JP2004103338A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
JP2004103338A
JP2004103338A JP2002261934A JP2002261934A JP2004103338A JP 2004103338 A JP2004103338 A JP 2004103338A JP 2002261934 A JP2002261934 A JP 2002261934A JP 2002261934 A JP2002261934 A JP 2002261934A JP 2004103338 A JP2004103338 A JP 2004103338A
Authority
JP
Japan
Prior art keywords
solid electrolyte
negative electrode
fuel cell
electrolyte body
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002261934A
Other languages
Japanese (ja)
Inventor
Takashi Hibino
日比野 高士
Hiroya Ishikawa
石川 浩也
Satoshi Iio
飯尾 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Spark Plug Co Ltd
Priority to JP2002261934A priority Critical patent/JP2004103338A/en
Publication of JP2004103338A publication Critical patent/JP2004103338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell capable of stably extracting a current even in a low-temperature region below 600°C. <P>SOLUTION: This solid electrolyte fuel cell is provided with a solid electrolyte body formed of a perovskite type compound oxide containing Ba and Ce; a negative electrode formed on one surface of the solid electrolyte body; and a positive electrode formed on the other surface of the solid electrolyte body. The negative electrode contains iron as a main constituent. The negative electrode can contain 1-10 mass% of at least one kind out of Pd, Pt, Rh and Ru. The positive electrode can be expressed by chemical formula Ln<SB>1-x</SB>M<SB>x</SB>CoO<SB>3±δ</SB>, wherein Ln is a rare-earth element, M is Sr or Ba, 0.2≤x≤0.8 and 0≤δ<1. The solid electrolyte body can be expressed by the chemical formula BaCe<SB>1-y</SB>N<SB>y</SB>O<SB>3±δ</SB>, wherein N is at least one kind out of Y, Sm, Yb and Nd, 0.1≤y≤0.3 and 0≤δ<1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池に関する。更に詳しくは、600℃以下の低温においても安定に発電可能な固体電解質型燃料電池に関する。
【0002】
【従来の技術】
近年、固体電解質型燃料電池を800℃以下の比較的低温域において作動させる研究が活発化している。これは、燃料電池を作動させることができる温度は、より低いほど好ましく、発電可能な温度が低ければ、起動までの時間を短縮することができ、起動と停止を繰り返したときの熱応力を低減することができるためである。このような固体電解質型燃料電池として、BaCe0.8Gd0.2を固体電解質体として使用し、これにNiを含むサーメットからなる負極と、BaCe0.8Mn0.2からなる正極とを設けたものが提案されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−97021号公報(第6頁)
【0004】
【発明が解決しようとする課題】
上記特許文献1に記載されているNiとセラミックスとを含むサーメット又はNiからなる負極は、従来から酸素イオン伝導性固体電解質体を用いた燃料電池において好ましい電極として使用されている。そして、この負極を用いた場合、BaCeO系固体電解質体のイオン伝導の主体が酸素イオン伝導である800℃以上の作動温度では、ある程度の電流を取り出すことができる。しかし、600℃以下の作動温度ではBaCeO系固体電解質体のイオン伝導種がほぼ100%プロトンになるため、Niを主成分とした負極ではほとんど電流を取り出すことができない。また、NiはBaCeO系固体電解質体との反応性がFeに比べて高いため、900℃以上の高温で負極を焼き付けた際に、抵抗の高い反応相が生成するという問題もある。
