JPH11283643A - Solid-electrolyte fuel cell - Google Patents

Solid-electrolyte fuel cell

Info

Publication number
JPH11283643A
JPH11283643A JP10086388A JP8638898A JPH11283643A JP H11283643 A JPH11283643 A JP H11283643A JP 10086388 A JP10086388 A JP 10086388A JP 8638898 A JP8638898 A JP 8638898A JP H11283643 A JPH11283643 A JP H11283643A
Authority
JP
Japan
Prior art keywords
current collector
fuel cell
solid
air electrode
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10086388A
Other languages
Japanese (ja)
Inventor
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10086388A priority Critical patent/JPH11283643A/en
Publication of JPH11283643A publication Critical patent/JPH11283643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-electrolyte fuel cell whose generation characteristic is good as the current collection characteristic of a current collector can be enhanced. SOLUTION: The solid-electrolyte fuel cell has an air electrode 32 formed on one side of a solid electrolyte 31 and a fuel electrode 33 on the other and has a current collector 35 electrically connected to the air electrode 32 or the fuel electrode 33 and exposed to the outer surface thereof. In this case, a cover layer which is made from a cermet with either ZrO2 or CeO2 containing at least one kind selected from among Ni, Co, Mn, and W and at least one kind selected from among Ca, Mg, Y, and rare earth elements, or CeO2 alone, and which has a film thickness of 0.3 to 30 μm, is formed on the exposed surface of the current collector 35, the crystal particle diameters of the Ni, Co, Mn, and W ranging from 0.5 to 5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池セルに関し、特に集電体の集電特性を改善した固体電
解質型燃料電池セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell having improved current collection characteristics of a current collector.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池セルは、
その作動温度が1000〜1050℃前後と高温である
ため発電効率が高く、第3世代の燃料電池として期待さ
れている。一般に、固体電解質型燃料電池セルには、円
筒型と平板型の2種類のものが知られている。
2. Description of the Related Art Conventionally, solid oxide fuel cells have been
Since the operating temperature is as high as about 1000 to 1050 ° C., the power generation efficiency is high and it is expected as a third-generation fuel cell. 2. Description of the Related Art In general, two types of solid oxide fuel cells are known: cylindrical and flat.

【0003】平板型燃料電池セルは、発電の単位体積当
り出力密度が高いという特長を有するが、実用化に際し
てはガスシール不完全性やセル内の温度分布の不均一性
などの問題がある。それに対して、円筒型燃料電池セル
では、出力密度は低いものの、セルの機械的強度が高
く、またセル内の温度の均一性が保てるという特長があ
る。両形状の固体電解質燃料電池セルとも、それぞれの
特長を生かして積極的に研究開発が進められている。
[0003] The flat fuel cell has the feature that the output density per unit volume of power generation is high, but when put into practical use, there are problems such as imperfect gas sealing and non-uniform temperature distribution in the cell. On the other hand, the cylindrical fuel cell has the features that the output density is low, but the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid electrolyte fuel cells are being actively researched and developed utilizing their respective features.

【0004】円筒状の固体電解質型燃料電池セルは、図
2に示すように、例えば、Y2 3含有の安定化ZrO
2 からなる固体電解質層3の内面に、LaMnO3 系材
料からなる多孔性の空気極層2を形成し、さらに固体電
解質3の表面に多孔性のNi−ジルコニアなどからなる
燃料極層4を形成して構成されている。そして、各セル
間を接続するためのLaCrO3 系材料などからなる集
電体5(インターコネクタ)が固体電解質層1を貫通
し、空気極層2と電気的に接続しており、燃料極層4と
は非接触の状態でセルの表面に露出している。
As shown in FIG. 2, a cylindrical solid oxide fuel cell is, for example, a stabilized ZrO 2 containing Y 2 O 3.
A porous air electrode layer 2 made of a LaMnO 3 -based material is formed on the inner surface of a solid electrolyte layer 3 made of 2 and a fuel electrode layer 4 made of a porous Ni-zirconia is formed on the surface of the solid electrolyte 3. It is configured. A current collector 5 (interconnector) made of a LaCrO 3 -based material or the like for connecting the cells penetrates the solid electrolyte layer 1 and is electrically connected to the air electrode layer 2. 4 is exposed on the surface of the cell in a non-contact state.

