JP2002280015A - Single room type solid electrolyte fuel cell and its manufacturing method - Google Patents

Single room type solid electrolyte fuel cell and its manufacturing method

Info

Publication number
JP2002280015A
JP2002280015A JP2001081450A JP2001081450A JP2002280015A JP 2002280015 A JP2002280015 A JP 2002280015A JP 2001081450 A JP2001081450 A JP 2001081450A JP 2001081450 A JP2001081450 A JP 2001081450A JP 2002280015 A JP2002280015 A JP 2002280015A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
negative electrode
chamber
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001081450A
Other languages
Japanese (ja)
Other versions
JP4900747B2 (en
Inventor
Takashi Hibino
高士 日比野
Shiro Kakimoto
志郎 柿元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Spark Plug Co Ltd
Priority to JP2001081450A priority Critical patent/JP4900747B2/en
Publication of JP2002280015A publication Critical patent/JP2002280015A/en
Application granted granted Critical
Publication of JP4900747B2 publication Critical patent/JP4900747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a single room type solid electrolyte fuel cell stably providing relatively high current at 600 deg.C or lower without thinning an electrolyte and to provide the manufacturing method of the single room type solid electrolyte fuel cell. SOLUTION: This single room type solid electrolyte fuel cell has a single room type cell structure in which a positive electrode 2 and a negative electrode 3 are installed on the same surface of an oxygen ion conductive solid electrolyte 1, the positive electrode 2 is strontium-doped Ln1-x Srx CoO3-δ (wherein Ln is a rare-earth element), and the negative electrode 3 contains nickel and a composite oxide mainly comprising cerium oxide. The single room type solid electrolyte fuel cell uses the oxygen ion conductive solid electrolyte of thickness having sufficient mechanical strength at of 600 deg.C or lower and can stably generate power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単室型と装置構造
が単純であるため、これまで必要とされてきたガスシー
ル材及びセパレーター材等を使用しなくても良い単室型
固体電解質型燃料電池に関する。更に詳しくは、電解質
を薄膜にする必要がなく、従来より低温度であっても安
定した大電流を出力することができる単室型固体電解質
型燃料電池に関する。
BACKGROUND OF THE INVENTION The present invention is a single-chamber type solid electrolyte type which does not require the use of a gas seal material and a separator material which have been required since the single-chamber type and the device structure are simple. Related to fuel cells. More specifically, the present invention relates to a single-chamber solid electrolyte fuel cell capable of outputting a stable and large current even at a lower temperature than before, without requiring a thin electrolyte.

【0002】[0002]

【従来の技術】従来の固体電解質型燃料電池は、ニッケ
ル−ジルコニアサーメット負極に水素やメタンなどの燃
料ガス、酸化マンガンランタン正極に空気を別々に供給
する二室型方式でなければ、発電することかできなかっ
た。このため、ガスシール材やセパレータ材を必要とし
て装置が複雑になるばかりか、これらとジルコニア電解
質、正極、負極間の固相反応により劣化を起こし、電池
の寿命が短かった。
2. Description of the Related Art A conventional solid oxide fuel cell is capable of generating power unless it is a two-chamber system in which a fuel gas such as hydrogen or methane is supplied to a nickel-zirconia cermet negative electrode and air is separately supplied to a manganese lanthanum positive electrode. I couldn't do it. For this reason, not only the device becomes complicated due to the necessity of a gas seal material and a separator material, but also a deterioration is caused by a solid phase reaction between the zirconia electrolyte, the positive electrode and the negative electrode, and the life of the battery is shortened.

【0003】また、この欠点を解決しようと、燃料ガス
と空気を予め混合し、このガス中で発電できる、単室型
方式の固体電解質型燃料電池が開発されたが、酸素イオ
ン伝導性固体電解質の電極にパラジウムもしくは白金、
金といった非実用的な電極部材を使用しなければならな
かった(特許2810977号公報参照)。
In order to solve this drawback, a single-chamber solid electrolyte fuel cell has been developed in which a fuel gas and air are mixed in advance and power can be generated in this gas. Palladium or platinum on the electrode of
An impractical electrode member such as gold had to be used (see Japanese Patent No. 2810977).

【0004】更に、単室型固体電解質型燃料電池セルの
発電開始温度は、起動までの時間を短くすることがで
き、起動と停止を繰り返したときの熱応力、及びそれに
伴う劣化を低減できるといったメリットがあるため、よ
り低い方が好ましい。また、メタンは一般の都市ガスの
主成分であることから、単室型固体電解質型燃料電池の
ガス原料として入手が容易で好適である。
Further, the power generation starting temperature of a single-chamber solid oxide fuel cell can shorten the time until startup, and can reduce the thermal stress at the time of repeated startup and shutdown and the accompanying deterioration. Lower values are preferred because of the merit. In addition, since methane is a main component of general city gas, it is easily available and suitable as a gas source for a single-chamber solid oxide fuel cell.

【0005】このため、近年は単室型固体電解質型燃料
電池を700℃以下という比較的低温で作動させる研究
が活発となっている。例えば、本発明者らがJournal of
TheElectrochemical Society,147(8)2888-2892(2000)
にて提案した単室型固体電解質型燃料電池は、La0.9
Sr0.1Ga0.8Mg0.22.85(以下、LSGMとす
る)やCe0.8Sm0.21.9(以下、SDCとする)を
電解質とし、Ni−SDCとSm0.8Sr0.5CoO3
±δを電極として用いることで、600℃以上であれば
メタンや低級炭化水素と、酸素とを混合したガス内で安
定した電流出力が得られることを示した。
[0005] For this reason, research on operating a single-chamber solid oxide fuel cell at a relatively low temperature of 700 ° C. or lower has recently been active. For example, the inventors of the Journal of
The Electrochemical Society, 147 (8) 2888-2892 (2000)
Proposed single-chamber solid electrolyte fuel cell at the, La 0.9
Ni-SDC and Sm 0.8 Sr 0.5 CoO 3 are used as electrolytes of Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 (hereinafter, referred to as LSGM) and Ce 0.8 Sm 0.2 O 1.9 (hereinafter, referred to as SDC).
By using ± δ as an electrode, it was shown that a stable current output can be obtained in a gas mixture of methane or a lower hydrocarbon and oxygen at 600 ° C. or higher.

