is supplied to the fuel electrode, and oxidant gas is supplied to the oxidizer electrode. The methanol fuel cell is characterized in that the power generation fuel is water and methanol in a gas phase.

〔作用〕[Effect]

(1) ?!!解質がメタノール及び水からなるガスの
移動抵抗体となり、反応温度を60℃以上にすることが
でき、燃料極の反応速度を大きくできる。
(1)? ! ! The solute acts as a movement resistor for gas consisting of methanol and water, making it possible to raise the reaction temperature to 60° C. or higher, thereby increasing the reaction rate of the fuel electrode.

それにともなって単位電池の出力密度を大きくできる。Accordingly, the output density of the unit battery can be increased.

例えば、75℃の温度では、60℃の温度に比べ20〜
b (2)各単位電池間に液絡部が無く、短絡回路が形成さ
?倉、電蝕が防止できる。
For example, at a temperature of 75℃, compared to a temperature of 60℃, the
b (2) Is there no liquid junction between each unit battery, forming a short circuit? It can prevent galvanic corrosion.

(3)循環する液体及び補機が無く、軽量化される。(3) There is no circulating liquid or auxiliary equipment, reducing weight.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

以下に、実施例により、さらに本発明を詳しく示すが、
本発明は以下の実施例に限定されるものではない。
The present invention will be further illustrated in detail with reference to Examples below.
The present invention is not limited to the following examples.

実施例−1 本実施例では、メタノールを直接燃料とする燃料電池に
使用する電極を作製し、その電極の単極特性を測定した
Example 1 In this example, an electrode for use in a fuel cell that uses methanol as direct fuel was prepared, and the unipolar characteristics of the electrode were measured.

(1)酸化剤極 炭素担体(ファーネスブラック キャボット社)に白金
を20wt%担持した触媒粉末を0.77gとり、水を
加えて混練後、ポリフロンディスパージョン(D−1:
ダイキン社)液をポリテトラフルオロエチレンとして5
0wt%になるように添加し、次にカーボンペーパ(E
−715:県別化学社)100X128に塗布し、風乾
後、空気極中で300℃、30分間燃成し酸化剤極Aと
した。
(1) Take 0.77 g of a catalyst powder in which 20 wt% of platinum is supported on an oxidizing agent polar carbon carrier (Furnace Black Cabot), add water and knead it, and mix it with Polyflon dispersion (D-1:
Daikin Corporation) liquid as polytetrafluoroethylene 5
0 wt%, and then carbon paper (E
-715: Kenbetsu Kagakusha) 100 x 128, and after air drying, it was burned in an air electrode at 300°C for 30 minutes to obtain oxidizer electrode A.

この酸化剤極Aの単極性能を評価した。測定は25℃、
60℃及び80℃の1 、5 mol/ Q硫酸電解液
中で、空気を供給し60mA/aJの電流密度での電位
を求めた。その結果は、それぞれo、79VvsNHE
、0.80 VvsNHE及び0.81VvsNHEで
あった。この結果を第2図9に示す。
The monopolar performance of this oxidizer electrode A was evaluated. Measured at 25℃,
In 1,5 mol/Q sulfuric acid electrolyte at 60°C and 80°C, air was supplied and the potential was determined at a current density of 60 mA/aJ. The results are o, 79V vs NHE, respectively.
, 0.80 V vs NHE and 0.81 V vs NHE. The results are shown in FIG. 29.

(2)燃料極 炭素担体(ファーネスブラック:キャボット社)に白金
とルテニウムとして50wt%担持した触媒を6.7 
gとり、水を加えて混練する。次に、PTFEとして2
.8 gになるようにポリフロンディスパージョンを加
えて混合しこれを250X300mmのカーボンペーパ
に塗布し、乾燥後285℃で30分間焼成しこれを燃料
極Bとした。
(2) A catalyst with 50 wt% of platinum and ruthenium supported on a fuel electrode carbon carrier (furnace black: Cabot)
g, add water and knead. Next, as PTFE, 2
.. Polyflon dispersion was added and mixed in an amount of 8 g, and this was coated on a 250 x 300 mm carbon paper. After drying, it was fired at 285° C. for 30 minutes, and this was used as fuel electrode B.

