JP2001148251A - Solid electrolyte and fuel cell using it - Google Patents

Solid electrolyte and fuel cell using it

Info

Publication number
JP2001148251A
JP2001148251A JP32987899A JP32987899A JP2001148251A JP 2001148251 A JP2001148251 A JP 2001148251A JP 32987899 A JP32987899 A JP 32987899A JP 32987899 A JP32987899 A JP 32987899A JP 2001148251 A JP2001148251 A JP 2001148251A
Authority
JP
Japan
Prior art keywords
fuel cell
solid electrolyte
hydrogen
electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32987899A
Other languages
Japanese (ja)
Inventor
Sadae Yamaguchi
貞衛 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Institute of Technology
Original Assignee
Chiba Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Institute of Technology filed Critical Chiba Institute of Technology
Priority to JP32987899A priority Critical patent/JP2001148251A/en
Publication of JP2001148251A publication Critical patent/JP2001148251A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply safely and cheaply a fuel cell having high electromotive power. SOLUTION: A fuel cell constituted with a solid electrolyte which is sandwiched and held between a pair of gas diffusion electrodes or between a gas diffusion electrode and a hydrogen storing metal alloy electrode, wherein the solid electrolyte of which a part of Ce is replaced by Y in BaCeO3 which consists of Ba and Ce as fundamental ingredients, and an electrolyte is prepared by the sol-gel method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質および
これを用いた燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte and a fuel cell using the same.

【0002】[0002]

【従来の技術】燃料の酸化反応を電気化学的に行なわせ
ることによって、電気エネルギに変換し、これをエネル
ギ源として利用することは、最近特にクリーンエネルギ
として注目を浴び数多くの提案がなされている。
2. Description of the Related Art Converting fuel into an electrical energy by electrochemically oxidizing a fuel and utilizing the converted energy as an energy source has recently attracted attention as a particularly clean energy, and many proposals have been made. .

【0003】典型的な燃料電池は、図6に示すような構
成となっている。すなわち、多孔性の白金膜又は金膜を
もって構成した負極側に燃料水素を供給し、水素電極反
応(H→H++e)により発生した水素イオンを固体電
解質を通して正極側に移動させ、酸素電極反応(O2
4e-→2O--,4H++2O--→2H2O)によって水
を発生すると共に、その起電力を発生する。この起電力
はネルンストの式により決まり、1.23Vを超える電
圧は発生しない。
A typical fuel cell has a configuration as shown in FIG. That is, fuel hydrogen is supplied to the negative electrode side composed of a porous platinum film or gold film, and hydrogen ions generated by the hydrogen electrode reaction (H → H + + e) are moved to the positive electrode side through the solid electrolyte to form an oxygen electrode reaction. (O 2 +
4e → 2O , 4H + + 2O → 2H 2 O) to generate water and generate an electromotive force. This electromotive force is determined by the Nernst equation, and a voltage exceeding 1.23 V is not generated.

【0004】かかる燃料電池に用いられる固体電解質と
しては、イットリア安定化ジルコニアや陽イオン交換
膜、ペロブスカイト型酸化物であるBaCe0.8Zr0.1
Nd0. 13(特開平4−34862号公報参照)等が知
られている。
[0004] Solid electrolytes used in such fuel cells include yttria-stabilized zirconia, cation exchange membranes, and perovskite oxides such as BaCe 0.8 Zr 0.1.
Nd 0. 1 O 3 (see Japanese Patent Laid-Open No. 4-34862) are known.

【0005】電池の出力を増大するためには、電解質の
電気抵抗による電圧の低下を軽減して、出来るだけ大き
な電流を電池から取り出すための工夫が必要である。例
えば特開平10−284108号公報では、電圧低下の
軽減のため、電解質としてBaPrO3のような導電率
の高い物質を用いることを提案している。
In order to increase the output of the battery, it is necessary to reduce the voltage drop due to the electric resistance of the electrolyte and to take out as much current as possible from the battery. For example, Japanese Patent Application Laid-Open No. 10-284108 proposes to use a substance having high conductivity such as BaPrO 3 as an electrolyte in order to reduce a voltage drop.