【0006】[0006]

【発明が解決しようとする課題】しかし、上に示した単
室型固体電解質型燃料電池は、電解質の両面に電極を形
成するため、電解質を極力薄く形成しないと高い出力が
得られず、電解質材料の強度が弱い場合にはセル破損に
至る懸念があった。本発明は、このような問題点を解決
するものであり、電解質を薄く形成しなくても600℃
以下で比較的高い電流を安定して得ることができる単室
型固体電解質型燃料電池及びその製造方法を提供するこ
とを目的とする。
However, in the single-chamber solid electrolyte fuel cell described above, electrodes are formed on both sides of the electrolyte. Therefore, high output cannot be obtained unless the electrolyte is formed as thin as possible. When the strength of the material is low, there is a concern that the cell may be damaged. The present invention is intended to solve such a problem, and it is possible to achieve a temperature of 600 ° C. without forming a thin electrolyte.
An object of the present invention is to provide a single-chamber solid oxide fuel cell capable of stably obtaining a relatively high current and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明の単室型固体電解
質型燃料電池は、酸素イオン伝導性固体電解質の同一面
に正極及び負極を設けた単室型電池構造を持ち、炭化水
素と空気の混合ガスを導入することにより発電が可能な
単室型固体酸化物型燃料電池であって、該正極は、スト
ロンチウムをドープしたLn1-xSrxCoO3 ±δ(た
だし、Lnは希土類元素、0.2≦x≦0.8、δは酸
素欠損等の量であって、0≦δ<1)からなり、該負極
は、ニッケルと、酸化セリウムを主体とする複酸化物と
を含み、該酸素イオン伝導性固体電解質は、少なくとも
該正極及び該負極が接触する面における表面粗さRaが
2.0×10-6m以下(更に好ましくは1.6×10-6
m以下、特に好ましくは0.2×10-6m以下)である
ことを特徴とする。また、ここでいう表面粗さRaは、
JIS B0601でいう中心線平均粗さである。
A single-chamber solid electrolyte fuel cell according to the present invention has a single-chamber battery structure in which a positive electrode and a negative electrode are provided on the same surface of an oxygen ion conductive solid electrolyte, and comprises a hydrocarbon and air. Is a single-chamber solid oxide fuel cell capable of generating power by introducing a mixed gas of Ln 1-x Sr x CoO 3 ± δ doped with strontium (where Ln is a rare earth element). , 0.2 ≦ x ≦ 0.8, δ is the amount of oxygen deficiency or the like, and is comprised of 0 ≦ δ <1), and the negative electrode contains nickel and a complex oxide mainly composed of cerium oxide. The oxygen ion conductive solid electrolyte has a surface roughness Ra of 2.0 × 10 −6 m or less (more preferably 1.6 × 10 −6 m or less) at least on the surface where the positive electrode and the negative electrode are in contact.
m, particularly preferably 0.2 × 10 −6 m or less). The surface roughness Ra here is
It is the center line average roughness described in JIS B0601.

【0008】単室型固体酸化物型燃料電池の製造方法
は、酸素イオン伝導性固体電解質の同一面に正極及び負
極を設けた単室型電池構造を持ち、炭化水素と空気の混
合ガスを導入することにより発電が可能な単室型固体酸
化物型燃料電池であって、酸化ニッケル粉末と酸化セリ
ウムを主体とする複酸化物粉末とを、有機溶媒中で混合
粉砕してペースト状の負極電極材を調製し、これを上記
酸素イオン伝導性固体電解質の一方の面に焼き付けて負
極を形成し、次いで、Ln1-xSrxCoO3 ±δ(ただ
し、Lnは希土類元素、0.2≦x≦0.8、δは酸素
欠損等の量であって、0≦δ<1)を有機溶媒中で混合
粉砕してペースト状の正極電極材を調製し、これを該酸
素イオン伝導性固体電解質の同一面に焼き付けて正極を
形成することを特徴とする。
The method for manufacturing a single-chamber solid oxide fuel cell has a single-chamber cell structure in which a positive electrode and a negative electrode are provided on the same surface of an oxygen ion-conductive solid electrolyte, and a mixed gas of hydrocarbon and air is introduced. Is a single-chamber solid oxide fuel cell capable of generating power by mixing and pulverizing a nickel oxide powder and a double oxide powder mainly composed of cerium oxide in an organic solvent to form a paste-like negative electrode. A material is prepared and baked on one surface of the oxygen ion conductive solid electrolyte to form a negative electrode, and then Ln 1-x Sr x CoO 3 ± δ (where Ln is a rare earth element, 0.2 ≦ x ≦ 0.8, δ is the amount of oxygen deficiency or the like, and 0 ≦ δ <1) is mixed and pulverized in an organic solvent to prepare a paste-like positive electrode material. Characterized by baking on the same surface of the electrolyte to form a positive electrode To.

【0009】酸素イオン伝導性固体電解質には、安定化
ジルコニアなど一般に高い酸素イオン伝導度を示す酸素
イオン伝導性固体電解質が使用できるが、低温域でも高
い発電性能を得るためには、低温域でもより高いイオン
伝導度を示す酸素イオン伝導性固体電解質が好ましい。
この例として、Ce1-yLny2- δ〔希土類元素(Ln
はSm、Gd又はY)、0.1≦y≦0.3、δは酸素
欠損量であって、0≦δ<1〕又はLa1-zSrzGa
1-wMgw3- δ(0.1≦w≦0.3、0.1≦z≦
0.3、δは酸素欠損量であって、0≦δ<1)を挙げ
ることができる。更に、これらの具体例として、サマリ
ウムをドープした酸化セリウム(例えばSDC:Ce
0.8Sm0.2 1.9)、及びLaサイトにSrをドープ
し、GaサイトにMgをドープした酸化ランタン・ガリ
ウム(例えばLSGM:La0.9Sr0.1Ga0.8Mg0.2
2.85)を挙げることができる。
The oxygen ion conductive solid electrolyte has a stabilization
Oxygen such as zirconia, which generally has high oxygen ion conductivity
Ion conductive solid electrolyte can be used, but high
In order to obtain high power generation performance, higher ion
Oxygen ion conductive solid electrolytes exhibiting conductivity are preferred.
As an example of this, Ce1-yLnyO2- δ[Rare earth elements (Ln
Is Sm, Gd or Y), 0.1 ≦ y ≦ 0.3, δ is oxygen
The amount of deficiency, 0 ≦ δ <1] or La1-zSrzGa
1-wMgwO3- δ(0.1 ≦ w ≦ 0.3, 0.1 ≦ z ≦
0.3 and δ are oxygen deficiency amounts, and 0 ≦ δ <1)
Can be Further, as specific examples of these, the summary
-Doped cerium oxide (eg, SDC: Ce
0.8Sm0.2O 1.9) And La site doped with Sr
Lanthanum oxide gallium doped with Mg at the Ga site
(For example, LSGM: La0.9Sr0.1Ga0.8Mg0.2
O2.85).