この燃料極Bの単極性能を評価した。測定は、燃料極B
の触媒層に4 、5 mol/ Q硫酸電解液を20m
g/aJ相当含浸後、触媒層を1 、5 mol/ Q
硫酸電解液に浸漬する。次に基板(カーボンペーパ)側
にメタノール:水=1=1の水溶液を60℃で3Gフイ
ルターで窒素をiQ/minでパフリングし気体の(メ
タノール+水)燃料を供給する。
The monopolar performance of this fuel electrode B was evaluated. Measurement is carried out at fuel electrode B
20m of 4,5 mol/Q sulfuric acid electrolyte was added to the catalyst layer.
After impregnation equivalent to g/aJ, the catalyst layer was impregnated with 1.5 mol/Q
Immerse in sulfuric acid electrolyte. Next, a methanol:water=1=1 aqueous solution was prepared on the substrate (carbon paper) side at 60° C. by blowing nitrogen at iQ/min using a 3G filter to supply gaseous fuel (methanol+water).

この単極セルの温度を40℃、60℃及び80℃とし、
それぞれについて60mA/aJでの燃料極電位を求め
た。その結果は、40℃が0.44VvsNHE、60
℃が0.38 VvsNHE及び80℃が0.32 V
vsNHEであった。
The temperature of this monopolar cell is 40°C, 60°C and 80°C,
The fuel electrode potential at 60 mA/aJ was determined for each. The results are 0.44V vs NHE at 40℃, 60
0.38 V vs NHE at °C and 0.32 V at 80 °C
It was vsNHE.

比較例−1 燃料極Bを用い、アノライト(1,0mol/12メタ
ノールー1 、5 mol/ Q硫酸水溶液)中で、温
度を17℃〜80℃と変化させ、60mA/cdで電位
を求めた。
Comparative Example 1 Using fuel electrode B, the potential was determined at 60 mA/cd in an anolite (1.0 mol/12 methanol-1, 5 mol/Q sulfuric acid aqueous solution) while changing the temperature from 17°C to 80°C.

その結果を、第2図の10に示す。The results are shown in 10 of FIG.

実施例−2 100X128n+mの酸化剤極Aと燃料極Bを用いて
両極間に1 、5 mol/ Q硫酸を含有したイオン
交換膜(CMV=旭硝子)を介在させ、第1図に示した
単位電池を構成した。この単位電池をIとする。第1図
において、中央に酸型に置換された陽イオン交換膜3を
介して、酸化剤極1と燃料極2が位置し、これらと酸化
剤極及び燃料の供排機能を備えるとともに集電もかねそ
なえるセパレータ6(例えば、膨張黒鉛のプレス成形品
)で構成される。酸化剤極室4には空気7(あるいは酸
素)が供給される。
Example-2 A unit cell as shown in FIG. 1 was produced by using oxidizer electrode A and fuel electrode B of 100×128n+m and interposing an ion exchange membrane (CMV=Asahi Glass Co., Ltd.) containing 1.5 mol/Q sulfuric acid between the two electrodes. was configured. Let this unit battery be I. In Fig. 1, an oxidizer electrode 1 and a fuel electrode 2 are located in the center via a cation exchange membrane 3 substituted with an acid type, and are equipped with an oxidizer electrode and a fuel supply/exhaust function, as well as current collection. It is composed of a separator 6 (for example, a press-molded product of expanded graphite) that also has a large diameter. Air 7 (or oxygen) is supplied to the oxidant electrode chamber 4.

電池に用いる電極としては、酸化剤極触媒は白金を炭素
担体に担持したものを、燃料極触媒は白金だけでは反応
速度が遅く、助触媒効果の高いルテニウム、スズ、レニ
ウム、イリジウム等の貴金属や半導体元素を含有するも
のがよい。この単位電池に(メタノール:水=1:1)
水溶液を60°Cに保ち3Gフイルターで窒素(I Q
 /min )をバブリングし、酸化剤として空気をI
Q/minで供給し、単位電池の運転温度を40〜75
℃と変化させた場合の電流密度60mA/fflでの単
位電池の性能を求めた。その結果を第3図に示す。
For the electrodes used in batteries, the oxidizer electrode catalyst is one in which platinum is supported on a carbon carrier, and the fuel electrode catalyst is made of noble metals such as ruthenium, tin, rhenium, iridium, etc., which have a high cocatalyst effect, as platinum alone has a slow reaction rate. Those containing semiconductor elements are preferable. In this unit battery (methanol: water = 1:1)
The aqueous solution was kept at 60°C and filtered with nitrogen (IQ) using a 3G filter.
/min), and air was added as an oxidizing agent.
Q/min, and the operating temperature of the unit battery is 40 to 75.
The performance of the unit battery was determined at a current density of 60 mA/ffl when the temperature was changed to .degree. The results are shown in FIG.