【0005】
本発明は、上記の従来の問題を解決するものであり、BaCeO系固体電解質体に適した材質からなる電極、特に特定の負極を組み合わせることにより、600℃以下の低温域においても安定に電流を取り出すことができる固体電解質型燃料電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の固体電解質型燃料電池は、Ba及びCeを含むペロブスカイト型複合酸化物からなる固体電解質体と、該固体電解質体の一面に設けられた負極と、該固体電解質体の他面に設けられた正極とを備える固体電解質型燃料電池であって、該負極はFeを主成分とすることを特徴とする。
また、上記負極が、Pd、Pt、Rh及びRuのうちの少なくとも1種を1〜10質量%含有する固体電解質型燃料電池とすることができる。
更に、上記正極は、化学式Ln1−xCoO3±δ(但し、Lnは希土類元素、MはSr又はBaであり、0.2≦x≦0.8、0≦δ<1である。)で表される複合酸化物からなる固体電解質型燃料電池とすることができる。
また、上記固体電解質体は、化学式BaCe1−y3±δ(但し、NはY、Sm、Yb及びNdのうちの少なくとも1種であり、0.1≦y≦0.3、0≦δ<1である。)で表される複合酸化物からなる固体電解質型燃料電池とすることができる。
【0007】
【発明の効果】
本発明の固体電解質型燃料電池では、600℃以下の低温域において安定に電流を取り出すことができる。そのため、発電効率を向上させることができ、周辺部材の長寿命化及び低コスト化等が可能になり、実用的な燃料電池とすることができる。
また、負極が、Pd、Pt、Rh及びRuのうちの少なくとも1種を特定量含有する場合は、600℃以下の低温域においてより安定して電流を取り出すことができる。
更に、正極が特定の化学式で表される複合酸化物からなる場合は、600℃以下の低温域において十分な電流を取り出すことができる。
また、固体電解質体を特定の化学式で表されるBaCeO系固体電解質体とした場合も、600℃以下の低温域においてより安定して電流を取り出すことができる。
【0008】
【発明の実施の形態】
以下、本発明を詳しく説明する。
上記「固体電解質体」は、Ba及びCeを含むペロブスカイト型の結晶構造を有する複合酸化物からなる。この固体電解質体は、BaとCeのみを含む複合酸化物からなるものでもよく、BaとCeの少なくとも一方の一部が他の元素により置換された複合酸化物からなるものでもよい。例えば、化学式BaCe1−y3±δ(但し、NはY、Sm、Gd、Yb及びNdのうちの少なくとも1種であり、0.1≦y≦0.3、0≦δ<1である。)で表される複合酸化物からなる固体電解質体を用いることができる。
【0009】
このようにCeサイトの一部がY、Sm、Gd、Yb、Ndにより置換されたBaCeO系固体電解質体は、低温域においても高いイオン伝導度が維持され、600℃以下の温度域において発電可能な燃料電池とすることができる。Nは特に限定されないが、低温域においてより高い酸素イオン伝導度を有する固体電解質体とすることができるY、Sm、Gdが好ましく、Yがより好ましい。また、yが0.2〜0.3であると固体電解質体のイオン伝導性を更に高めることができるため好ましい。
尚、上記化学式におけるδは酸素過剰量又は酸素欠損量を表す。
【0010】
固体電解質体は平板状であり、その平面形状は特に限定されず、円形、楕円形又は三角形、四角形等の多角形とすることができる。更に、固体電解質体の厚さも特に限定されないが、この厚さにより固体電解質体の電気抵抗が変化する。この電気抵抗は燃料電池の発電性能に影響を及ぼし、一般に固体電解質体が薄いほど電気抵抗が低くなり、発電性能が向上する。一方、機械的強度の観点から固体電解質体の厚さには下限があり、固体電解質体は電気抵抗と機械的強度により適宜の厚さとすることが好ましい。この固体電解質体の厚さは、0.1〜0.7mmとすることができ、0.15〜0.5mm、特に0.2〜0.5mmとすることが好ましい。固体電解質体の厚さが0.1〜0.7mmの範囲であれば、優れた発電性能と所要の機械的強度とを有する燃料電池とすることができる。
【0011】
上記「負極」は、Feを主成分とする。この主成分とは、負極の全質量を100質量%とした場合に、Feが70質量%以上、特に80質量%以上含有されることを意味し、Feが100質量%であってもよい。また、この負極にはPd、Pt、Rh及びRuのうちの少なくとも1種が含有されていることが好ましく、これらの元素のうちではPdが特に好ましい。これらの元素はFeを主成分とする負極の触媒作用を向上させ、燃料電池の電気化学反応が安定に進行するため、より優れた発電性能を有する燃料電池とすることができる。これらの元素の含有量は、1〜10質量%、特に1〜5質量%であることが好ましい。この含有量が1質量%未満では、発電性能が十分に向上せず、10質量%を越える場合は、発電性能が大きく低下する傾向にあるため好ましくない。
【0012】