【0010】また、酸素イオン伝導性固体電解質の同一
面に両電極を配置した場合には、電極と接触した固体の
表面近傍が酸素イオンの伝導パスとなる。このとき表面
粗度によって伝導度合が大きく変化する。酸素イオン伝
導性固体電解質の少なくとも各電極が接触する面の表面
粗さRaを2.0×10-6m以下にすることで、酸素イ
オンの伝導パスが十分に短くなる。また、電極との接触
抵抗が小さくなるため、高い出力が得られるようにな
る。
When both electrodes are arranged on the same surface of the oxygen ion conductive solid electrolyte, the vicinity of the surface of the solid in contact with the electrodes becomes an oxygen ion conduction path. At this time, the conductivity greatly changes depending on the surface roughness. By setting the surface roughness Ra of at least the surface of the oxygen ion conductive solid electrolyte to be in contact with each electrode to 2.0 × 10 −6 m or less, the conduction path of oxygen ions becomes sufficiently short. Further, since the contact resistance with the electrode is reduced, a high output can be obtained.

【0011】更に、上記正極及び上記負極の間隙が10
0μm〜3mmとすることができる。電極の間隙の大小
によって電気的抵抗値が左右され、小さくするほど電気
的抵抗値が抵抗が低くなり高い発電性能が得られる。し
かし、電極の間隙を小さくしすぎると短絡等の不都合が
著しく起きやすくなるため、上記範囲の間隙とすること
で、短絡等が起きにくいものとしつつ、低い電気的抵抗
値となるようにした。
Further, the gap between the positive electrode and the negative electrode is 10
It can be 0 μm to 3 mm. The electrical resistance depends on the size of the gap between the electrodes. The smaller the gap, the lower the electrical resistance and the higher the power generation performance. However, if the gap between the electrodes is too small, inconveniences such as short-circuiting are likely to occur significantly. Therefore, by setting the gap in the above range, short-circuiting and the like are less likely to occur, and a low electric resistance value is obtained.

【0012】本単室型固体電解質型燃料電池の上記負極
は、ニッケルと、酸化セリウムを主体とする複酸化物と
を含むものであればよく、酸化セリウムを主体とする複
酸化物として、Ce1-yLny2- δ(LnはSm、Gd
又はY、0.1≦y≦0.3、δは酸素欠損量であっ
て、0≦δ<1、更に具体的にはCe0.8Sm
0.21.9)を例示できる。また負極はパラジウム、白
金、ロジウム、イリジウム及びルテニウムから選ばれる
少なくとも一種を含むものとすることができる。これら
の金属を少量添加することで、ニッケル系電極である負
極の触媒作用に影響を及ぼし、高い発電性能を得ること
ができる。更に、上記金属のうちではパラジウムが最も
好ましい。また、上記パラジウム、白金、ロジウム、イ
リジウム及びルテニウムから選ばれる少なくとも一種の
含有比率は、1〜10質量%(更に好ましくは、1〜7
質量%、特に好ましくは、1〜5質量%)が好ましい。
上記正極に用いるLn1-xSrxCoO3 ±δ中のLnで
表す希土類元素は、ランタン(La)又はサマリウム
(Sm)が好ましい。また、これらの例として、La
0.6Sr0.4CoO3 ±δとSm0.5Sr0.5CoO3 ±δ
挙げることができる。
The negative electrode of the single-chamber solid oxide fuel cell may be any one containing nickel and a composite oxide mainly composed of cerium oxide. 1-y Ln y O 2- δ (Ln is Sm, Gd
Or Y, 0.1 ≦ y ≦ 0.3, δ is the amount of oxygen deficiency, and 0 ≦ δ <1, more specifically Ce 0.8 Sm
0.2 O 1.9 ). Further, the negative electrode may include at least one selected from palladium, platinum, rhodium, iridium, and ruthenium. By adding a small amount of these metals, the catalytic action of the negative electrode, which is a nickel-based electrode, is affected, and high power generation performance can be obtained. Further, among the above metals, palladium is most preferred. Further, the content ratio of at least one selected from the above-mentioned palladium, platinum, rhodium, iridium and ruthenium is 1 to 10% by mass (more preferably 1 to 7% by mass).
% By mass, particularly preferably 1 to 5% by mass).
The rare earth element represented by Ln in Ln 1-x Sr x CoO 3 ± δ used for the positive electrode is preferably lanthanum (La) or samarium (Sm). As an example of these, La
0.6 Sr 0.4 CoO 3 ± δ and Sm 0.5 Sr 0.5 CoO 3 ± δ .

【0013】〔作用〕本発明の単室型固体電解質型燃料
電池は、図1及び図2に示すように酸素イオン伝導性固
体電解質1の同一面に、正極2及び負極3を設けた構造
であり、炭化水素と空気の混合ガス中で発電が可能な単
室型燃料電池である。このような単室型燃料電池におい
ては、発電可能な温度がより低いほど、短時間で起動で
きるとともに、起動と停止を繰り返したときの熱応力を
低減できるといったメリットがあるが、固体電解質の両
面に電極を配した構造では、低温で高出力を得るには、
酸素イオン伝導性固体電解質を薄く形成する必要があ
る。
[Operation] The single-chamber solid electrolyte fuel cell of the present invention has a structure in which a positive electrode 2 and a negative electrode 3 are provided on the same surface of an oxygen ion conductive solid electrolyte 1 as shown in FIGS. This is a single-chamber fuel cell that can generate power in a mixed gas of hydrocarbon and air. Such a single-chamber fuel cell has the merit that the lower the temperature at which power can be generated, the shorter the start-up time and the lower the thermal stress when the start and stop are repeated. In order to obtain high output at low temperature,
It is necessary to form the oxygen ion conductive solid electrolyte thin.

【0014】このため本発明では、酸素イオン伝導性固
体電解質の同一面に両電極を近接して配置することで、
酸素イオン伝導性固体電解質を薄くすることはなく、低
温でも高出力を得ることができた。このため、酸素イオ
ン伝導性固体電解質の厚みを任意に選択可能となり、十
分な機械的強度を容易に確保することができる。
For this reason, in the present invention, by disposing both electrodes close to the same surface of the oxygen ion conductive solid electrolyte,
The oxygen ion conductive solid electrolyte was not thinned, and high output could be obtained even at low temperatures. Therefore, the thickness of the oxygen ion conductive solid electrolyte can be arbitrarily selected, and sufficient mechanical strength can be easily secured.