【0005】燃料電池のモジュールは、上記構成からな
る複数の単セルが集電体5およびNiフェルト(あるい
はNi板)を介して接続され、発電は、空気極層2の内
部に空気(酸素)を、外部に燃料(水素)を流し、10
00〜1050℃の温度で行われる。
[0005] In the fuel cell module, a plurality of single cells having the above-described configuration are connected via a current collector 5 and a Ni felt (or Ni plate), and power is generated inside the air electrode layer 2 by air (oxygen). And the fuel (hydrogen)
It is performed at a temperature of 00 to 1050 ° C.

【0006】そして、従来、固体電解質型燃料電池セル
では、集電体の露出面に、Niフェルトとの接触面積を
向上させて集電特性を向上すべく、Niメッキ層を形成
することが行なわれている。
[0006] Conventionally, in a solid oxide fuel cell, a Ni plating layer is formed on an exposed surface of a current collector so as to improve a contact area with Ni felt and improve current collection characteristics. Have been.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記固
体電解質型燃料電池セルでは、集電体の露出面に一様に
形成されたNiメッキ層が、1000〜1050℃の高
温での発電中に焼結して凝縮し、集電体の露出面の一部
部分のみにNiメッキ層が形成された状態となり、Ni
メッキ層によるNiフェルトと集電体との接触面積が減
少し、集電体の集電能力が低下するという問題があっ
た。
However, in the solid oxide fuel cell described above, the Ni plating layer uniformly formed on the exposed surface of the current collector burns during power generation at a high temperature of 1000 to 1050 ° C. Condensed and condensed to form a state where a Ni plating layer is formed only on a part of the exposed surface of the current collector,
There is a problem that the contact area between the Ni felt and the current collector due to the plating layer is reduced, and the current collecting capability of the current collector is reduced.

【0008】本発明は、集電体の集電特性を向上できる
固体電解質型燃料電池セルを提供することを目的とす
る。
[0008] It is an object of the present invention to provide a solid oxide fuel cell capable of improving the current collection characteristics of a current collector.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記課題に
対して検討を重ねた結果、集電体の露出面に焼結を防止
する観点から、所定の結晶粒子系を有する所定の結晶粒
子径を有する金属とセラミックとが混合したサーメット
からなる所定厚みの被覆層を形成することにより、サー
メット中の金属の焼結と凝集を抑制できることを見出
し、本発明に至った。
Means for Solving the Problems The present inventors have studied the above problems, and as a result, from the viewpoint of preventing sintering on the exposed surface of the current collector, a predetermined crystal having a predetermined crystal grain system The present inventors have found that sintering and agglomeration of a metal in a cermet can be suppressed by forming a coating layer having a predetermined thickness made of a cermet in which a metal having a particle diameter is mixed with a ceramic.

【0010】即ち、本発明の固体電解質型燃料電池セル
は、固体電解質の一面に空気極を、他面に燃料極を形成
してなり、前記空気極または前記燃料極に電気的に接続
され、かつ外部に露出する集電体を具備する固体電解質
型燃料電池セルにおいて、前記集電体の露出面に、N
i、Co、Mn、Wのうち少なくとも一種と、Ca、M
g、Yおよび希土類元素のうち少なくとも一種を含有す
るZrO2 またはCeO2 、あるいはCeO2 単体との
サーメットからなるとともに、前記Ni、Co、Mn、
Wの結晶粒子径が0.5〜5μmであり、且つ膜厚0.
3〜30μmの被覆層を形成してなるものである。ここ
で、集電体の露出面が研摩されていることが望ましい。
That is, the solid oxide fuel cell of the present invention comprises an air electrode formed on one surface of a solid electrolyte and a fuel electrode formed on the other surface, and is electrically connected to the air electrode or the fuel electrode. And a current collector that is exposed to the outside.
i, Co, Mn, W and at least one of Ca, M
g, Y and ZrO 2 or CeO 2 containing at least one of rare earth elements, or a cermet with CeO 2 alone, and the Ni, Co, Mn,
W has a crystal grain size of 0.5 to 5 μm and a film thickness of 0.
It is formed by forming a coating layer of 3 to 30 μm. Here, it is desirable that the exposed surface of the current collector is polished.