上記「正極」の材質は特に限定されず、Pt等の金属、La、SrO、Ce、Co、MnO、FeO等の金属酸化物、及び2種以上の金属元素を含む複合酸化物などを用いることができる。この正極は、化学式Ln1−xCoO ±δ(但し、Lnは希土類元素、MはSr又はBaであり、0.2≦x≦0.8、0≦δ<1である。)で表される複合酸化物からなることが好ましい。Lnとしては、La、Ce、Pr、Nd、Sm、Gd及びYb等が挙げられ、特に限定されないが、La、Pr及びSmが好ましい。xは0.3≦x≦0.7、特に0.4≦x≦0.6であることが好ましい。このような複合酸化物としては、例えば、Pr0.5Ba0.5CoO及びSm0.5Sr0.5CoO等が挙げられる。この複合酸化物においてxが0.2未満であると、又は0.8を越えると、特定の固体電解質体及び負極と組み合わせて用いたとしても、600℃以下の低温域において十分な電流を取り出すことができないことがある。
尚、上記化学式におけるδは酸素過剰量又は酸素欠損量を表す。
これら負極及び正極の平面形状は特に限定されず、円形、楕円形及び三角形、四角形等の多角形とすることができる。更に、各々の電極の厚さも特に限定されず、10〜100μm、特に20〜50μmとすることができる。
【0013】
この固体電解質型燃料電池において、負極には、水素、水素源として使用することができる低級炭化水素、又は水素と低級炭化水素との混合ガス等からなる燃料ガスが導入される。また、必要に応じて所定温度の水中を通過させた加湿燃料ガス、及び水蒸気を混合した混合ガス等を用いることもできる。低級炭化水素としては、炭素数が1〜10、好ましくは1〜7、特に好ましくは1〜4の飽和炭化水素及び不飽和炭化水素を用いることができ、飽和炭化水素が特に好ましい。低級炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン等の飽和炭化水素、及びエチレン、プロピレン等の不飽和炭化水素が挙げられる。これらの低級炭化水素は1種のみを用いてもよいし、2種以上を使用してもよく、飽和炭化水素と不飽和炭化水素とを併用してもよい。更に、低級炭化水素に他の気体、例えば、窒素及びアルゴン等の不活性ガスが50体積%以下混在していてもよい。
【0014】
一方、固体電解質型燃料電池の正極には、酸素、又は酸素と他の気体との混合ガスが導入される。この混合ガスとしては、例えば、酸素及び窒素と少量の不活性ガス等との混合ガスである空気が、安全であり、且つ安価であるため特に好ましい。
【0015】
本発明の固体電解質型燃料電池は、例えば、以下のようにして製造することができる。
固体電解質体は、各々の元素の酸化物、炭酸塩等の化合物の粉末と有機溶媒等とを含有する泥漿を使用し、常法に従って成形し、焼成して形成することができる。その後、この固体電解質体の一面に負極が設けられ、他面に正極が設けられるが、これらの電極を形成する順序は限定されない。
【0016】
負極は、酸化鉄等の鉄化合物の粉末を有機溶媒を用いて湿式粉砕し、更に必要に応じて所定量の酸化Pd等の粉末を配合し、混合粉砕して負極用ペーストを調製し、このペーストを固体電解質体の一面にスクリーン印刷等の方法により塗布し、次いで、塗膜を乾燥した後、900〜1200℃で焼き付け処理してなる皮膜が燃料ガスと接触して還元されることにより形成される。
【0017】
正極は、金属粉末、金属酸化物粉末、及び前記の特定の化学式で表される複合酸化物等の粉末を有機溶媒を用いて湿式粉砕して正極用ペーストを調製し、このペーストを固体電解質体の負極が形成された面と反対側の他面にスクリーン印刷等の方法により塗布し、次いで、塗膜を乾燥した後、900〜1200℃で焼き付け処理を行うことにより形成することができる。
【0018】
【実施例】
以下、本発明を具体的に説明する。
(1)燃料電池の性能評価方法
図1のように、円盤形状のBaCeO系固体電解質体1の一面の中央部に円盤形状の負極2が設けられ、他面の中央部に円盤形状の正極3が設けられた固体電解質型燃料電池を使用した。この燃料電池の固体電解質体1の一面と他面の各々の周縁部にシールガラス6を介して外側アルミナ管52を立設させ、また、負極2と正極3のそれぞれに対向させて負極2及び正極3と同じ外径を有する内側アルミナ管51を配設した。そして、負極2に対向して配設された内側アルミナ管51の内部から、この内側アルミナ管51の外周面と外側アルミナ管52の内周面とで形成される空間へと燃料である水素を流通させた。一方、正極3に対向して配設された内側アルミナ管51の内部から、この内側アルミナ管51の外周面と外側アルミナ管52の内周面とで形成される空間へと空気を流通させ、燃料電池としての性能を評価した。
尚、電極の評価に用いた固体電解質体1の側面には、参照極4としてPt線を巻き付けた。
【0019】
また、固体電解質体1を形成する固体電解質としては、BaCe0.750.253±δを使用した。更に、負極は、Fe又はFeにPdを3質量%、5質量%又は10質量%含有させた電極材料により形成し、正極は、Ln1−xCoO ±δにおけるLnが希土類元素のPrであり、MがBaであるPr0.5Ba0.5CoO ±δにより形成した。
【0020】
(2)固体電解質型燃料電池の製造
実施例1〜4及び比較例1
固体電解質型燃料電池として、表1に記載の負極及び正極を備える燃料電池を以下のようにして製造した。
▲1▼固体電解質体の作製
BaCe0.750.253±δからなる固体電解質体は、各々の元素の酸化物又は焼成されて酸化物となるそれぞれの元素の化合物の粉末を配合した泥漿を用いて従来法により成形し、焼成して作製した。この固体電解質体は緻密な焼結体からなり、その形状は直径14mm、厚さ0.5mmの円盤形状である。
【0021】
▲2▼負極の作製