【0015】また、双方の電極材料の選定を行い、スト
ロンチウムをドープしたLn1-xSrxCoO3 ±δの正
極と、ニッケルと、酸化セリウムを主体とする複酸化物
とを含む負極を用いることで低温で高い出力を得ること
ができた。
Further, both electrode materials are selected, and a strontium-doped Ln 1-x Sr x CoO 3 ± δ positive electrode and a negative electrode containing nickel and a complex oxide mainly composed of cerium oxide are used. As a result, a high output could be obtained at a low temperature.

【0016】単室型固体電解質型燃料電池において、よ
り低温域(600℃以下)で安定に発電させるために
は、低温域でもニッケル系電極上で部分酸化反応(例え
ば2CH4+O2→2H2+2CO)を効率よく生成させ
る必要がある。この時、ニッケルに酸化セリウムを主体
とする複酸化物を添加した電極に、パラジウム、白金、
ロジウム、イリジウムから選ばれる少なくとも一種を少
量添加すると、上記の部分酸化反応が効率よく進行し安
定な発電が可能になる。このパラジウム等の添加は一種
の触媒作用と考えられる。
In a single-chamber solid electrolyte fuel cell, in order to stably generate power in a lower temperature range (600 ° C. or lower), a partial oxidation reaction (for example, 2CH 4 + O 2 → 2H 2) on a nickel-based electrode even in a low temperature range. + 2CO) must be generated efficiently. At this time, palladium, platinum, and nickel were added to an electrode obtained by adding a composite oxide mainly composed of cerium oxide to nickel.
When a small amount of at least one selected from rhodium and iridium is added, the above-described partial oxidation reaction proceeds efficiently and stable power generation becomes possible. This addition of palladium or the like is considered to be a kind of catalytic action.

【0017】[0017]

【発明の実施の形態】以下、図1〜4を用いて本発明の
単室型固体電解質型燃料電池を実施例により更に詳しく
説明する。 1.単室型固体電解質型燃料電池の構成 本発明の単室型固体電解質型燃料電池は、図1及び図2
に示すように、円盤状の酸素イオン伝導性固体電解質1
の同一面に、それぞれ正極2及び負極3を備える構成で
ある。また、本単室型固体電解質型燃料電池は、アルミ
ナ管4中に収め、このアルミナ管4にメタンと空気の混
合気体を流通させた状態で使用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a single-chamber solid electrolyte fuel cell according to the present invention will be described in more detail with reference to FIGS. 1. Configuration of Single Chamber Solid Electrolyte Fuel Cell The single chamber solid electrolyte fuel cell of the present invention is shown in FIGS.
As shown in the figure, a disk-shaped oxygen ion conductive solid electrolyte 1
Are provided with a positive electrode 2 and a negative electrode 3 respectively on the same surface. The single-chamber solid electrolyte fuel cell is housed in an alumina tube 4 and used with a mixed gas of methane and air flowing through the alumina tube 4.

【0018】酸素イオン伝導性固体電解質1は、La
1-zSrzGa1-wMgw3- δやCe1- yLny2- δが使
用できるが、本実施例ではLSGM又はSDCを用い
た。また、正極2は、ストロンチウムをドープしたLn
1-xSrxCoO3 ±δ(Ln:希土類元素、特にLa又
はSm)であり、Sm0.5Sr0.5CoO3 ±δを用い
た。更に、負極3は、ニッケルと、サマリウムをドープ
した酸化セリウムの混合物(Ce1-ySmy2- δ)とに
パラジウムを1質量%添加した電極である。サマリウム
をドープした酸化セリウムの混合物は、SDC(Ce
0.8Sm0.21.9)を用いた。また、NiとSDCの混
合比は重量比で7:3とした。また、正極2及び負極3
は図2に示すように、所定の空隙ができるよう、間隔を
空けて設けられている。
The oxygen ion conductive solid electrolyte 1 is La
Although 1-z Sr z Ga 1- w Mg w O 3- δ and Ce 1- y Ln y O 2- δ can be used, in the present embodiment using LSGM or SDC. The positive electrode 2 is made of Ln doped with strontium.
1-x Sr x CoO 3 ± δ (Ln: rare earth element, especially La or Sm), and Sm 0.5 Sr 0.5 CoO 3 ± δ was used. Furthermore, the negative electrode 3 are nickel and mixtures (Ce 1-y Sm y O 2- δ) and the electrode with the addition of palladium 1% by weight in the cerium oxide doped with samarium. The mixture of samarium-doped cerium oxide is SDC (Ce
0.8 Sm 0.2 O 1.9 ). The mixing ratio of Ni and SDC was 7: 3 by weight. The positive electrode 2 and the negative electrode 3
As shown in FIG. 2, are provided at intervals so as to form a predetermined gap.

【0019】2.単室型固体電解質型燃料電池の作製 本単室型固体電解質型燃料電池を次に示すように作製し
た。始めは、酸素イオン伝導性固体電解質1の表面に負
極3を形成する。酸化ニッケル粉末とSDC粉末を所定
量秤量し、適当な有機溶媒を用いて混合粉砕した後、所
定量の酸化パラジウム粉末を加えて混合粉砕してペース
ト状の電極材を調製する。これを酸素イオン伝導性固体
電解質1上にスクリーン印刷し、1400℃にて焼き付
け処理を行った。
2. Production of Single-chamber Solid Electrolyte Fuel Cell This single-chamber solid electrolyte fuel cell was produced as follows. First, the negative electrode 3 is formed on the surface of the oxygen ion conductive solid electrolyte 1. A predetermined amount of nickel oxide powder and SDC powder are weighed, mixed and pulverized using an appropriate organic solvent, and then a predetermined amount of palladium oxide powder is added and mixed and pulverized to prepare a paste-like electrode material. This was screen-printed on the oxygen ion conductive solid electrolyte 1 and baked at 1400 ° C.

【0020】次いで、酸素イオン伝導性固体電解質1の
負極3が形成された面の同じ側に負極との間に所定の間
隙を空けて正極2を形成する。Ln1-xSrxCoO3
±δ(ここでは、Sm0.5Sr0.5CoO3 ±δを使用し
た。)を有機溶媒に溶解させて粉砕してペースト状の電
極材を調製する。これを酸素イオン伝導性固体電解質1
の負極3と反対側の面にスクリーン印刷し、900℃に
て焼き付け処理を行った。
Next, a positive electrode 2 is formed on the same side of the surface of the oxygen ion conductive solid electrolyte 1 on which the negative electrode 3 is formed with a predetermined gap between the negative electrode and the negative electrode. Ln 1-x Sr x CoO 3
± δ (here, Sm 0.5 Sr 0.5 CoO 3 ± δ was used) was dissolved in an organic solvent and pulverized to prepare a paste-like electrode material. This is converted to oxygen ion conductive solid electrolyte 1
Was screen-printed on the side opposite to the negative electrode 3 and baked at 900 ° C.