【0006】電極としては、電極反応に対して触媒作用
のある多孔性の白金膜又は金膜が使用されている。しか
しこれらはいずれも高価である。一方、燃料の水素とし
ては水素ガスあるいは水素含有ガスをボンベに入れて用
いたり、あるいは液体燃料を水素源として用いたりして
いる。水素ガスそのものには爆発の危険があって取扱い
に注意を要するので、装置としても危険対策を必要とし
たものになる。液体燃料を水素源として用いる場合で
も、それなりの装置が必要となり、又、反応後にCO2
などを生成するので、いわゆるクリーンエネルギの観点
からは好ましくない。
As the electrode, a porous platinum film or gold film having a catalytic action on the electrode reaction is used. However, these are all expensive. On the other hand, as fuel hydrogen, a hydrogen gas or a hydrogen-containing gas is used in a cylinder, or a liquid fuel is used as a hydrogen source. Since hydrogen gas itself has a risk of explosion and needs to be handled with care, the device also requires danger measures. Even when a liquid fuel is used as a hydrogen source, a suitable device is required, and after the reaction, CO 2
And so on, which is not preferable from the viewpoint of so-called clean energy.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、起電力の高い燃料電池を安全にかつ安価に提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cell having a high electromotive force safely and inexpensively in view of the above prior art.

【0008】[0008]

【課題を解決するための手段】本発明は、下記(1)〜
(4)よりなる。 (1)バリウム(Ba)とセリウム(Ce)とを基本成
分とする三酸化バリウムセリウムにおいて、セリウムの
一部をイットリウム(Y)で置き換えた組成を有するこ
とを特徴とする固体電解質。
Means for Solving the Problems The present invention provides the following (1) to
(4). (1) A solid electrolyte characterized in that barium cerium trioxide containing barium (Ba) and cerium (Ce) as basic components has a composition in which part of cerium is replaced by yttrium (Y).

【0009】(2)化学組成制御の可能なゾル、ゲル法
で作成したプロトン導電性酸化物薄膜である前記(1)
記載の固体電解質。 (3)三酸化バリウムセリウムにおいて、セリウムの一
部をイットリウムで置き換えた組成を有する固体電解質
をガス拡散電極同士又はガス拡散電極と水素吸蔵合金電
極とで挾持してなることを特徴とする燃料電池。(いず
れの場合も水素吸蔵合金が燃料供給源になる) (4)ガス拡散電極が多孔性のNiとBaCe1-aa
3-x よりなるセラメット膜である前記(3)記載の燃料
電池。
(2) Sol / gel method capable of controlling chemical composition
(1) which is a proton conductive oxide thin film prepared in
The solid electrolyte as described. (3) In cerium barium trioxide, one of cerium
Electrolyte having a composition in which the part is replaced by yttrium
Between the gas diffusion electrodes or between the gas diffusion electrodes and the hydrogen storage alloy
A fuel cell characterized by being sandwiched between poles. (Izu
In this case also, the hydrogen storage alloy serves as a fuel supply source. (4) Ni and BaCe are porous gas diffusion electrodes1-aYaO
3-x The fuel according to the above (3), which is a cermet membrane comprising
battery.

【0010】すなわち、本発明は、燃料電池の固体電解
質として、三酸化バリウムセリウムのセリウムの一部を
イットリウムで置き換えたBaCe1-aa3-x(a=
0.05〜0.15)を用いる。このものは図5に示す
ように導電率が高く、燃料電池の電解質として使用すれ
ば、電圧低下を軽減することができる。特にゾル・ゲル
法によって作製したものは、大面積の電解質を設計組成
通りに容易に作製することが可能である。このことによ
って焼結体ペレットの電解質を用いる場合よりも大きな
電流を電池から安定して取出すことができた。さらに電
解質にゾル・ゲル薄膜を用いる方が、焼結体ペレットの
電解質を用いる場合よりも、製造コストの面でも有利で
ある。なお、かかる電解質において、Yの組成に占める
割合aは0.05〜0.15の範囲が適当である。aが
0.05未満ではYの効果が十分発揮できず、またaが
0.15を越えるとCeの効果が薄れるので、a=0.
05〜0.15の範囲が望ましい範囲である。また、x
は酸素原子が格子点から抜けたことにより生じた空孔の
割合(酸素原子空孔の割合)を示す。
That is, the present invention provides, as a solid electrolyte of a fuel cell, a three BaCe part of cerium oxide barium cerium was replaced with yttrium 1-a Y a O 3- x (a =
0.05-0.15). This has a high conductivity as shown in FIG. 5, and when used as an electrolyte for a fuel cell, a voltage drop can be reduced. In particular, those prepared by the sol-gel method can easily prepare a large-area electrolyte according to the designed composition. As a result, a larger current could be stably taken out of the battery than in the case of using the sintered pellet electrolyte. Further, using a sol-gel thin film as an electrolyte is more advantageous in terms of manufacturing cost than using an electrolyte of a sintered pellet. In addition, in such an electrolyte, the ratio a to the composition of Y is suitably in the range of 0.05 to 0.15. If a is less than 0.05, the effect of Y cannot be sufficiently exerted, and if a exceeds 0.15, the effect of Ce is weakened.
The range of 05 to 0.15 is a desirable range. Also, x
Represents the ratio of vacancies (the ratio of oxygen vacancies) generated by the escape of oxygen atoms from lattice points.