▲1▼で作製した固体電解質体の一面に負極を設けた。この負極2は、実施例1では、酸化鉄粉末を有機溶媒を用いて湿式粉砕して調製した負極用ペーストを、また、実施例2〜4では、酸化鉄粉末を有機溶媒を用いて湿式粉砕した後、所定量の酸化パラジウム粉末を配合し、混合粉砕して調製した負極用ペーストを、それぞれ固体電解質体の一面の中央部にスクリーン印刷法により塗布し、次いで、塗膜を乾燥した後、900℃で焼き付け処理を行うことにより形成した。
尚、Ni−SDCサーメットを用いた比較例1では、負極作製時の焼き付け温度を1200℃とした。
これらの負極は直径8mm、面積0.5cmの円盤形状である。
【0022】
▲3▼正極の作製
▲1▼で作製した固体電解質体の負極を設けた面とは反対の他面に正極を設けた。この正極は、Pr0.5Ba0.5CoO ±δを構成する各々の元素の酸化物又は焼成されて酸化物となるそれぞれの元素の化合物の粉末を配合した泥漿を用いて従来法により成形し、焼成してPr0.5Ba0.5CoO ±δで表される焼結体とし、この焼結体を粉砕し、更に有機溶媒を用いて湿式粉砕して正極用ペーストを調製し、このペーストを固体電解質体の負極が形成された面と反対側の他面の中央部にスクリーン印刷法により塗布し、次いで、塗膜を乾燥した後、900℃で焼き付け処理を行うことにより形成した。
これらの正極は、比較例1及び実施例1〜4で同じ複合酸化物からなり、直径8mm、面積0.5cmの円盤形状である。
【0023】
【表1】

Figure 2004103338
【0024】
(2)において製造された固体電解質型燃料電池は、水素等の燃料ガスを負極へ、空気等の酸素を含むガスを正極へ導入することで、正負の電極間から電力を出力させることができる。尚、負極の作製に用いた酸化鉄と、酸化パラジウムは、燃料ガスを導入し、これと接触させることにより、還元されて負極として作用するようになる。
【0025】
(3)固体電解質型燃料電池の出力密度の評価
(2)において製造した固体電解質型燃料電池を使用し、この燃料電池の出力密度を(1)において説明した方法により評価した。
(1)のような構成の実験装置において、負極側の内側アルミナ管の内部に室温加湿水素ガスを導入し、正極側の内側アルミナ管の内部に空気を導入し、温度600℃にて発電実験を行った。また、比較例1のみ600℃の他、800℃においても実験した。この発電実験において実施例、比較例の各々の電流密度(mA/cm)における端子電圧(mV)から出力密度(mW/cm)の最大値を算出し、表1に併記した。尚、発電実験における室温加湿水素ガスの流量は30mL/分、空気の流量は30mL/分とした。
【0026】
(4)評価結果
表1の結果によれば、Ni−SDCサーメットからなる負極を用いた比較例1では、600℃では出力密度は極めて小さく、800℃以上の作動温度でないと実質的に電流が取り出せないことが分かる。一方、Fe又はFeとPdとを含有する負極を用いた実施例1〜4の場合は、600℃でも十分な出力密度が得られることが分かる。また、Pdの量比が高くなるとともに出力密度が低下する傾向にあるが、Pdの含有量が10質量%である負極を用いた実施例4でも66mW/cmと実用的な出力密度が維持されている。特に、Pdを3質量%含有する負極を用いた実施例2では、Feのみからなる負極を用いた実施例1を上回る出力密度が得られており、より優れた発電性能を有していることが分かる。
【0027】
尚、実施例2で使用した固体電解質型燃料電池では、図2のように、350℃の作動温度でも実質的に発電することができ、特定の負極と正極との組み合わせが、より反応抵抗が小さく、燃料電池の低温作動化に大きく寄与していることが分かる。また、負極に含有させる元素はPdに限定されず、Pt、Rh,Ruでも同様に600℃以下の温度域において実用的な出力密度を得ることができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池の性能評価をするための装置の模式図である。
【図2】実施例2の燃料電池を用いた場合の350〜600℃の温度範囲における電流密度に対する端子電圧及び出力密度を表すグラフである。
【符号の説明】
1;固体電解質体、2;負極、3;正極、4;参照極、51;内側アルミナ管、52;外側アルミナ管、6;シールガラス、71;負極側リード線、72;正極側リード線。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell. More specifically, the present invention relates to a solid oxide fuel cell capable of stably generating power even at a low temperature of 600 ° C. or lower.
[0002]
[Prior art]