【0011】[0011]

【作用】本発明の固体電解質型燃料電池セルでは、集電
体の露出面に、Ni、Co、Mn、Wのうち少なくとも
一種と、Ca、Mg、Yおよび希土類元素のうち少なく
とも一種を含有するZrO2 またはCeO2 、あるいは
CeO2 単体とのサーメットからなり、膜厚0.3〜3
0μmの被覆層を形成する。これにより、金属中にセラ
ミックスが分散されているため被覆層の金属(Ni、C
o、Mn、Wのうち少なくとも一種)の焼結を抑制で
き、これにより金属の凝集を抑制でき、被覆層によるN
iフェルトと集電体との接触面積を向上できる。
In the solid oxide fuel cell of the present invention, the exposed surface of the current collector contains at least one of Ni, Co, Mn, and W and at least one of Ca, Mg, Y, and a rare earth element. It is made of cermet with ZrO 2 or CeO 2 or CeO 2 alone, and has a thickness of 0.3 to 3
A coating layer of 0 μm is formed. Thereby, since the ceramics are dispersed in the metal, the metal (Ni, C
sintering of at least one of o, Mn, and W), thereby suppressing metal aggregation.
The contact area between the i-felt and the current collector can be improved.

【0012】また、被覆層の厚みを0.3〜30μmと
することにより、被覆層の金属の焼結、凝集をさらに抑
制できる。さらに、集電体の露出面を研摩することによ
り、また、金属粒子径を0.5〜5μmに設定すること
により、金属の焼結を抑制し金属の焼結を抑制し被覆層
の集電体への付着力を向上でき、被覆層によるNiフェ
ルトと集電体との接触面積を向上できる。
Further, by setting the thickness of the coating layer to 0.3 to 30 μm, sintering and aggregation of the metal of the coating layer can be further suppressed. Further, by polishing the exposed surface of the current collector and setting the metal particle diameter to 0.5 to 5 μm, the sintering of the metal is suppressed, and the sintering of the metal is suppressed, and the current collection of the coating layer is performed. The adhesion to the body can be improved, and the contact area between the Ni felt and the current collector by the coating layer can be improved.

【0013】[0013]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルは、図1に示すように、円筒状の固体電解質31の内
面に空気極32、外面に燃料極33を形成して燃料電池
セル本体34が構成されており、この燃料電池セル本体
34の外面に、一方側面が空気極32と電気的に接続
し、他方側が外部に露出する集電体35を設けてなるも
のである。即ち、固体電解質31の一部を切り欠いて固
体電解質31の内面に形成されている空気極32の一部
が露出しており、この露出面37および切り欠いた固体
電解質31の表面に集電体35が形成されている。尚、
本発明の円筒型燃料電池セルは、多孔質支持管を形成
し、この多孔質支持管の外面に空気極32、固体電解質
31、燃料極33を順次積層して構成しても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a solid oxide fuel cell according to the present invention comprises a cylindrical solid electrolyte 31 having an air electrode 32 formed on the inner surface and a fuel electrode 33 formed on the outer surface. A main body 34 is formed, and a current collector 35 is provided on the outer surface of the fuel cell main body 34, one side of which is electrically connected to the air electrode 32 and the other side is exposed to the outside. That is, a part of the solid electrolyte 31 is cut away, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed. A body 35 is formed. still,
The cylindrical fuel cell of the present invention may be configured such that a porous support tube is formed, and an air electrode 32, a solid electrolyte 31, and a fuel electrode 33 are sequentially stacked on the outer surface of the porous support tube.

【0014】空気極32と電気的に接続する集電体35
は、燃料電池セル本体34の外面に形成され、連続同一
面39を覆うように形成されており、燃料極33とは電
気的に接続されていない。連続同一面39は、固体電解
質31の内面に形成されている空気極32の一部を露出
させるとともに、固体電解質31の端部と空気極32の
露出面37とをほぼ同一面(固体電解質31の端部と空
気極32の露出面37とが段差の少ない平面状態)をな
して構成されている。この同一面39は固体電解質成形
体の一部と空気極成形体の一部とがほぼ同一面となるま
でセル本体の外周面を研摩することにより形成されてい
る。
A current collector 35 electrically connected to the air electrode 32
Are formed on the outer surface of the fuel cell main body 34 so as to cover the same continuous surface 39, and are not electrically connected to the fuel electrode 33. The continuous same surface 39 exposes a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 and makes the end portion of the solid electrolyte 31 and the exposed surface 37 of the air electrode 32 substantially flush with each other (the solid electrolyte 31). Of the air electrode 32 and the exposed surface 37 of the air electrode 32 are in a planar state with few steps. The same surface 39 is formed by polishing the outer peripheral surface of the cell body until a part of the solid electrolyte molded body and a part of the air electrode molded body are substantially flush with each other.