【0011】本発明は、上記BaCe1-aa3-xより
なる固体電解質をガス拡散電極同士又は水素吸蔵合金電
極(負極)とガス拡散電極(正極)とで挾持してなる燃
料電池であるが、ガス拡散電極同士を用いる場合にはN
iとBaCeYO3のセラメット膜を負極に利用する方
が、白金膜を負極に用いる場合よりも、電池の放電特性
が良好であることが分かった。また、Niのセラメット
電極は製造コストの面でも白金電極よりも有利である。
The present invention, the BaCe 1-a Y a O 3 -x and from consisting solid electrolyte outlet gas diffusion electrode to each other, or a hydrogen storage alloy electrode (the negative electrode) and the gas diffusion electrode (positive electrode) sandwiched by a fuel cell comprising However, when gas diffusion electrodes are used, N
It was found that the discharge characteristics of the battery were better when the i and BaCeYO 3 cermet films were used for the negative electrode than when a platinum film was used for the negative electrode. Ni cermet electrodes are also more advantageous than platinum electrodes in terms of manufacturing cost.

【0012】水素の供給源としては、水素吸蔵合金を用
いる。代表的なものを例示すると、TiH2、MgH2
Mg2NiH4などである。かかる水素吸蔵合金は350
〜650℃の温度範囲で1気圧以上の圧力の水素ガスを
放出する。
A hydrogen storage alloy is used as a hydrogen supply source. Representative examples include TiH 2 , MgH 2 ,
Mg 2 NiH 4 and the like. Such a hydrogen storage alloy is 350
Hydrogen gas is released at a pressure of 1 atm or more in a temperature range of 6650 ° C.

【0013】したがって、本発明の燃料電池は上記温度
範囲で良好に動作させることができる。その熱は燃料の
一部を燃焼させるなどの方法により得ることができる。
電池の加熱に使われた熱は、温水製造、炊事、暖房など
様々な用途があるので、それらの熱利用と併せて考えれ
ば、本発明の電池は決して不経済ではない。また、この
電池は高温環境下で稼動可能であることから、金星や木
星など高温度の宇宙環境における電源として利用される
可能性がある。さらにこの電池を集合して巨大化すれ
ば、太陽炉や原子炉などの廃熱を利用する電気事業用の
発電プラントとして、消費電力のかなりの部分を負担す
ることもできる。
Therefore, the fuel cell of the present invention can be operated well in the above temperature range. The heat can be obtained by a method such as burning a part of the fuel.
Since the heat used for heating the battery has various uses such as hot water production, cooking, and heating, the battery of the present invention is not uneconomical in view of the heat utilization. In addition, since this battery can be operated in a high-temperature environment, it may be used as a power source in a high-temperature space environment such as Venus and Jupiter. Furthermore, if these batteries are assembled and enlarged to a large size, a considerable portion of power consumption can be borne as a power generation plant for an electric utility utilizing waste heat of a solar furnace or a nuclear reactor.

【0014】[0014]

【発明の実施の形態】以下本発明を実施例に基づいて説
明する。図1は本発明の燃料電池の模式的説明図であ
る。固体電解質1を、多孔性陽極2と多孔性陰極3とで
挾み、水素吸蔵合金4を多孔性負極2側に配置し、多孔
性正極3側は空気等の酸素供給源に接して配置する。図
1中、5は導線であり、6はCuガスケットである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a schematic illustration of the fuel cell of the present invention. A solid electrolyte 1 is sandwiched between a porous anode 2 and a porous cathode 3, a hydrogen storage alloy 4 is arranged on the porous negative electrode 2 side, and the porous positive electrode 3 side is arranged in contact with an oxygen supply source such as air. . In FIG. 1, reference numeral 5 denotes a conductor, and reference numeral 6 denotes a Cu gasket.