In recent years, research on operating a solid oxide fuel cell in a relatively low temperature range of 800 ° C. or less has been actively conducted. This is because the lower the temperature at which the fuel cell can be operated, the better, and the lower the temperature at which power can be generated, the shorter the time until start-up, and the lower the thermal stress when the start and stop are repeated. This is because you can do it. As such a solid oxide fuel cell, BaCe 0.8 Gd 0.2 O 3 is used as a solid electrolyte body, and a negative electrode made of a cermet containing Ni and a BaCe 0.8 Md 0.2 O 3 are used. There has been proposed a device provided with a positive electrode (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-97021 (page 6)
[0004]
[Problems to be solved by the invention]
The negative electrode made of cermet or Ni containing Ni and ceramics described in Patent Document 1 is conventionally used as a preferable electrode in a fuel cell using an oxygen ion conductive solid electrolyte. When this negative electrode is used, a certain amount of current can be taken out at an operating temperature of 800 ° C. or more where the main ion conduction of the BaCeO 3 -based solid electrolyte is oxygen ion conduction. However, at an operating temperature of 600 ° C. or lower, almost no ion can be extracted from the negative electrode containing Ni as a main component because the ion conductive species of the BaCeO 3 -based solid electrolyte becomes almost 100% proton. In addition, since Ni has higher reactivity with the BaCeO 3 -based solid electrolyte body than Fe, there is also a problem that a high-resistance reaction phase is generated when the negative electrode is baked at a high temperature of 900 ° C. or higher.
[0005]
The present invention solves the above-mentioned conventional problems. By combining an electrode made of a material suitable for a BaCeO 3 -based solid electrolyte body, particularly a specific negative electrode, the current can be stably maintained even in a low temperature range of 600 ° C. or less. It is an object of the present invention to provide a solid oxide fuel cell which can take out the fuel cell.
[0006]
[Means for Solving the Problems]
The solid oxide fuel cell according to the present invention includes a solid electrolyte made of a perovskite-type composite oxide containing Ba and Ce, a negative electrode provided on one surface of the solid electrolyte, and provided on the other surface of the solid electrolyte. And a positive electrode, wherein the negative electrode contains Fe as a main component.
Further, a solid oxide fuel cell can be provided in which the negative electrode contains 1 to 10% by mass of at least one of Pd, Pt, Rh and Ru.