【0015】そして、本発明の円筒型燃料電池セルで
は、集電体35の露出面に、Ni、Co、Mn、Wのう
ち少なくとも一種からなる金属と、Ca、Mg、Yおよ
び希土類元素のうち少なくとも一種を含有するZrO2
またはCeO2 、あるいはCeO2 単体からなるセラミ
ックスとの混合体であるサーメットからなる被覆層50
が形成されている。金属としては、経済的理由からNi
が望ましく、セラミックスとしては、金属の焼結性を抑
制するという点からY2 3 を含有するZrO2が望ま
しい。また、金属の結晶粒子径は、焼結性を抑制すると
いう点から0.5〜5μm、特に1〜3μmが望まし
い。結晶粒子径が0.5μmより小さいと、金属の焼結
が抑制できない。また、5μmを越えると剥離しやすく
なる。
In the cylindrical fuel cell of the present invention, at least one of Ni, Co, Mn, and W and Ca, Mg, Y and rare earth elements are formed on the exposed surface of the current collector 35. ZrO 2 containing at least one kind
Or CeO 2 or a coating layer 50 made of cermet is a mixture of ceramic consisting of CeO 2 alone,
Are formed. As a metal, Ni is used for economic reasons.
ZrO 2 containing Y 2 O 3 is desirable as ceramics from the viewpoint of suppressing the sinterability of metal. Further, the crystal grain size of the metal is preferably 0.5 to 5 μm, particularly preferably 1 to 3 μm from the viewpoint of suppressing the sinterability. If the crystal particle diameter is smaller than 0.5 μm, sintering of the metal cannot be suppressed. On the other hand, if it exceeds 5 μm, it is easy to peel off.

【0016】この被覆層50の組成としては、セラミッ
クスの重量比が0.1〜30重量%であることが望まし
く、特に1〜10重量%が望ましい。
The composition of the coating layer 50 is preferably such that the weight ratio of the ceramic is 0.1 to 30% by weight, and particularly preferably 1 to 10% by weight.

【0017】また、被覆層50の厚みは0.3〜30μ
mになるように形成することが望ましい。これは、被覆
層50の厚みが0.3μmより薄いと、セラミックスの
分散が悪いため、長時間の発電による被覆層50中の金
属の焼結を防止できず、集電体35における集電能力が
低下する。それに対して、厚みが30μmを越えると被
覆層50が剥離しやすくなるからである。被覆層50の
厚みとしては、金属の焼結を防止し、剥離を防止すると
いう観点から1〜5μmが好ましい。また、分散させる
セラミックスの平均粒径としては焼結性を抑制するとい
う点から0.05〜3μm、特に0.1〜1μmの範囲
が好ましい。
The thickness of the coating layer 50 is 0.3 to 30 μm.
m. This is because if the thickness of the coating layer 50 is less than 0.3 μm, the dispersion of the ceramics is poor, so that the sintering of the metal in the coating layer 50 due to long-time power generation cannot be prevented, and the current collecting capability of the current collector 35 Decrease. On the other hand, if the thickness exceeds 30 μm, the coating layer 50 tends to peel off. The thickness of the coating layer 50 is preferably 1 to 5 μm from the viewpoint of preventing sintering of the metal and preventing peeling. The average particle size of the ceramic to be dispersed is preferably 0.05 to 3 μm, particularly preferably 0.1 to 1 μm from the viewpoint of suppressing sinterability.

【0018】さらに被覆層50の集電体35への付着力
を高めるため、集電体35表面を研磨することが望まし
い。この場合、表面粗さRaとしては0.1〜5μm、
特に0.5〜2μmの範囲が優れている。また、集電体
35の表面は単純に表面を荒らすことに加えて、10〜
30μmの大きさの凹凸を設けると、集電体35の表面
積向上の観点から優れている。この場合も少なくとも凸
部は上記のように研磨することが好ましい。研摩する手
段としては、市販のサンドペ−パ−による研磨やサンド
ブラストにより行なってもよい。
In order to further increase the adhesion of the coating layer 50 to the current collector 35, it is desirable to polish the surface of the current collector 35. In this case, the surface roughness Ra is 0.1 to 5 μm,
In particular, the range of 0.5 to 2 μm is excellent. The surface of the current collector 35 is not only simply roughened, but also
The provision of the irregularities having a size of 30 μm is excellent from the viewpoint of improving the surface area of the current collector 35. Also in this case, it is preferable that at least the convex portion is polished as described above. Polishing may be performed by sanding or sandblasting with a commercially available sandpaper.