【0015】プロトン導電性酸化物薄膜である固体電解
質1としてはBaCe0.90.13- xよりなる組成のも
のをゾル・ゲル法を用いて作製した。ゾル・ゲル法は所
定の金属(Ba,Ce,Y)のアルコキシド(アルコー
ルの水酸基の水素を金属Mで置換した化合物)を目的と
する組成比になるように調合した混合液から加水分解に
より金属酸化物のゾル溶液を作製する。この溶液を濃縮
したのち多孔性のセラメット箔上に均一の厚さになるよ
うに塗布し、80〜150℃で乾燥し、ついで450〜
650℃で焼成しゾル化する。これを数回繰り返すこと
によって所定の厚さの固体電解質の薄膜が得られる。固
体電解質1の厚さは0.05〜0.3mmとした。
[0015] The solid electrolyte 1 is a proton conductive oxide thin films were prepared having composition comprised of BaCe 0.9 Y 0.1 O 3- x using a sol-gel method. The sol-gel method is a method in which an alkoxide of a predetermined metal (Ba, Ce, Y) (a compound in which hydrogen of a hydroxyl group of an alcohol is replaced with a metal M) is prepared from a mixed liquid prepared to have a desired composition ratio by hydrolysis. A sol solution of an oxide is prepared. After concentrating this solution, it is applied on a porous cermet foil so as to have a uniform thickness, dried at 80 to 150 ° C., and then dried at 450 to 150 ° C.
It is baked at 650 ° C to form a sol. By repeating this several times, a solid electrolyte thin film having a predetermined thickness can be obtained. The thickness of the solid electrolyte 1 was 0.05 to 0.3 mm.

【0016】多孔性負極2としては多孔性銀膜を用い、
多孔性正極3としてはNiとBaCeYO3のセラメッ
ト膜を用いた。このセラメット膜は、Niペースト(ア
レムコ・ボンド614)とBaCe0.90.13-x粉を
体積比が9:1の割合で混合し、これを固体電解質表面
上が0.025〜0.1mm位になるように塗布し、1
50℃で2時間焼成することにより製造した。
As the porous negative electrode 2, a porous silver film is used.
As the porous positive electrode 3, a cermet film of Ni and BaCeYO 3 was used. The Serametto film, Ni paste (Aremco bond 614) and BaCe 0.9 Y 0.1 O 3-x powder volume ratio is 9: 1 ratio, which a solid electrolyte on the surface 0.025~0.1mm And apply so that
It was manufactured by firing at 50 ° C. for 2 hours.

【0017】水素吸蔵合金4としては、TiH2を用い
た。この燃料電池において、水素吸蔵合金4から放出さ
れる水素は水素イオン(プロトン)の形で固体電解質1
の中に固溶するので負電極3に電子が取り残されるため
に、負電極3は電子の湧き出し場として働く。一方、固
体電解質1に固溶した水素イオン(プロトン)は拡散に
より正電極2へ移動して酸素イオンと結合して水蒸気に
なるが、酸素原子が水素イオンと結合して水蒸気が生成
されるためには正電極2において電子を捕獲して酸素イ
オンになる必要があり、このために正電極2は電子の吸
い込み場として働く。従って、負電極3から正電極2に
向かう電子に駆動力が働くことになり起電力が発生す
る。水素と酸素が化学反応して水を生成する場合に発生
する起電力は、この反応系の自由エネルギー変化から、
1.23Vであることが知られている。しかし、負荷が
存在する場合には電池内に電流が流れるために電解質の
電気抵抗及び電解質/電極界面の電気抵抗のために起電
力が低下する。従って電池の出力の上昇を図るためには
負荷による電圧の低下を出来るだけ軽減して電池から取
り出す電流値を出来るだけ大きくするための工夫が要求
されている。本発明は、起電力の高い燃料電池を作成す
ることを目的とするものであり、発明した燃料電池の性
能を評価するために、図1に示すような燃料電池を用い
て各種の試験を行った。
As the hydrogen storage alloy 4, TiH 2 was used. In this fuel cell, hydrogen released from the hydrogen storage alloy 4 is converted into hydrogen ions (protons) in the form of solid electrolyte 1.
Since the solid solution forms in the negative electrode 3, electrons are left behind on the negative electrode 3, so that the negative electrode 3 functions as a source of electrons. On the other hand, hydrogen ions (protons) dissolved in the solid electrolyte 1 move to the positive electrode 2 by diffusion and combine with oxygen ions to form water vapor, but oxygen atoms combine with hydrogen ions to generate water vapor. It is necessary to capture electrons at the positive electrode 2 to become oxygen ions, so that the positive electrode 2 functions as a field for absorbing electrons. Therefore, a driving force acts on the electrons traveling from the negative electrode 3 to the positive electrode 2, and an electromotive force is generated. The electromotive force generated when hydrogen and oxygen chemically react to produce water is calculated from the free energy change of this reaction system.
It is known to be 1.23V. However, when a load is present, a current flows in the battery, and the electromotive force is reduced due to the electric resistance of the electrolyte and the electric resistance at the electrolyte / electrode interface. Therefore, in order to increase the output of the battery, it is required to devise a device for reducing the voltage drop due to the load as much as possible and increasing the current value extracted from the battery as much as possible. An object of the present invention is to produce a fuel cell having a high electromotive force. In order to evaluate the performance of the invented fuel cell, various tests were performed using the fuel cell as shown in FIG. Was.