【0021】また、必要に応じて還元処理を行ってもよ
いし、行わずに使用することができる。還元処理を行う
場合、各電極2、3が形成された酸素イオン伝導性固体
電解質1を450〜550℃の温度でH2ガスを導入
し、負極3の酸化ニッケル及び酸化パラジウムの還元処
理を行う。また、還元処理を行わない場合であっても、
流通する混合ガスがCH4+1/2O2→2H2+COの
反応を起こし、還元雰囲気となり酸化ニッケル及び酸化
パラジウムの還元が起き、出力を得ることができるよう
になる。このように作製された単室型固体電解質型燃料
電池は、メタンと酸素の混合ガスを導入することで、正
負の電極から電力出力を得ることができる。
Further, if necessary, a reduction treatment may be performed, or the reduction treatment may be performed without the reduction treatment. When performing the reduction treatment, H 2 gas is introduced into the oxygen ion conductive solid electrolyte 1 on which the electrodes 2 and 3 are formed at a temperature of 450 to 550 ° C., and the nickel oxide and the palladium oxide of the negative electrode 3 are reduced. . Also, even if the reduction process is not performed,
The flowing mixed gas causes a reaction of CH 4 + / O 2 → 2H 2 + CO, and the atmosphere becomes a reducing atmosphere, whereby nickel oxide and palladium oxide are reduced, and an output can be obtained. In the single-chamber solid electrolyte fuel cell manufactured as described above, a power output can be obtained from the positive and negative electrodes by introducing a mixed gas of methane and oxygen.

【0022】3.単室型固体電解質型燃料電池の評価 (1)電解質の表面粗度の検討 酸素イオン伝導性固体電解質1としてSDCを用いた単
室型固体電解質型燃料電池において、電極形成面の面粗
度に応じた出力特性の変化を調べた。測定に用いた単室
型固体電解質型燃料電池の酸素イオン伝導性固体電解質
1は、□7×10-3m、厚さ0.8×10-3mであり、
表面の研磨によって表面粗さRaを、0.06×1
-6、0.2×10-6、0.8×10-6、及び1.6×
10-6mの4種類を用意した。
3. Evaluation of single-chamber solid electrolyte fuel cell (1) Examination of surface roughness of electrolyte In a single-chamber solid electrolyte fuel cell using SDC as the oxygen ion-conductive solid electrolyte 1, the surface roughness of the electrode formation surface was reduced. The corresponding change in output characteristics was examined. The oxygen ion conductive solid electrolyte 1 of the single-chamber solid electrolyte fuel cell used for the measurement was □ 7 × 10 −3 m, thickness 0.8 × 10 −3 m,
The surface roughness Ra is reduced to 0.06 × 1 by polishing the surface.
0 -6 , 0.2 × 10 -6 , 0.8 × 10 -6 , and 1.6 ×
Four types of 10 -6 m were prepared.

【0023】また、負極3は幅1×10-3m、長さ5×
10-3mのNi−SDC(7:3)である。正極2は、
幅1×10-3m、長さ5×10-3mのSm0.5Sr0.5
oO 3 ±δである。更に、これら電極の間隙は1mmで
ある。また、使用した混合ガスの組成をエタン:酸素=
1:1とし、600℃にて発電試験を行った。
The negative electrode 3 has a width of 1 × 10-3m, length 5 ×
10-3m-Ni-SDC (7: 3). Positive electrode 2
Width 1 × 10-3m, length 5 × 10-3Sm of m0.5Sr0.5C
oO Three ± δIt is. Further, the gap between these electrodes is 1 mm.
is there. Also, the composition of the mixed gas used was ethane: oxygen =
A power generation test was performed at 600 ° C. at a ratio of 1: 1.

【0024】図3に示すように、いずれの表面粗度であ
っても、最大700W/m2以上と大きな出力が得られ
ることがわかった。また、表面粗度Raが小さくなるほ
ど出力が大きくなり、Raが0.2×10-6mでは約7
50W/m2、0.06×10-6mでは約900W/m2
となった。このことから、表面粗さRaが2.0×10
-6m以下であれば最大600W/m2以上の出力が望め
られ、十分な出力が得られることがわかる。
As shown in FIG. 3, it was found that a maximum output of 700 W / m 2 or more was obtained at any surface roughness. Further, the output increases as the surface roughness Ra decreases, and when the surface roughness Ra is 0.2 × 10 −6 m, about 7
50W / m 2, 0.06 × in 10 -6 m to about 900 W / m 2
It became. From this, the surface roughness Ra is 2.0 × 10
If -6 m or less up to 600W / m 2 or more output can be expected, it can be seen that a sufficient output can be obtained.

【0025】(2)電極の間隙の検討 正極2と負極3の間隙による出力の検討を行った。酸素
イオン伝導性固体電解質1は、□7×10-3m、厚さ
0.8×10-3m、表面粗さRa0.06×10 -6mと
した。また、負極3は幅0.5×10-3m、長さ5×1
-3mのNi−SDC(7:3)である。正極2は、幅
0.5×10-3m、長さ5×10-3mのSm0.5Sr0 .5
CoO3 ±δである。更に、これら電極の間隙は、0.
5×10-3、1.0×10-3、1.5×10-3m、及び
3.0×10-3mとした。また、使用した混合ガスの組
成をエタン:酸素=1:1とし、600℃にて発電試験
を行った。
(2) Examination of the gap between the electrodes The output by the gap between the positive electrode 2 and the negative electrode 3 was examined. oxygen
The ion conductive solid electrolyte 1 is □ 7 × 10-3m, thickness
0.8 × 10-3m, surface roughness Ra 0.06 × 10 -6m and
did. The negative electrode 3 has a width of 0.5 × 10-3m, length 5 × 1
0-3m-Ni-SDC (7: 3). Positive electrode 2 has a width
0.5 × 10-3m, length 5 × 10-3Sm of m0.5Sr0 .Five
CoOThree ± δIt is. Further, the gap between these electrodes is 0.1 mm.
5 × 10-3, 1.0 × 10-3, 1.5 × 10-3m, and
3.0 × 10-3m. Also, the set of mixed gas used
Power generation test at 600 ° C with ethane: oxygen = 1: 1
Was done.