【0019】次に、本発明の被覆層50の形成方法につ
いて、Ni/Y2 3 含有ZrO2の場合を例にとって
述べる。被覆層50は、例えば市販のNiメッキ液中に
所定のY2 3 含有ZrO2 セラミックス粉末等を分散
させて、固体電解質型燃料電池セルの集電体の露出面
に、電解法メッキ法あるいは無電解メッキ法により容易
に形成することができる。
Next, the method for forming the coating layer 50 of the present invention will be described by taking the case of ZrO 2 containing Ni / Y 2 O 3 as an example. The coating layer 50 is formed, for example, by dispersing a predetermined Y 2 O 3 -containing ZrO 2 ceramic powder or the like in a commercially available Ni plating solution, and coating the exposed surface of the current collector of the solid oxide fuel cell by electrolytic plating or It can be easily formed by electroless plating.

【0020】あるいは、Niメッキ液中に市販のポア形
成材を含有させ、固体電解質型燃料電池セルの集電体の
露出面に、電解法メッキ法あるいは無電解メッキ法によ
りポーラスなメッキ層を形成し、そのポア内にY、Zr
を含有する有金属機塩を含む水溶液を含侵させた後、4
00〜1000℃の温度で熱分解させてセラミックスを
分散させてもよい。この場合、処理温度が500℃を越
える場合には、酸素を1%以下含有するArまたはN2
ガスでの処理が集電体の酸化防止の観点から優れてい
る。
Alternatively, a commercially available pore-forming material is contained in the Ni plating solution, and a porous plating layer is formed on the exposed surface of the current collector of the solid oxide fuel cell by an electrolytic plating method or an electroless plating method. And Y, Zr in the pore
After impregnating with an aqueous solution containing a metal organic salt containing
Ceramics may be dispersed by thermal decomposition at a temperature of 00 to 1000 ° C. In this case, when the processing temperature exceeds 500 ° C., Ar or N 2 containing 1% or less of oxygen is used.
The treatment with gas is excellent from the viewpoint of preventing oxidation of the current collector.

【0021】本発明の燃料電池セルにおいては、空気極
としてはLaの一部をSr、Caで置換したLaMnO
3 が、固体電解質としては、ZrO2 に対してY
2 3 、Yb2 3 などの安定化材を3〜15モル%の
割合で固溶させた部分安定化ZrO2 あるいは安定化Z
rO2 粉末、Y2 3 、Yb2 3 、Gd2 3 等を1
0〜30モル%含有するCeO2 が用いられる。また、
燃料極としては,Ni/ZrO2 (Y2 3 含有)のサ
ーメットが、集電体を形成する粉末としては、Ca、M
g、Srを固溶したLaCrO3 が用いられる。
In the fuel cell according to the present invention, LaMnO in which La is partially substituted with Sr and Ca is used as an air electrode.
3 is a solid electrolyte with respect to ZrO 2
2 O 3, Yb 2 O 3 stabilized material was dissolved in a proportion of 3 to 15 mol% portion of such stabilized ZrO 2 or stabilized Z
rO 2 powder, Y 2 O 3 , Yb 2 O 3 , Gd 2 O 3 etc.
CeO 2 is used containing 0 to 30 mol%. Also,
Ni / ZrO 2 (containing Y 2 O 3 ) cermet is used as the fuel electrode, and Ca, M is used as the powder forming the current collector.
LaCrO 3 in which g and Sr are dissolved is used.

【0022】本発明の燃料電池セルは、円筒状の固体電
解質型燃料電池セルに限らず、平板状の固体電解質型燃
料電池セルにも応用可能である。
The fuel cell of the present invention is not limited to a cylindrical solid electrolyte fuel cell, but is also applicable to a flat solid electrolyte fuel cell.

【0023】[0023]

【実施例】実施例1 空気極を形成する粉末としてLa2 3 、MnO2 、C
aCO3 の粉末をLa0.85Ca0.15MnO3 となるよう
に秤量混合した後に、1500℃で仮焼して(La、C
a)MnO3 粉末を得た。この後、これを粉砕して平均
粒径が8μmの粉末をそれぞれ作製した。また、固体電
解質を形成する粉末として平均粒径0.5μmのY2
3 を10モル%の割合で含有する共沈法ZrO2 粉末を
準備した。さらに、燃料極を形成する粉末としてNiO
粉末とZrO2 (Y2 3 含有)粉末を重量比で80:
20の割合で混合したものを、集電体を形成する粉末と
して平均粒子径1μmのLa0.8 Ca0.21CrO3 から
なる化合物粉末を準備した。
EXAMPLES Example 1 La 2 O 3 , MnO 2 , C
aCO 3 powder was weighed and mixed so as to be La 0.85 Ca 0.15 MnO 3, and then calcined at 1500 ° C. (La, C
a) MnO 3 powder was obtained. Thereafter, this was pulverized to prepare powders each having an average particle diameter of 8 μm. Further, Y 2 O having an average particle size of 0.5 μm is used as a powder for forming a solid electrolyte.
A ZrO 2 powder prepared by coprecipitation containing 3 at a ratio of 10 mol% was prepared. Further, as a powder for forming the fuel electrode, NiO
Powder and ZrO 2 (containing Y 2 O 3 ) powder in a weight ratio of 80:
A compound powder composed of La 0.8 Ca 0.21 CrO 3 having an average particle diameter of 1 μm was prepared as a powder for forming a current collector by mixing the mixture at a ratio of 20.