メタノールと水の気相化する方法としては、燃料気化室
を設けるのが簡単であり、その1例としては、例えばメ
タノール:水=1:1の混合水溶液に窒素および/ある
いは電池で生成する炭酸ガス(CO2)をボールフィル
ター等によりバブリングしてメタノールを気相の燃料と
する。電池の排出ガスを循環して使用することにより、
燃料の利用率を上げることができ(メタノール+水)水
溶液の温度も上げることにもなり、さらに燃料の気化が
容易になる。
A simple method for converting methanol and water into a vapor phase is to provide a fuel vaporization chamber. One example is to add nitrogen and/or carbon dioxide produced by a battery to a mixed aqueous solution of methanol:water = 1:1. Gas (CO2) is bubbled through a ball filter or the like to turn methanol into gaseous fuel. By recycling and using battery exhaust gas,
The fuel utilization rate can be increased, and the temperature of the aqueous solution (methanol + water) can also be increased, making it easier to vaporize the fuel.

比較例−2 燃料極ヘアノライトを200 m Q /minで循環
供給し、運転温度を30〜75℃とする以外は、実施例
−2と同様に単位電池■の性能を求めた。
Comparative Example-2 The performance of the unit cell (2) was determined in the same manner as in Example-2, except that the fuel electrode hairnolite was supplied in circulation at a rate of 200 m Q /min and the operating temperature was 30 to 75°C.

その結果を、第4図の11に示す。第4図において、1
2は単極電位差を示したものである。
The results are shown in 11 of FIG. In Figure 4, 1
2 shows the unipolar potential difference.

実施例−3 電解質として炭化ケイ素及びリン酸ジルコニウムからな
る粉末状(平均粒子径3μm)のマトリックスと3mo
l/Q硫酸電解液を混合して調製したペースト状のもの
を用いる以外は、実施例−2と同様に単位電池を構成し
た。これを単位電池■とする。
Example-3 A powdered matrix (average particle size 3 μm) consisting of silicon carbide and zirconium phosphate as an electrolyte and 3mo
A unit battery was constructed in the same manner as in Example 2, except that a paste prepared by mixing l/Q sulfuric acid electrolyte was used. This is called a unit battery ■.

この単位電池を用い、運転温度を40℃、60℃、及び
75℃と変化させて実施例−2と同様に単位電池「の性
能を測定した。その結果、60m A / a#におけ
る電池電圧は、40℃が0.30V、60℃が0.39
V及び75℃が0.45Vであった。
Using this unit battery, the performance of the unit battery was measured in the same manner as in Example 2 while changing the operating temperature to 40°C, 60°C, and 75°C.As a result, the battery voltage at 60mA/a# was , 0.30V at 40℃, 0.39 at 60℃
V and 75°C were 0.45V.

実施例−4 単位電池Iを用い、実施例−2と同様に燃料及び酸化剤
を供給し、運転温度60℃±5℃、電流密度60mA/
adで連続運転しその特性を測定した。
Example-4 Unit cell I was used, fuel and oxidizer were supplied in the same manner as in Example-2, operating temperature was 60°C ± 5°C, and current density was 60mA/
ad, and its characteristics were measured.

その結果を第5図の13に示す。この実験では、燃料で
ある気相の(メタノール+水)を一部循環使用した。
The results are shown in 13 of FIG. In this experiment, part of the gaseous fuel (methanol + water) was recycled.

比較例−3 単位電池Iを用いて、比較例−2と同様にアノライト(
1、5+mol/ Qメタノール−L 、 5 +mo
l/ Q硫酸水溶液)及び酸化剤を供給し、運転温度6
0℃±2℃で電流密度60mA/aJで連続運転した。
Comparative Example-3 Using unit battery I, anolite (
1,5+mol/Qmethanol-L,5+mo
l/Q sulfuric acid aqueous solution) and an oxidizing agent, and the operating temperature was 6.
Continuous operation was performed at 0°C ± 2°C and a current density of 60 mA/aJ.

その結果を第5図の14に示す。The results are shown in 14 of FIG.