【0026】上記条件にて試験を行った結果を図4に示
す。図4に示すように、電極の間隔が3.0×10-3
では約500W/m2、0.5×10-3mでは約195
0W/m2と、狭いほど高出力となった。また、間隔が
3.0×10-3m以下であれば約500W/m2以上の
十分な出力が得られることがわかった。
FIG. 4 shows the results of the test performed under the above conditions. As shown in FIG. 4, the distance between the electrodes is 3.0 × 10 −3 m.
About 500 W / m 2 and about 195 at 0.5 × 10 −3 m.
The output was higher as the width was as narrow as 0 W / m 2 . In addition, it was found that a sufficient output of about 500 W / m 2 or more could be obtained if the distance was 3.0 × 10 −3 m or less.

【0027】(3)パラジウム添加量の検討 負極のパラジウムの添加量を様々に変化させた単室型固
体電解質型燃料電池における、開回路電圧と最大出力密
度を求めた結果を表1に示す。使用した単室型固体電解
質型燃料電池は、酸素イオン伝導性固体電解質1として
SDCを用い、□7×10-3m、厚さ0.8×10
-3m、表面粗さRa0.06×10-6mとした。また、
負極3は幅0.5×10-3m、長さ5×10-3mであ
り、Pdを表1に示す割合で添加したNi−SDC
(7:3)である。正極2は、幅0.5×10 -3m、長
さ5×10-3mのSm0.5Sr0.5CoO3 ±δである。
更に、これら電極の間隙は1mmである。また、使用し
た混合ガスの組成をエタン:酸素=2:1とし、550
℃にて発電試験を行った。
(3) Investigation of the amount of palladium added The single-chamber type solid with various amounts of palladium added to the negative electrode was varied.
Open-circuit voltage and maximum output density of solid electrolyte fuel cells
Table 1 shows the results obtained for the degrees. Single chamber type solid electrolysis used
Quality fuel cell is used as an oxygen ion conductive solid electrolyte 1.
□ 7 × 10 using SDC-3m, thickness 0.8 × 10
-3m, surface roughness Ra 0.06 × 10-6m. Also,
The negative electrode 3 has a width of 0.5 × 10-3m, length 5 × 10-3m
In addition, Ni-SDC to which Pd was added at a ratio shown in Table 1
(7: 3). The positive electrode 2 has a width of 0.5 × 10 -3m, long
5 × 10-3Sm of m0.5Sr0.5CoOThree ± δIt is.
Further, the gap between these electrodes is 1 mm. Also use
The composition of the mixed gas was ethane: oxygen = 2: 1, and 550
A power generation test was performed at ℃.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示すように、Pd添加量が1〜10
質量%の範囲で、1050W/m2以上の高い発電性能
を得ることができた。また、1〜7質量%の範囲では1
080W/m2以上、1〜5質量%の範囲では1100
W/m2以上の特に高い発電性能を得ることができた。
更に、パラジウムをロジウム、白金、ルテニウム及びイ
リジウムに置き換えても、1〜10質量%の範囲で高い
発電性能を得ることができる。
As shown in Table 1, the amount of Pd added was 1 to 10
High power generation performance of 1050 W / m 2 or more could be obtained in the range of mass%. In the range of 1 to 7% by mass, 1
080 W / m 2 or more, 1100 in the range of 1 to 5% by mass.
Particularly high power generation performance of W / m 2 or more could be obtained.
Furthermore, even if palladium is replaced with rhodium, platinum, ruthenium and iridium, high power generation performance can be obtained in the range of 1 to 10% by mass.

【0030】[0030]

【発明の効果】本発明の単室型固体電解質型燃料電池に
よれば、600℃以下の温度域でも十分な機械的強度を
備えた厚みの酸素イオン伝導性固体電解質を使用して安
定した発電を行うことができる。また、十分な機械的強
度を備えるため、より信頼性の高い電池が構成できる。
このことから、電池本体及び周辺部材の長寿命化と低コ
スト化などが可能になり、高信頼性の燃料電池を容易に
実用化することができる。
According to the single-chamber solid electrolyte fuel cell of the present invention, stable power generation can be achieved using an oxygen ion conductive solid electrolyte having sufficient mechanical strength even at a temperature range of 600 ° C. or less. It can be performed. In addition, since the battery has sufficient mechanical strength, a highly reliable battery can be formed.
This makes it possible to extend the life of the cell body and the peripheral members, reduce the cost, and the like, and easily commercialize a highly reliable fuel cell.

【0031】更に、電極の間隙を所定の範囲とすること
で、高い出力を備えつつ、短絡等を抑制することができ
る。また、負極にパラジウム等の金属をドープすること
で、600℃以下の温度域でも安定した発電を行うこと
ができる。
Furthermore, by setting the gap between the electrodes to a predetermined range, short-circuiting and the like can be suppressed while providing a high output. Also, by doping the negative electrode with a metal such as palladium, stable power generation can be performed even in a temperature range of 600 ° C. or lower.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本単室型固体電解質型燃料電池の説明をする
ための模式図である。
FIG. 1 is a schematic diagram for explaining the present single-chamber solid oxide fuel cell.

【図2】 本単室型固体電解質型燃料電池の説明をする
ための模式図である。
FIG. 2 is a schematic diagram for describing the present single-chamber solid oxide fuel cell.

【図3】 酸素イオン伝導性固体電解質の表面粗度によ
る本単室型固体電解質型燃料電池の出力変化を説明する
ためのグラフである。
FIG. 3 is a graph for explaining a change in output of the single-chamber solid electrolyte fuel cell according to the surface roughness of the oxygen ion conductive solid electrolyte.

【図4】 正極と負極の間隙による本単室型固体電解質
型燃料電池の出力変化を説明するためのグラフである。
FIG. 4 is a graph for explaining an output change of the present single-chamber solid oxide fuel cell due to a gap between a positive electrode and a negative electrode.