Further, the positive electrode has a chemical formula of Ln 1-x M x CoO 3 ± δ (where Ln is a rare earth element, M is Sr or Ba, and 0.2 ≦ x ≦ 0.8 and 0 ≦ δ <1). ) Can be obtained as a solid oxide fuel cell comprising the composite oxide represented by the formula (1).
Further, the solid electrolyte body has a chemical formula of BaCe 1-y N y O 3 ± δ (where N is at least one of Y, Sm, Yb and Nd, and 0.1 ≦ y ≦ 0.3; 0 ≦ δ <1) can be obtained as a solid oxide fuel cell comprising a composite oxide represented by the following formula:
[0007]
【The invention's effect】
In the solid oxide fuel cell of the present invention, a current can be stably obtained in a low temperature range of 600 ° C. or lower. Therefore, the power generation efficiency can be improved, the life of the peripheral members can be prolonged, the cost can be reduced, and a practical fuel cell can be obtained.
When the negative electrode contains a specific amount of at least one of Pd, Pt, Rh, and Ru, current can be more stably obtained in a low temperature range of 600 ° C. or lower.
Further, when the positive electrode is made of a composite oxide represented by a specific chemical formula, a sufficient current can be obtained in a low temperature range of 600 ° C. or lower.
Also, when the solid electrolyte body is a BaCeO 3 -based solid electrolyte body represented by a specific chemical formula, current can be more stably obtained in a low temperature range of 600 ° C. or lower.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The “solid electrolyte body” is made of a composite oxide having a perovskite crystal structure containing Ba and Ce. This solid electrolyte body may be composed of a composite oxide containing only Ba and Ce, or may be composed of a composite oxide in which at least one of Ba and Ce is partially replaced by another element. For example, the chemical formula BaCe 1-y N y O 3 ± δ (where N is at least one of Y, Sm, Gd, Yb and Nd, and 0.1 ≦ y ≦ 0.3, 0 ≦ δ < 1) can be used.
[0009]
In this way, the BaCeO 3 -based solid electrolyte in which a part of the Ce site is substituted by Y, Sm, Gd, Yb, and Nd maintains high ionic conductivity even in a low temperature range and generates power in a temperature range of 600 ° C. or lower. A possible fuel cell can be obtained. N is not particularly limited, but is preferably Y, Sm, or Gd, which can be a solid electrolyte having higher oxygen ion conductivity in a low temperature range, and Y is more preferable. Further, it is preferable that y is 0.2 to 0.3 because the ionic conductivity of the solid electrolyte body can be further increased.
In the above chemical formula, δ represents an oxygen excess or oxygen deficiency.
[0010]
The solid electrolyte body has a flat plate shape, and its planar shape is not particularly limited, and may be a circle, an ellipse, or a polygon such as a triangle or a quadrangle. Further, the thickness of the solid electrolyte body is not particularly limited, but the electrical resistance of the solid electrolyte body changes depending on the thickness. This electric resistance affects the power generation performance of the fuel cell. Generally, the thinner the solid electrolyte body, the lower the electric resistance and the higher the power generation performance. On the other hand, from the viewpoint of mechanical strength, there is a lower limit to the thickness of the solid electrolyte body, and it is preferable that the solid electrolyte body has an appropriate thickness depending on electric resistance and mechanical strength. The thickness of the solid electrolyte body can be 0.1 to 0.7 mm, preferably 0.15 to 0.5 mm, particularly preferably 0.2 to 0.5 mm. When the thickness of the solid electrolyte is in the range of 0.1 to 0.7 mm, a fuel cell having excellent power generation performance and required mechanical strength can be obtained.
[0011]
The "negative electrode" contains Fe as a main component. This main component means that Fe is contained in an amount of 70% by mass or more, particularly 80% by mass or more when the total mass of the negative electrode is 100% by mass, and Fe may be 100% by mass. The negative electrode preferably contains at least one of Pd, Pt, Rh and Ru, and among these elements, Pd is particularly preferable. These elements improve the catalytic action of the negative electrode containing Fe as a main component, and the electrochemical reaction of the fuel cell proceeds stably, whereby a fuel cell having more excellent power generation performance can be obtained. The content of these elements is preferably 1 to 10% by mass, particularly preferably 1 to 5% by mass. When the content is less than 1% by mass, the power generation performance is not sufficiently improved, and when the content is more than 10% by mass, the power generation performance tends to be greatly reduced, which is not preferable.