実施例−5 単位電池r及び■を用いて、運転温度75℃で実施例−
4と同様の実験をした。その結果を第6図の15及び1
6に示す。
Example 5 Example using unit batteries r and ■ at an operating temperature of 75°C
An experiment similar to 4 was conducted. The results are 15 and 1 in Figure 6.
6.

比較例−4 単位電池lを用いて、運転温度75℃で比較例−3と同
様の実験をした。その結果を第6図の17に示す。
Comparative Example 4 An experiment similar to Comparative Example 3 was conducted using unit battery 1 at an operating temperature of 75°C. The results are shown in 17 of FIG.

実施例−6 実施例−2の単位電池■を33セル積層して積層電池(
A)を構成した。
Example-6 A stacked battery (
A) was constructed.

この電池(A)の重量は12.5kgであった。The weight of this battery (A) was 12.5 kg.

実施例−7 実施例−3の単位電池■を30セル積層して積層電池(
B)を構成した。
Example-7 A stacked battery (
B) was constructed.

この電池(B)の重量は11.25kgであった。1比
較例−5 実施例−6の積層電池(A)にアノライトを循環状態を
模擬して、アゲライトを燃料極室に保管しその時の電池
重量を測定した。その結果13.88鴎であった。
The weight of this battery (B) was 11.25 kg. 1 Comparative Example-5 The anolyte was stored in the fuel electrode chamber to simulate the circulating state of the anolyte in the stacked battery (A) of Example-6, and the weight of the battery at that time was measured. The result was 13.88 seagulls.

実施例−8 第7図に示すようにメタノールを直接燃料とする気相メ
タノール燃料電池を運執した。
Example 8 As shown in FIG. 7, a gas phase methanol fuel cell using methanol as direct fuel was operated.

次層電池(A)1Bを使用し、燃料気化器19は60℃
に保ち窒素でバブリングする構造となっている。これに
よって気相のメタノールと水を燃料極へ供給できる。気
化器19には、メタノール濃度センサ23と液面レベル
センサ24を備えて、気化器19内のメタノールと水が
1:1になるようにフィードバック制御を行う制御装置
22が接続されている。メタノールタンク20及び水タ
ンク21からブロア2Sを通してメタノール及び水が補
給される。電流密度60mA/cofで100時間の連
続運転をした。電池の温度が55〜60℃になるように
供給する窒素量を手動で調製するとともに、供給した(
メタノール+水)の気体は循環使用した。
Next-layer battery (A) 1B is used, and the fuel vaporizer 19 is 60°C.
It has a structure that maintains the temperature and bubbles nitrogen. This allows gas phase methanol and water to be supplied to the fuel electrode. The vaporizer 19 is connected to a control device 22 that includes a methanol concentration sensor 23 and a liquid level sensor 24 and performs feedback control so that the ratio of methanol and water in the vaporizer 19 is 1:1. Methanol and water are replenished from the methanol tank 20 and the water tank 21 through the blower 2S. Continuous operation was performed for 100 hours at a current density of 60 mA/cof. The amount of nitrogen to be supplied was manually adjusted and supplied so that the temperature of the battery was 55 to 60 °C (
The gas (methanol + water) was used in circulation.

その結果を、運転時間と出力電力の関係として第8図の
27に示す。
The results are shown in 27 of FIG. 8 as a relationship between operating time and output power.

比較例−6 第9図に示す従来の液体メタノール燃料電池を運転した
。本例では、積層電池(A)18を使用し、燃料タンク
28には1mol/Qメタノール+1 、5 mol/
 Q硫酸のアノライト溶液を入れ、これを積層電池18
へ循環供給した。また、燃料タンク27にはメタノール
濃度センサ23と液面レベルセンサ24を備えて、燃料
タンク内のメタノール濃度が0.8〜1.2 mol/
Q、アノライト液面レベルが±5%になるように制御装
置22で制御し、メタノールタンク20及び水タンク2
1より供給する。空気は35 Q /winで酸化剤極
に供給した。60mA/aJで100時間連続運転した
結果を第8図の30に示す。
Comparative Example-6 A conventional liquid methanol fuel cell shown in FIG. 9 was operated. In this example, the stacked battery (A) 18 is used, and the fuel tank 28 contains 1 mol/Q methanol+1, 5 mol/
Pour the Q sulfuric acid anolyte solution into the stacked battery 18.
It was circulated and supplied to Further, the fuel tank 27 is equipped with a methanol concentration sensor 23 and a liquid level sensor 24, so that the methanol concentration in the fuel tank is 0.8 to 1.2 mol/
Q. The control device 22 controls the anolyte liquid level to ±5%, and the methanol tank 20 and water tank 2
Supplied from 1. Air was supplied to the oxidizer electrode at 35 Q/win. The results of continuous operation for 100 hours at 60 mA/aJ are shown at 30 in FIG.