【0018】このような燃料電池を用いて各種の試験を
行った。図2には、加熱温度の違いによる起電力の差を
グラフとして示した。加熱により水素吸蔵合金から水素
が放出され、各温度に応じて長時間安定した起電力が得
られることが判った。
Various tests were performed using such a fuel cell. FIG. 2 is a graph showing a difference in electromotive force due to a difference in heating temperature. It has been found that hydrogen is released from the hydrogen storage alloy by heating, and a stable electromotive force can be obtained for a long time according to each temperature.

【0019】図3は電解質の厚さと放電特性の関係を示
すグラフである。本発明のゾル・ゲル法を使った厚さ
0.3mmのBaCe0.90.13-xよりなる電解質は
BaCeO3の焼結体よりなる電解質の0.9mm、
1.2mm、1.8mm厚さのものに比べて、化学組成
の変化によるプロトン伝導の寄与の減少のために開回路
電圧が減少するにも拘らず遜色のない放電特性を得るこ
とが判った。
FIG. 3 is a graph showing the relationship between electrolyte thickness and discharge characteristics. The electrolyte made of BaCe 0.9 Y 0.1 O 3-x having a thickness of 0.3 mm using the sol-gel method of the present invention is 0.9 mm of an electrolyte made of a sintered body of BaCeO 3 ,
Compared to the 1.2 mm and 1.8 mm thick ones, it was found that a discharge characteristic comparable to that of the one having a reduced open circuit voltage due to a decrease in the contribution of proton conduction due to a change in chemical composition was obtained. .

【0020】又、図4は多孔性白金電極を使用した場合
と、本発明の多孔性セラメット電極を用いた場合の放電
特性の比較を示す。電解質の厚さや電池の加熱温度など
実験条件は同じであっても700Vの端子電圧で電池か
ら取り出せた電流密度は約2倍大きい。
FIG. 4 shows a comparison of discharge characteristics between a case where a porous platinum electrode is used and a case where a porous cermet electrode of the present invention is used. Even under the same experimental conditions such as the thickness of the electrolyte and the heating temperature of the battery, the current density obtained from the battery at a terminal voltage of 700 V is about twice as large.

【0021】[0021]

【発明の効果】本発明の固体電解質は、導電率が高く、
燃料電池の電解質として使用すれば電圧低下を軽減する
ことができる。特に、ゾル・ゲル法を用いて作製したも
のは薄くて大面積のものを得ることができ、大電流を安
定して取出すことができる。
The solid electrolyte of the present invention has high conductivity,
When used as an electrolyte for a fuel cell, a voltage drop can be reduced. In particular, those manufactured using the sol-gel method can be thin and have a large area, and can stably output a large current.