【0024】まず、上記の8μmの(La、Ca)Mn
3 粉末を水を溶媒としてスラリーを作製し、このスラ
リーを用いて押出成形装置により内径13mm、外径1
6mmの円筒状の空気極成形体を得た。一方、上記固体
電解質としてはY2 3 安定化ZrO2 粉末を、集電体
としてはLa0.8 Ca0.21CrO3 粉末をそれぞれトル
エンを溶媒としてスラリーを作製し、これをドクターブ
レード法により所定厚みのシート状成形体を作製した。
First, the above-mentioned 8 μm (La, Ca) Mn
A slurry was prepared from O 3 powder using water as a solvent, and the slurry was used to form an inner diameter of 13 mm and an outer diameter of 1 using an extrusion molding apparatus.
A 6 mm cylindrical air electrode molding was obtained. On the other hand, a slurry was prepared by using Y 2 O 3 -stabilized ZrO 2 powder as the solid electrolyte and La 0.8 Ca 0.21 CrO 3 powder as a current collector, and toluene was used as a solvent. A sheet-like molded body was produced.

【0025】さらに、空気極成形体の表面にアクリル樹
脂からなる接着材を介して、上記固体電解質のシート状
成形体を巻き付け、その端部の間を研摩して連続同一面
を形成した。さらに、集電体のシート状成形体を積層し
て圧着し、大気中において1500℃で5時間焼成し
た。
Further, the solid electrolyte sheet-like molded body was wound around the surface of the air electrode molded body via an adhesive made of an acrylic resin, and the end portions thereof were polished to form a continuous same surface. Further, the sheet-shaped formed body of the current collector was laminated and pressed, and fired at 1500 ° C. for 5 hours in the air.

【0026】燃料極層は上述の粉末にトルエンを溶媒と
してスラリーを作製し、このスラリー中にディップし、
乾燥して燃料極を形成し、図1に示したような円筒型燃
料電池セルを作製した。
For the fuel electrode layer, a slurry is prepared from the above powder using toluene as a solvent, and the slurry is dipped in the slurry.
After drying to form a fuel electrode, a cylindrical fuel cell as shown in FIG. 1 was produced.

【0027】この後、市販のNi、W、Co、Mnを含
有するメッキ液中に、平均粒径が約0.1μmの10モ
ル%のCaO、MgO、Y2 3 、Yb2 3 、Nd2
3、Sm2 3 を含有するZrO2 粉末またはCeO
2 粉末、あるいはCeO2 単体の粉末を分散させ、超音
波洗浄容器中でこの溶液を用いて無電解メッキ法により
セラミックスが分散したサーメット被覆層を形成した。
また、比較のためセラミックスを含有しないNiメッキ
層を電解メッキ法により作製し、比較例とした。この
際、被覆層中の金属とセラミックの比率は検量線法によ
る蛍光X線分析により決定した。また、被覆膜の厚さお
よび金属の結晶粒子径は走査型電子顕微鏡を用いて求め
た.発電は、固体電解質型燃料電池セルの内側に酸素
を、外側に水素を流して1000℃で1000時間行
い、100時間後の出力密度と100時間後から100
0時間後の出力密度の低下率と1000時間後の出力密
度を表1に示した。
Then, 10 mol% of CaO, MgO, Y 2 O 3 , Yb 2 O 3 , 10 mol% having an average particle size of about 0.1 μm is added to a commercially available plating solution containing Ni, W, Co, and Mn. Nd 2
ZrO 2 powder containing O 3 , Sm 2 O 3 or CeO
2 powder or CeO 2 simple powder was dispersed, and a cermet coating layer in which ceramics were dispersed was formed by electroless plating using this solution in an ultrasonic cleaning vessel.
Further, for comparison, a Ni plating layer containing no ceramics was produced by an electrolytic plating method, which was used as a comparative example. At this time, the ratio of metal to ceramic in the coating layer was determined by fluorescent X-ray analysis using a calibration curve method. The thickness of the coating film and the crystal grain size of the metal were determined using a scanning electron microscope. Power generation is performed at 1000 ° C. for 1000 hours by flowing oxygen inside the solid oxide fuel cell and hydrogen outside, and the power density after 100 hours and 100 hours after 100 hours.
Table 1 shows the reduction rate of the output density after 0 hour and the output density after 1000 hours.