実施例−9 積層電池(B)を使用し、電池の運転温度を70〜75
℃とする以外は、実施例−8と同様に連続運転をした。
Example-9 Using a laminated battery (B), the operating temperature of the battery is 70-75
Continuous operation was carried out in the same manner as in Example-8 except that the temperature was set at ℃.

その結果を第8図の31に示す。The results are shown at 31 in FIG.

実施例−10 実施例−8及び実施例9で使用した積層電池を解体しセ
パレータの外awt察及び重量を測定したが、初期と変
化がなかった。
Example 10 The stacked batteries used in Examples 8 and 9 were disassembled, and the outer awt and weight of the separators were measured, but there was no change from the initial value.

比較例−7 比較例−6で使用した積層電池を解体し実施例−10と
同様にwt察及び重量を測定した。その結果電池の両端
に近いセパレータのアノライト入口部とアノライト出口
部に電蝕による損傷がwt察された。また、セパレータ
全体の重量は、初期に比べ2.5 %減少していた。
Comparative Example-7 The laminated battery used in Comparative Example-6 was disassembled, and the weight and weight were measured in the same manner as in Example-10. As a result, damage due to electrolytic corrosion was observed at the anolite inlet and outlet of the separator near both ends of the battery. Furthermore, the weight of the entire separator was reduced by 2.5% compared to the initial weight.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明にかかるメタノール燃料電池
によれば、メタノールちび水を気相状態で熱料極に供給
しているので、液絡による短絡回路の形成がなく、電池
電圧を高くでき、かつ電池構成材料の電蝕を防止できる
。しかも、液絡がない結果、電池温度を適性な高い温度
にすることができるため電池電圧を一層高くできる。そ
の結果、長期間電池出力が安定し、かつ出力密度が大き
くなる。
As explained above, according to the methanol fuel cell according to the present invention, since methanol water is supplied to the heating electrode in a gaseous state, there is no formation of a short circuit due to a liquid junction, and the battery voltage can be increased. Moreover, electrolytic corrosion of battery constituent materials can be prevented. Moreover, since there is no liquid junction, the battery temperature can be kept at a suitably high temperature, making it possible to further increase the battery voltage. As a result, the battery output is stabilized for a long period of time, and the output density is increased.

また、本発明にかかるメタノール燃料電池は軽量かつ小
型なものとなり、可搬型電源としての有用性が一層向上
する。
Furthermore, the methanol fuel cell according to the present invention is lightweight and compact, and its usefulness as a portable power source is further improved.

さらに、液(アノライト)の循環が不要となり、液ポン
プの耐久性や電池の液シールの不良の問題も解消できる
Furthermore, circulation of the liquid (anolyte) is no longer necessary, and problems with the durability of the liquid pump and poor sealing of the battery liquid can be solved.