【符号の説明】[Explanation of symbols]

1;酸素イオン伝導性固体電解質、2;正極、3;負
極、4;アルミナ管。
1; oxygen ion conductive solid electrolyte; 2; positive electrode; 3; negative electrode; 4; alumina tube.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS01 BB01 BB11 BB12 EE03 EE13 HH03 5H026 AA06 BB01 BB06 BB08 EE02 EE13 HH00 HH03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H018 AA06 AS01 BB01 BB11 BB12 EE03 EE13 HH03 5H026 AA06 BB01 BB06 BB08 EE02 EE13 HH00 HH03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン伝導性固体電解質の同一面に
正極及び負極を設けた単室型電池構造を持ち、炭化水素
と空気の混合ガスを導入することにより発電が可能な単
室型固体酸化物型燃料電池であって、 該正極は、Ln1-xSrxCoO3 ±δ(ただし、Lnは
希土類元素、0.2≦x≦0.8、0≦δ<1)からな
り、 該負極は、ニッケルと、酸化セリウムを主体とする複酸
化物とを含み、 該酸素イオン伝導性固体電解質は、少なくとも該正極及
び該負極が接触する面における表面粗さRaが2.0×
10-6m以下であることを特徴とする単室型固体電解質
型燃料電池。
1. A single-chamber solid oxide structure having a single-chamber battery structure in which a positive electrode and a negative electrode are provided on the same surface of an oxygen ion-conductive solid electrolyte, and capable of generating power by introducing a mixed gas of hydrocarbon and air. Wherein the positive electrode is made of Ln 1-x Sr x CoO 3 ± δ (where Ln is a rare earth element, 0.2 ≦ x ≦ 0.8, 0 ≦ δ <1), The negative electrode contains nickel and a composite oxide mainly composed of cerium oxide, and the oxygen ion conductive solid electrolyte has a surface roughness Ra of at least 2.0 × on a surface where the positive electrode and the negative electrode are in contact.
A single-chamber solid oxide fuel cell having a size of 10 -6 m or less.
【請求項2】 上記正極及び上記負極の間隙が100×
10-6〜3×10-3mである請求項1に記載の単室型固
体電解質型燃料電池。
2. The gap between the positive electrode and the negative electrode is 100 ×
The single-chamber solid oxide fuel cell according to claim 1, wherein the thickness is 10 −6 to 3 × 10 −3 m.
【請求項3】 上記負極は、パラジウム、白金、ロジウ
ム、イリジウム及びルテニウムから選ばれる少なくとも
一種を含む請求項1又は請求項2に記載の単室型固体電
解質型燃料電池。
3. The single-chamber solid electrolyte fuel cell according to claim 1, wherein the negative electrode includes at least one selected from palladium, platinum, rhodium, iridium, and ruthenium.
【請求項4】 上記負極における上記パラジウム、白
金、ロジウム、イリジウム及びルテニウムから選ばれる
少なくとも一種の含有比率は、1〜10質量%である請
求項3に記載の単室型固体電解質型燃料電池。
4. The single-chamber solid electrolyte fuel cell according to claim 3, wherein the content ratio of at least one selected from the group consisting of palladium, platinum, rhodium, iridium and ruthenium in the negative electrode is 1 to 10% by mass.
【請求項5】 酸素イオン伝導性固体電解質の同一面に
正極及び負極を設けた単室型電池構造を持ち、炭化水素
と空気の混合ガスを導入することにより発電が可能な単
室型固体酸化物型燃料電池の製造方法であって、 酸化ニッケル粉末と酸化セリウムを主体とする複酸化物
粉末とを、有機溶媒中で混合粉砕してペースト状の負極
電極材を調製し、これを上記酸素イオン伝導性固体電解
質の一方の面に焼き付けて負極を形成し、次いで、Ln
1-xSrxCoO 3 ±δ(ただし、Lnは希土類元素、
0.2≦x≦0.8、0≦δ<1)を有機溶媒中で混合
粉砕してペースト状の正極電極材を調製し、これを該酸
素イオン伝導性固体電解質の同一面に焼き付けて正極を
形成することを特徴とする単室型固体酸化物型燃料電池
の製造方法。
5. The same surface of an oxygen ion conductive solid electrolyte
It has a single-chamber battery structure with a positive electrode and a negative electrode,
Unit that can generate power by introducing a mixed gas of
A method for producing a chamber-type solid oxide fuel cell, comprising: a composite oxide mainly composed of nickel oxide powder and cerium oxide.
Powder and mixed in an organic solvent
An electrode material is prepared, and this is
Baking on one side of the material to form a negative electrode,
1-xSrxCoO Three ± δ(Where Ln is a rare earth element,
0.2 ≦ x ≦ 0.8, 0 ≦ δ <1) mixed in an organic solvent
This is crushed to prepare a paste-like positive electrode material, which is then acidified.
Baking on the same side of the solid ion conductive solid electrolyte
Forming a single-chamber solid oxide fuel cell
Manufacturing method.
JP2001081450A 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same Expired - Lifetime JP4900747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081450A JP4900747B2 (en) 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081450A JP4900747B2 (en) 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002280015A true JP2002280015A (en) 2002-09-27
JP4900747B2 JP4900747B2 (en) 2012-03-21