【0022】水素供給源に水素吸蔵合金を用いることに
より、水素純化装置や水素ポンプが不要となり、システ
ムの構成を簡素化できる。電池は水素吸蔵合金から約1
気圧の水素ガスが放出される温度に保つと、理論より期
待される1.2Vの安定した電圧を発生し、負荷の下で
も数十時間安定かつ定常的に放電する。電池の出力(電
流密度)は、燃料水素の供給量を水素吸蔵合金の温度を
変えることにより、簡単に制御することができる。
By using a hydrogen storage alloy as a hydrogen supply source, a hydrogen purifier and a hydrogen pump are not required, and the configuration of the system can be simplified. Battery is about 1 from hydrogen storage alloy
When the pressure is maintained at a temperature at which hydrogen gas is released at atmospheric pressure, a stable voltage of 1.2 V, which is expected from theory, is generated, and stable and steady discharge is performed for several tens of hours even under a load. The output (current density) of the battery can be easily controlled by changing the fuel hydrogen supply amount by changing the temperature of the hydrogen storage alloy.

【0023】水素吸蔵合金から放出される水素ガスには
不純物ガスを含まないので、水素純化装置や水ポンプは
不要である。水素吸蔵合金から放出される水素を燃料に
利するので、水素爆発の危険がなく、安全に電池の運転
ができる。
Since hydrogen gas released from the hydrogen storage alloy does not contain impurity gas, a hydrogen purifier and a water pump are not required. Since hydrogen released from the hydrogen storage alloy is used as fuel, there is no danger of hydrogen explosion and the battery can be operated safely.

【0024】電極としてNiとプロトン導電性酸化物の
セラメット膜を使用することにより、従来使われている
多孔性の白金膜を負電極に用いる場合よりも、電池の放
電特性が改善される。
By using a cermet film of Ni and a proton conductive oxide as the electrode, the discharge characteristics of the battery are improved as compared with the case where a conventionally used porous platinum film is used for the negative electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池の模式的説明図である。FIG. 1 is a schematic explanatory view of a fuel cell of the present invention.

【図2】水素吸蔵合金の加熱温度の違いによる起電力の
差を示すグラフである。
FIG. 2 is a graph showing a difference in electromotive force due to a difference in heating temperature of a hydrogen storage alloy.

【図3】電解質の厚さと放電特性の関係を示すグラフで
ある。
FIG. 3 is a graph showing a relationship between electrolyte thickness and discharge characteristics.

【図4】多孔性白金電極と本発明の多孔性セラメット電
極との放電特性の比較を示すグラフである。
FIG. 4 is a graph showing a comparison of discharge characteristics between a porous platinum electrode and the porous cermet electrode of the present invention.

【図5】BaCe1-aa3-xの導電率の温度変化を示
すグラフである。
5 is a graph showing the temperature change in the conductivity of BaCe 1-a Y a O 3 -x.

【図6】典型的な燃料電池の構成を示す。FIG. 6 shows a configuration of a typical fuel cell.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バリウム(Ba)とセリウム(Ce)と
を基本成分とする三酸化バリウムセリウムにおいて、セ
リウムの一部をイットリウム(Y)で置き換えた組成を
有することを特徴とする固体電解質。
1. A solid electrolyte characterized in that barium cerium trioxide containing barium (Ba) and cerium (Ce) as basic components has a composition in which part of cerium is replaced by yttrium (Y).
【請求項2】 化学組成制御の可能なゾル、ゲル法で作
成したプロトン導電性酸化物薄膜である請求項1記載の
固体電解質。
2. The solid electrolyte according to claim 1, which is a proton conductive oxide thin film formed by a sol-gel method capable of controlling the chemical composition.
【請求項3】 三酸化バリウムセリウムにおいて、セリ
ウムの一部をイットリウムで置き換えた組成を有する固
体電解質をガス拡散電極同士又はガス拡散電極と水素吸
蔵合金電極とで挾持してなることを特徴とする燃料電
池。
3. A barium cerium trioxide wherein a solid electrolyte having a composition in which part of cerium is replaced by yttrium is sandwiched between gas diffusion electrodes or between a gas diffusion electrode and a hydrogen storage alloy electrode. Fuel cell.
【請求項4】 ガス拡散電極が多孔性のNiとBaCe
1-aa3-xよりなるセラメット膜である請求項3記載
の燃料電池。
4. The gas diffusion electrode is made of porous Ni and BaCe.
1-a Y a O 3- x fuel cell according to claim 3, wherein the Serametto film made of.
JP32987899A 1999-11-19 1999-11-19 Solid electrolyte and fuel cell using it Pending JP2001148251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32987899A JP2001148251A (en) 1999-11-19 1999-11-19 Solid electrolyte and fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32987899A JP2001148251A (en) 1999-11-19 1999-11-19 Solid electrolyte and fuel cell using it