【0028】[0028]

【表1】 [Table 1]

【0029】この表1より、Niメッキ層を形成した試
料No.1、被覆層の膜厚が0.3μmより薄い試料N
o.2、および被覆層が30μmより厚い試料No.9
では出力密度の低下率が大きい。また、金属の結晶粒子
径が0.5μmより小さい試料NO.18および粒子径
が5μmより大きい試料NO.19でも出力密度の低下
が大きい。それに対して、本発明の試料は全て安定した
出力密度を示した。
From Table 1, it can be seen that the sample No. 1. Sample N whose coating layer thickness is less than 0.3 μm
o. Sample No. 2 having a coating layer thicker than 30 μm. 9
In this case, the rate of decrease in output density is large. Further, in sample No. 1 in which the metal crystal particle diameter was smaller than 0.5 μm. Sample No. 18 and Sample NO. Even at 19, the output density is greatly reduced. In contrast, the samples of the present invention all exhibited stable power densities.

【0030】実施例2 実施例1のセルの集電体表面を#220のサンドペーパ
ーで研磨したものとしないものについて、集電体表面の
表面粗さを測定し、Ni粉末と、10モル%のY2 3
含有するZrO2 粉末、またはCeO2 単体粉末からな
り、表2に示すような組成の被覆層を上記と同様にして
形成し、上記と同様にして、1000時間の発電を行
い、100時間後の出力密度と、100時間後から10
00時間後の出力密度の低下率および1000時間後の
出力密度を測定した。結果を表2に示す。この際、金属
被覆層の厚さと結晶粒子径は実施例1に従い走査型電子
顕微鏡により求めた。
Example 2 The surface roughness of the current collector surface was measured for the cell of Example 1 with and without the current collector surface polished with # 220 sandpaper. Y 2 O 3
A coating layer composed of the contained ZrO 2 powder or CeO 2 single powder and having the composition shown in Table 2 was formed in the same manner as described above, and power generation was performed for 1000 hours in the same manner as above, and after 100 hours, Power density and 10 hours after 100 hours
The reduction rate of the output density after 00 hours and the output density after 1000 hours were measured. Table 2 shows the results. At this time, the thickness of the metal coating layer and the crystal particle diameter were determined by a scanning electron microscope according to Example 1.

【0031】[0031]

【表2】 [Table 2]

【0032】この表2から、集電体表面を研磨した試料
の方が、未研磨のものより出力が長時間にわたり安定し
ていることがわかる。これは、研磨した方が被覆層がよ
り強固に付着していることを示している。また、セラミ
ックスの比率としては0.1〜30重量%の範囲がセル
の耐久性の観点から優れていることがわかる。
From Table 2, it can be seen that the output of the sample polished on the collector surface is more stable for a long time than that of the unpolished one. This indicates that the coating layer is more firmly adhered when polished. Further, it can be seen that the ratio of ceramics in the range of 0.1 to 30% by weight is excellent from the viewpoint of cell durability.