Family

ID=18937557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081450A Expired - Lifetime JP4900747B2 (en) 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4900747B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001970A1 (en) * 2003-06-26 2005-01-06 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP2005038848A (en) * 2003-06-26 2005-02-10 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2005149815A (en) * 2003-11-12 2005-06-09 Dainippon Printing Co Ltd Non-diaphragm type solid oxide fuel cell
JP2005259604A (en) * 2004-03-12 2005-09-22 Dainippon Printing Co Ltd Solid oxide fuel cell and substrate used for the same
JP2005276533A (en) * 2004-03-23 2005-10-06 Dainippon Printing Co Ltd Solid oxide fuel cell
WO2007094262A1 (en) * 2006-02-17 2007-08-23 Kabushiki Kaisha Atsumitec Single chamber type solid oxide fuel cell
JP2007265920A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
WO2008123364A1 (en) 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, method for production thereof, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
WO2008123365A1 (en) 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
JP2008257890A (en) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd Current collecting material for fuel electrode, and solid oxide fuel cell using it
JP2008257886A (en) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd Solid oxide fuel cell, and its stack structure
CN100438168C (en) * 2003-06-26 2008-11-26 大日本印刷株式会社 Solid oxide fuel cell
US7517601B2 (en) 2002-12-09 2009-04-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP2009245663A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2010238654A (en) * 2009-03-31 2010-10-21 Dainippon Printing Co Ltd Single chamber type solid-oxide fuel cell and stack structure thereof
US7871734B2 (en) 2005-08-23 2011-01-18 Massachusetts Institute Of Technology Micro fuel cell
JP2012038738A (en) * 2004-11-09 2012-02-23 Dainippon Printing Co Ltd Cogeneration system using fuel cell
US8288042B2 (en) 2006-02-27 2012-10-16 Kabushiki Kaisha Atsumitec Electric power generation device
US8691464B2 (en) 2007-05-25 2014-04-08 Massachusetts Institute Of Technology Three dimensional single-chamber fuel cells
JP2014192095A (en) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd Membrane electrode assembly and solid polymer fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140048A (en) * 1992-07-27 1994-05-20 Nippon Oil Co Ltd Solid electrolyte type fuel cell
JPH07245118A (en) * 1994-03-02 1995-09-19 Sekiyu Sangyo Kasseika Center Fused carbonate fuel cell system and starting method therefor
JPH08264195A (en) * 1995-03-23 1996-10-11 Agency Of Ind Science & Technol Non-diaphragm solid electrolyte type fuel cell for co-generation
JPH11283643A (en) * 1998-03-31 1999-10-15 Kyocera Corp Solid-electrolyte fuel cell
JP2000243412A (en) * 1999-02-23 2000-09-08 Ngk Spark Plug Co Ltd Single chamber solid electrolyte fuel cell
JP2000281438A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Zirconia sheet and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140048A (en) * 1992-07-27 1994-05-20 Nippon Oil Co Ltd Solid electrolyte type fuel cell
JPH07245118A (en) * 1994-03-02 1995-09-19 Sekiyu Sangyo Kasseika Center Fused carbonate fuel cell system and starting method therefor
JPH08264195A (en) * 1995-03-23 1996-10-11 Agency Of Ind Science & Technol Non-diaphragm solid electrolyte type fuel cell for co-generation
JPH11283643A (en) * 1998-03-31 1999-10-15 Kyocera Corp Solid-electrolyte fuel cell
JP2000243412A (en) * 1999-02-23 2000-09-08 Ngk Spark Plug Co Ltd Single chamber solid electrolyte fuel cell
JP2000281438A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Zirconia sheet and its production

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517601B2 (en) 2002-12-09 2009-04-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
US8101316B2 (en) 2003-06-26 2012-01-24 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
CN100438168C (en) * 2003-06-26 2008-11-26 大日本印刷株式会社 Solid oxide fuel cell
US8741499B2 (en) 2003-06-26 2014-06-03 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP2005038848A (en) * 2003-06-26 2005-02-10 Dainippon Printing Co Ltd Solid oxide fuel cell
WO2005001970A1 (en) * 2003-06-26 2005-01-06 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
US8252479B2 (en) 2003-06-26 2012-08-28 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP2005149815A (en) * 2003-11-12 2005-06-09 Dainippon Printing Co Ltd Non-diaphragm type solid oxide fuel cell
JP2005259604A (en) * 2004-03-12 2005-09-22 Dainippon Printing Co Ltd Solid oxide fuel cell and substrate used for the same
JP4606043B2 (en) * 2004-03-12 2011-01-05 大日本印刷株式会社 Solid oxide fuel cell and substrate used therefor
JP2005276533A (en) * 2004-03-23 2005-10-06 Dainippon Printing Co Ltd Solid oxide fuel cell
JP4658499B2 (en) * 2004-03-23 2011-03-23 大日本印刷株式会社 Solid oxide fuel cell
JP2012038738A (en) * 2004-11-09 2012-02-23 Dainippon Printing Co Ltd Cogeneration system using fuel cell
US7871734B2 (en) 2005-08-23 2011-01-18 Massachusetts Institute Of Technology Micro fuel cell
WO2007094262A1 (en) * 2006-02-17 2007-08-23 Kabushiki Kaisha Atsumitec Single chamber type solid oxide fuel cell
US8288042B2 (en) 2006-02-27 2012-10-16 Kabushiki Kaisha Atsumitec Electric power generation device
JP2007265920A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
WO2008123364A1 (en) 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, method for production thereof, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
WO2008123365A1 (en) 2007-03-28 2008-10-16 Sumitomo Chemical Company, Limited Electrode catalyst composition, electrode, and fuel cell and membrane-electrode assembly each comprising the electrode
JP2008257886A (en) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd Solid oxide fuel cell, and its stack structure
JP2008257890A (en) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd Current collecting material for fuel electrode, and solid oxide fuel cell using it
US8691464B2 (en) 2007-05-25 2014-04-08 Massachusetts Institute Of Technology Three dimensional single-chamber fuel cells
JP2009245663A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2010238654A (en) * 2009-03-31 2010-10-21 Dainippon Printing Co Ltd Single chamber type solid-oxide fuel cell and stack structure thereof
JP2014192095A (en) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd Membrane electrode assembly and solid polymer fuel cell

Also Published As

Publication number Publication date
JP4900747B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US9799909B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
JP4900747B2 (en) Single-chamber solid electrolyte fuel cell and method for manufacturing the same
Ruiz-Morales et al. On the simultaneous use of La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ as both anode and cathode material with improved microstructure in solid oxide fuel cells
Meng et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen
Zhao et al. Cobalt-free oxide Ba0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for proton-conducting solid oxide fuel cell cathode
Yang et al. Electrical conductivity and electrochemical performance of cobalt-doped BaZr0. 1Ce0. 7Y0. 2O3− δ cathode
Asano et al. A novel solid oxide fuel cell system using the partial oxidation of methane
Yu et al. Performance of Ni-Fe bimetal based cathode for intermediate temperature solid oxide electrolysis cell
JP2000243412A (en) Single chamber solid electrolyte fuel cell
JP4904568B2 (en) Single-chamber solid electrolyte fuel cell and method for manufacturing the same
JP5144236B2 (en) Solid oxide fuel cell
JP2000133280A (en) Anode for high performance solid oxide fuel cell
JPWO2007060925A1 (en) Electrochemical cell and method for producing electrochemical cell
JP5481611B2 (en) High temperature steam electrolysis cell
US20110053032A1 (en) Manifold for series connection on fuel cell
JP6377535B2 (en) Proton conducting fuel cell
JP2001256986A (en) Solid electrolytic fuel cell
JPH10255832A (en) Composite air electrode material for solid fuel cell for low temperature operation
JP2005174663A (en) Single chamber fuel cell
JP2005174664A (en) Solid electrolyte fuel cell
JP2004103338A (en) Solid electrolyte fuel cell
US20070080058A1 (en) Electrode for electrochemical cell and electrochemical cell
Yano et al. Solid oxide fuel cell with anodes using proton conductor (Barium-Cerium/Yttrium oxide)
Carda et al. Impact of Morphological and Structural Changes on Performance of Solid Oxide Cells
JP2001148251A (en) Solid electrolyte and fuel cell using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4900747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term