Publications (1)

Publication Number Publication Date
JP2001148251A true JP2001148251A (en) 2001-05-29

Family

ID=18226265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32987899A Pending JP2001148251A (en) 1999-11-19 1999-11-19 Solid electrolyte and fuel cell using it

Country Status (1)

Country Link
JP (1) JP2001148251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168463A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Fuel cell system
JP2007066885A (en) * 2005-08-05 2007-03-15 Nissan Motor Co Ltd Proton conductive fuel cell and its manufacturing method and hydrogen sensor and its manufacturing method
JP2012234747A (en) * 2011-05-06 2012-11-29 Central Research Institute Of Electric Power Industry Composite membrane structure and fuel cell, and methods for manufacturing the same
KR20220035720A (en) * 2020-09-14 2022-03-22 명지대학교 산학협력단 Anode manufacturing method for fuel cell using impregnation method and anode for fuel cell manufactured using same
KR20220035719A (en) * 2020-09-14 2022-03-22 명지대학교 산학협력단 Anode manufacturing method for protonic ceramics fuel cells using impregnation method and anode for fuel cell manufactured using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168463A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Fuel cell system
JP2007066885A (en) * 2005-08-05 2007-03-15 Nissan Motor Co Ltd Proton conductive fuel cell and its manufacturing method and hydrogen sensor and its manufacturing method
JP2012234747A (en) * 2011-05-06 2012-11-29 Central Research Institute Of Electric Power Industry Composite membrane structure and fuel cell, and methods for manufacturing the same
KR20220035720A (en) * 2020-09-14 2022-03-22 명지대학교 산학협력단 Anode manufacturing method for fuel cell using impregnation method and anode for fuel cell manufactured using same
KR20220035719A (en) * 2020-09-14 2022-03-22 명지대학교 산학협력단 Anode manufacturing method for protonic ceramics fuel cells using impregnation method and anode for fuel cell manufactured using same
KR102458353B1 (en) 2020-09-14 2022-10-21 명지대학교 산학협력단 Anode manufacturing method for fuel cell using impregnation method and anode for fuel cell manufactured using same
KR102460596B1 (en) 2020-09-14 2022-10-27 명지대학교 산학협력단 Anode manufacturing method for protonic ceramics fuel cells using impregnation method and anode for fuel cell manufactured using same

Similar Documents

Publication Publication Date Title
Sumi et al. Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4
Yang et al. High performance solid oxide electrolysis cells using Pr0. 8Sr1. 2 (Co, Fe) 0.8 Nb0. 2O4+ δ–Co–Fe alloy hydrogen electrodes
Taniguchi et al. Operating properties of solid oxide fuel cells using BaCe0. 8Gd0. 2 O 3− α electrolyte
JP2002280015A (en) Single room type solid electrolyte fuel cell and its manufacturing method
US20070003818A1 (en) Tubular solid oxide fuel cell current collector
JP4574008B2 (en) Fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP5481611B2 (en) High temperature steam electrolysis cell
JP2009140693A (en) Solid oxide fuel cell
Ishihara et al. Decreased operating temperature of solid oxide fuel cells (SOFCs) by the application of LaGaO 3-based oxide as electrolyte
JP2001148251A (en) Solid electrolyte and fuel cell using it
Sivtsev et al. Microtubular solid oxide fuel cells with a two-layer LSCF/BSCFM5 cathode
JP3448242B2 (en) Solid electrolyte fuel cell
JPH10208757A (en) Fuel cell generating set
CN107251296B (en) Method for removing carbonaceous deposits in liquid hydrocarbon fueled solid oxide fuel cells and fuel cell system
Pound et al. The electrolysis of steam using uranium oxide electrodes
CN113430539A (en) Method for improving carbon dioxide conversion rate in electrolytic reduction of carbon dioxide by using electrolysis system
Corre et al. High temperature fuel cell technology
US3296030A (en) Fuel cell with stabilized zirconia electrolyte and nickel-silver alloy anode
JPH02822B2 (en)
Yano et al. Solid oxide fuel cell with anodes using proton conductor (Barium-Cerium/Yttrium oxide)
JPS63237363A (en) Methanol fuel cell
JPS60225363A (en) Fuel cell
WO2023157402A1 (en) Power generation element, power generation device, and power generation method
JP2001196083A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100129