[0012]
The material of the “positive electrode” is not particularly limited, and a metal such as Pt, a metal oxide such as La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 , FeO, and two or more metals A composite oxide containing an element can be used. This positive electrode has a chemical formula of Ln 1-x M x CoO 3 ± δ (where Ln is a rare earth element, M is Sr or Ba, and 0.2 ≦ x ≦ 0.8 and 0 ≦ δ <1). It is preferable that the composite oxide be represented by the following formula: Examples of Ln include La, Ce, Pr, Nd, Sm, Gd, and Yb, and are not particularly limited, but La, Pr, and Sm are preferable. x is preferably 0.3 ≦ x ≦ 0.7, particularly preferably 0.4 ≦ x ≦ 0.6. Examples of such a composite oxide include Pr 0.5 Ba 0.5 CoO 3 and Sm 0.5 Sr 0.5 CoO 3 . When x is less than 0.2 or exceeds 0.8 in this composite oxide, a sufficient current is taken out in a low temperature range of 600 ° C. or less even when used in combination with a specific solid electrolyte and a negative electrode. You may not be able to do it.
In the above chemical formula, δ represents an oxygen excess or oxygen deficiency.
The planar shapes of the negative electrode and the positive electrode are not particularly limited, and may be a polygon such as a circle, an ellipse, a triangle, and a square. Further, the thickness of each electrode is not particularly limited, and may be 10 to 100 μm, particularly 20 to 50 μm.
[0013]
In this solid oxide fuel cell, a fuel gas composed of hydrogen, a lower hydrocarbon that can be used as a hydrogen source, a mixed gas of hydrogen and a lower hydrocarbon, or the like is introduced into the negative electrode. If necessary, a humidified fuel gas passed through water at a predetermined temperature, a mixed gas obtained by mixing steam, or the like can be used. As the lower hydrocarbon, a saturated hydrocarbon and an unsaturated hydrocarbon having 1 to 10, preferably 1 to 7, particularly preferably 1 to 4 carbon atoms can be used, and saturated hydrocarbon is particularly preferable. Examples of the lower hydrocarbon include saturated hydrocarbons such as methane, ethane, propane, butane, and pentane, and unsaturated hydrocarbons such as ethylene and propylene. One of these lower hydrocarbons may be used alone, two or more thereof may be used, and a saturated hydrocarbon and an unsaturated hydrocarbon may be used in combination. Further, another gas, for example, an inert gas such as nitrogen and argon may be mixed in the lower hydrocarbon at 50% by volume or less.
[0014]
On the other hand, oxygen or a mixed gas of oxygen and another gas is introduced into the positive electrode of the solid oxide fuel cell. As the mixed gas, for example, air, which is a mixed gas of oxygen and nitrogen and a small amount of inert gas, is particularly preferable because it is safe and inexpensive.
[0015]
The solid oxide fuel cell of the present invention can be manufactured, for example, as follows.
The solid electrolyte body can be formed by using a slurry containing a powder of a compound such as an oxide or a carbonate of each element, an organic solvent, and the like, and molding and firing according to a conventional method. Thereafter, a negative electrode is provided on one surface of the solid electrolyte body and a positive electrode is provided on the other surface, but the order in which these electrodes are formed is not limited.
[0016]
The negative electrode is prepared by wet-pulverizing powder of an iron compound such as iron oxide using an organic solvent, further mixing a predetermined amount of powder such as Pd oxide if necessary, mixing and pulverizing to prepare a negative electrode paste, The paste is applied to one surface of the solid electrolyte body by a method such as screen printing, and then, after the coating film is dried, the coating film formed by baking at 900 to 1200 ° C. is formed by contact with fuel gas and reduced. Is done.
[0017]
The positive electrode is prepared by wet-pulverizing a powder such as a metal powder, a metal oxide powder, and a composite oxide represented by the above-described specific chemical formula using an organic solvent to prepare a positive electrode paste. Can be formed by applying a method such as screen printing to the other surface opposite to the surface on which the negative electrode is formed, and then drying and then baking at 900 to 1200 ° C.