【0033】[0033]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、集電体の露出面に、Ni、Co、Mn、Wのうち少
なくとも一種と、Ca、Mg、Yおよび希土類元素のう
ち少なくとも一種を含有するZrO2 またはCeO2
あるいはCeO2 単体とのサーメットからなり、金属の
結晶粒子径が0.5〜5μmで、膜厚0.1〜30μm
の被覆層を形成したので、被覆層の金属(Ni、Co、
Mn、Wのうち少なくとも一種)の焼結を抑制でき、こ
れにより金属の凝集を抑制でき、被覆層によるNiフェ
ルトと集電体との接続面積の減少を防止でき、集電体の
集電特性を向上できる。
According to the solid oxide fuel cell of the present invention, at least one of Ni, Co, Mn and W and at least one of Ca, Mg, Y and rare earth elements are formed on the exposed surface of the current collector. Containing ZrO 2 or CeO 2 ,
Alternatively, it is made of a cermet with CeO 2 alone, and has a metal crystal particle diameter of 0.5 to 5 μm and a film thickness of 0.1 to 30 μm.
Was formed, the metal (Ni, Co,
Sintering of at least one of Mn and W), thereby suppressing aggregation of the metal, preventing a decrease in the connection area between the Ni felt and the current collector due to the coating layer, and current collection characteristics of the current collector. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状の固体電解質型燃料電池セルを
示す断面図である。
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】従来の円筒状の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 2 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 34・・・燃料電池セル本体34 35・・・集電体 50・・・被覆層 DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 34 ... Fuel cell main body 34 35 ... Current collector 50 ... Coating layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の一面に空気極を、他面に燃料
極を形成してなり、前記空気極または前記燃料極に電気
的に接続され、かつ外部に露出する集電体を具備する固
体電解質型燃料電池セルにおいて、前記集電体の露出面
に、Ni、Co、Mn、Wのうち少なくとも一種と、C
a、Mg、Yおよび希土類元素のうち少なくとも一種を
含有するZrO2 またはCeO2 、あるいはCeO2
体とのサーメットからなるとともに、前記Ni、Co、
Mn、Wの結晶粒子径が0.5〜5μmであり、且つ膜
厚0.3〜30μmの被覆層を形成してなることを特徴
とする固体電解質型燃料電池セル。
An air electrode is formed on one surface of a solid electrolyte and a fuel electrode is formed on the other surface, and a current collector electrically connected to the air electrode or the fuel electrode and exposed to the outside is provided. In the solid oxide fuel cell, at least one of Ni, Co, Mn, and W is formed on the exposed surface of the current collector.
a, Mg, Y and ZrO 2 or CeO 2 containing at least one of rare earth elements, or a cermet with CeO 2 alone, and the Ni, Co,
A solid oxide fuel cell comprising a coating layer having a crystal particle diameter of Mn and W of 0.5 to 5 μm and a thickness of 0.3 to 30 μm.
【請求項2】集電体の露出面が研摩されていることを特
徴とする請求項1記載の固体電解質型燃料電池セル。
2. The solid oxide fuel cell according to claim 1, wherein the exposed surface of the current collector is polished.
JP10086388A 1998-03-31 1998-03-31 Solid-electrolyte fuel cell Pending JPH11283643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086388A JPH11283643A (en) 1998-03-31 1998-03-31 Solid-electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086388A JPH11283643A (en) 1998-03-31 1998-03-31 Solid-electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH11283643A true JPH11283643A (en) 1999-10-15

Family

ID=13885503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086388A Pending JPH11283643A (en) 1998-03-31 1998-03-31 Solid-electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH11283643A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283880A (en) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd Low-temperature fuel cell separator and its manufacturing method
JP2002280015A (en) * 2001-03-21 2002-09-27 National Institute Of Advanced Industrial & Technology Single room type solid electrolyte fuel cell and its manufacturing method
JP2002319415A (en) * 2001-04-20 2002-10-31 Kyocera Corp Solid electrolyte fuel cell and fuel cell
JP2012134122A (en) * 2010-12-03 2012-07-12 Ngk Insulators Ltd Solid oxide fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283880A (en) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd Low-temperature fuel cell separator and its manufacturing method
JP2002280015A (en) * 2001-03-21 2002-09-27 National Institute Of Advanced Industrial & Technology Single room type solid electrolyte fuel cell and its manufacturing method
JP2002319415A (en) * 2001-04-20 2002-10-31 Kyocera Corp Solid electrolyte fuel cell and fuel cell
JP2012134122A (en) * 2010-12-03 2012-07-12 Ngk Insulators Ltd Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
CA3123793C (en) Electrochemical cell and electrochemical cell stack
JP3347561B2 (en) Solid oxide fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP3661676B2 (en) Solid oxide fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP2004265746A (en) Solid oxide fuel cell
CA2553074A1 (en) Solid oxide fuel cell
JPH11283643A (en) Solid-electrolyte fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP2017188437A (en) Electrochemical cell
JP2005276683A (en) Fuel electrode, electrochemical cell and method of manufacturing fuel electrode
JP4811776B2 (en) SOLID ELECTROLYTE FUEL CELL FUEL ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP3638489B2 (en) Solid oxide fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP3595223B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JPH0969365A (en) Solid electrolyte fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP2015056363A (en) Fuel cell unit and manufacturing method therefor
JPH0745297A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803