なお、将来の製品化においては、(1)ヒートバランス
、電解液バランス及び燃料バランスの自動制御さらには
、高性能な固体電解質ができたらさらに有効である。
In future commercialization, it would be even more effective if (1) automatic control of heat balance, electrolyte balance, and fuel balance and a high-performance solid electrolyte were created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるメタノール燃料電池の一実施例
における単位電池構成図、第2図は単極の温度−電位を
示すグラフ、第3図及び第4図は単位電池の温度−電圧
を示すグラフ、第5図及び第6図は単位電池の性能の経
時変化を示すグラフ、第7図は、本発明にかかるメタノ
ール燃料電池の一実施例構成図、第8図は、メタノール
を直接燃料とする燃料電池の連続運転の結果を示すグラ
フ。 第9図は、アノライトを燃料極へ供給してなる従来のメ
タノール燃料電池の構成図である。 1・・・酸化剤極、2・・・燃料極、3・・・電解質(
イオン交換膜)、4・・・酸化剤極室、5・・・燃料極
室、6・・・セパレータ、7・・・空気(酸素)、8・
・・アノライト。 9.10・・・単極電位、11,13,14,15゜1
6.17・・・単位電池電圧、12・・・単極電位差、
18・・・積層電池、19・・・燃料気化器、20・・
・メタノールタンク、21・・・水タンク、22・・・
制御部、23・・・メタノール濃度センサ、24・・・
液面レベルセンサ、25・・・ブロア、26・・・窒素
、27,30゜31・・・電池出力、29・・・液ポン
プ。
Fig. 1 is a unit cell configuration diagram in an embodiment of the methanol fuel cell according to the present invention, Fig. 2 is a graph showing the temperature-potential of a single electrode, and Figs. 3 and 4 are graphs showing the temperature-voltage of the unit cell. 5 and 6 are graphs showing changes in the performance of unit cells over time. FIG. 7 is a configuration diagram of an embodiment of a methanol fuel cell according to the present invention. FIG. Graph showing the results of continuous operation of a fuel cell. FIG. 9 is a block diagram of a conventional methanol fuel cell in which an anolite is supplied to a fuel electrode. 1... Oxidizer electrode, 2... Fuel electrode, 3... Electrolyte (
ion exchange membrane), 4... Oxidizer electrode chamber, 5... Fuel electrode chamber, 6... Separator, 7... Air (oxygen), 8...
...Anorite. 9.10... Unipolar potential, 11, 13, 14, 15°1
6.17... Unit battery voltage, 12... Unipolar potential difference,
18... Stacked battery, 19... Fuel vaporizer, 20...
・Methanol tank, 21...Water tank, 22...
Control unit, 23... Methanol concentration sensor, 24...
Liquid level sensor, 25...Blower, 26...Nitrogen, 27,30°31...Battery output, 29...Liquid pump.

Claims (1)

【特許請求の範囲】 1、電解質を介して酸化剤極と燃料極が対向配置されて
なる単位電池からなり、発電用燃料が燃料極へ供給され
、酸化済ガスが酸化剤極へ供給されてなるメタノール燃
料電池において、前記発電用燃料は、気相の水およびメ
タノールであることを特徴とするメタノール燃料電池。 2、前記酸化剤極及び燃料極が、導電性炭素担体及び1
種類以上の白金属元素を含有してなる触媒とポリテトラ
フルオロエチレンとの混合物からなる触媒層と導電性炭
素基板とから構成されていることを特徴とする特許請求
の範囲第1項記載のメタノール燃料電池。 3、前記電解質がイオン交換膜および/または炭化ケイ
素及びリン酸ジルコニウムの微細粒子マトリックスから
なり、電解液を含有していることを特徴とする特許請求
の範囲第1項記載のメタノール燃料電池。 4、前記電解液が硫酸水溶液および/または高分子スル
フォン酸を含有する水溶液からなることを特徴とする特
許請求の範囲第1項ないし第3項のいずれかに記載のメ
タノール燃料電池。
[Claims] 1. Consisting of a unit cell in which an oxidizer electrode and a fuel electrode are arranged opposite to each other with an electrolyte interposed between them, power generation fuel is supplied to the fuel electrode, and oxidized gas is supplied to the oxidizer electrode. A methanol fuel cell characterized in that the power generation fuel is water and methanol in a gas phase. 2. The oxidizer electrode and the fuel electrode include a conductive carbon carrier and 1
Methanol according to claim 1, characterized in that it is composed of a catalyst layer made of a mixture of a catalyst containing more than one type of platinum metal element and polytetrafluoroethylene, and a conductive carbon substrate. Fuel cell. 3. The methanol fuel cell according to claim 1, wherein the electrolyte is composed of an ion exchange membrane and/or a matrix of fine particles of silicon carbide and zirconium phosphate, and contains an electrolyte. 4. The methanol fuel cell according to any one of claims 1 to 3, wherein the electrolyte comprises an aqueous sulfuric acid solution and/or an aqueous solution containing a polymeric sulfonic acid.
JP62070706A 1987-03-25 1987-03-25 Methanol fuel cell Pending JPS63237363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070706A JPS63237363A (en) 1987-03-25 1987-03-25 Methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070706A JPS63237363A (en) 1987-03-25 1987-03-25 Methanol fuel cell

Publications (1)

Publication Number Publication Date
JPS63237363A true JPS63237363A (en) 1988-10-03

Family

ID=13439301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070706A Pending JPS63237363A (en) 1987-03-25 1987-03-25 Methanol fuel cell

Country Status (1)

Country Link
JP (1) JPS63237363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242158A (en) * 1989-03-15 1990-09-26 Nippon Shoji Kk Method of measuring human apolipoprotein c-iii
WO1997050140A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Direct methanol fuel cell (dmfc)
WO1999038223A1 (en) * 1998-01-21 1999-07-29 Forschungszentrum Jülich GmbH Method and device for operating a direct methanol fuel cell with gaseous fuel
WO2005088751A1 (en) * 2004-03-10 2005-09-22 Nec Corporation Fuel container for fuel cell, fuel cell using same, and method for operating fuel cell
WO2010066900A1 (en) * 2008-12-11 2010-06-17 Volker Harbusch Device for providing a carrier gas containing a fuel, and fuel cell comprising such a device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242158A (en) * 1989-03-15 1990-09-26 Nippon Shoji Kk Method of measuring human apolipoprotein c-iii
WO1997050140A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Direct methanol fuel cell (dmfc)
WO1999038223A1 (en) * 1998-01-21 1999-07-29 Forschungszentrum Jülich GmbH Method and device for operating a direct methanol fuel cell with gaseous fuel
US6468683B1 (en) 1998-01-21 2002-10-22 Forschungszentrum Julich Gmbh Method and device for operating a direct methanol fuel cell with gaseous fuel
WO2005088751A1 (en) * 2004-03-10 2005-09-22 Nec Corporation Fuel container for fuel cell, fuel cell using same, and method for operating fuel cell
JPWO2005088751A1 (en) * 2004-03-10 2008-01-31 日本電気株式会社 FUEL CELL FUEL CONTAINER, FUEL CELL USING THE SAME, AND METHOD OF OPERATING FUEL CELL
JP4894512B2 (en) * 2004-03-10 2012-03-14 日本電気株式会社 FUEL CELL FUEL CONTAINER, FUEL CELL USING THE SAME, AND METHOD OF OPERATING FUEL CELL
WO2010066900A1 (en) * 2008-12-11 2010-06-17 Volker Harbusch Device for providing a carrier gas containing a fuel, and fuel cell comprising such a device
US9496575B2 (en) 2008-12-11 2016-11-15 Siqens Gmbh Humidification Unit for Providing a Carrier Gas Containing a Fuel, and Fuel Cell with Such a Humidification Unit

Similar Documents

Publication Publication Date Title
AU645910B2 (en) Redox battery
US4804592A (en) Composite electrode for use in electrochemical cells
US7781083B2 (en) Hydrogen/hydrogen peroxide fuel cell
JP2005294245A (en) Proton conductor and fuel cell
JP3163370B2 (en) Redox battery
JP4977911B2 (en) Electrode catalyst powder for air electrode of hydrogen-air / solid polymer electrolyte type reversible cell, electrode-electrolyte membrane assembly (MEA) having air electrode and reversible cell using the same
KR100759451B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JPH06330367A (en) Production of gas electrode
US20140099565A1 (en) Fuel cell comprising a proton-exchange membrane, having an increased service life
JP4846371B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
JPS63237363A (en) Methanol fuel cell
JP4996823B2 (en) Fuel cell electrode and fuel cell using the same
JPH10208757A (en) Fuel cell generating set
KR100759430B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JPS63236262A (en) Fuel cell
Song et al. The influence of oxygen additions to hydrogen in their electrode reactions at Pt/Nafion interface
JP2009070733A (en) Manufacturing method of single-chamber fuel cell and modified manganese oxide
US3296030A (en) Fuel cell with stabilized zirconia electrolyte and nickel-silver alloy anode
JP2001148251A (en) Solid electrolyte and fuel cell using it
KR20020076653A (en) A PEMFC(Proton Exchange Membrane Fuel Cells) having efficient water-balance properties
US20230343978A1 (en) Electrochemical cell, power generation method using electrochemical cell, and manufacturing method of hydrogen gas using electrochemical cell
KR100551034B1 (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same
JP2016129155A (en) Fuel cell system start method and fuel cell system
JPH09259893A (en) Electrode for high polymer electrolyte fuel cell, manufacture thereof, and operation method for fuel cell having same electrode
JPH0896813A (en) Electrode for high-molecular solid electrolytic type electrochemistry cell