[0018]
【Example】
Hereinafter, the present invention will be described specifically.
(1) Performance Evaluation Method of Fuel Cell As shown in FIG. 1, a disk-shaped negative electrode 2 is provided at the center of one surface of a disk-shaped BaCeO 3 -based solid electrolyte body 1, and a disk-shaped negative electrode is provided at the center of the other surface. 3 was used. An outer alumina tube 52 is erected on one side and the other side of the solid electrolyte body 1 of this fuel cell via a seal glass 6, and is opposed to each of the negative electrode 2 and the positive electrode 3. An inner alumina tube 51 having the same outer diameter as the positive electrode 3 was provided. Then, hydrogen as fuel is transferred from the inside of the inner alumina tube 51 disposed opposite to the negative electrode 2 to a space formed by the outer peripheral surface of the inner alumina tube 51 and the inner peripheral surface of the outer alumina tube 52. It was distributed. On the other hand, air is circulated from the inside of the inner alumina tube 51 disposed to face the positive electrode 3 to the space formed by the outer peripheral surface of the inner alumina tube 51 and the inner peripheral surface of the outer alumina tube 52, The performance as a fuel cell was evaluated.
In addition, a Pt wire was wound as a reference electrode 4 on the side surface of the solid electrolyte body 1 used for evaluation of the electrode.
[0019]
Further, BaCe 0.75 Y 0.25 O 3 ± δ was used as a solid electrolyte forming the solid electrolyte body 1. Furthermore, the negative electrode 3 wt% of Pd on Fe or Fe, to form an electrode material which contains 5 wt% or 10 wt%, the positive electrode, Ln 1-x M x CoO 3 Ln at ± [delta] is a rare earth element It was formed of Pr 0.5 Ba 0.5 CoO 3 ± δ where Pr is M and M is Ba.
[0020]
(2) Manufacturing Examples 1 to 4 and Comparative Example 1 of Solid Oxide Fuel Cell
As a solid oxide fuel cell, a fuel cell including the negative electrode and the positive electrode described in Table 1 was manufactured as follows.
{Circle around (1)} Preparation of Solid Electrolyte Body The solid electrolyte body made of BaCe 0.75 Y 0.25 O 3 ± δ is compounded with an oxide of each element or a powder of a compound of each element which becomes an oxide when fired. It was molded by the conventional method using the thus-obtained slurry and fired. This solid electrolyte body is made of a dense sintered body, and has a disk shape of 14 mm in diameter and 0.5 mm in thickness.
[0021]
(2) Preparation of negative electrode A negative electrode was provided on one surface of the solid electrolyte body prepared in (1). In the negative electrode 2, in Example 1, a negative electrode paste prepared by wet-pulverizing iron oxide powder using an organic solvent was used. In Examples 2 to 4, the iron oxide powder was wet-pulverized using an organic solvent. After that, a predetermined amount of palladium oxide powder is blended, and a paste for a negative electrode prepared by mixing and pulverizing is applied to the center of one surface of the solid electrolyte body by a screen printing method, and then, after drying the coating film, It was formed by performing a baking process at 900 ° C.
In Comparative Example 1 using Ni-SDC cermet, the baking temperature at the time of manufacturing the negative electrode was 1200 ° C.
These negative electrodes have a disk shape with a diameter of 8 mm and an area of 0.5 cm 2 .
[0022]
(3) Preparation of positive electrode A positive electrode was provided on the other surface of the solid electrolyte body prepared in (1) opposite to the surface on which the negative electrode was provided. This positive electrode is formed by a conventional method using a slurry in which powder of the oxide of each element constituting Pr 0.5 Ba 0.5 CoO 3 ± δ or the compound of each element which becomes an oxide when fired is blended. It is molded and fired to obtain a sintered body represented by Pr 0.5 Ba 0.5 CoO 3 ± δ , and this sintered body is pulverized and further wet-pulverized using an organic solvent to prepare a paste for a positive electrode. Then, this paste is applied to the central portion of the other surface opposite to the surface on which the negative electrode of the solid electrolyte body is formed by a screen printing method, and then, after drying the coating film, baking treatment is performed at 900 ° C. Formed.
These positive electrodes are made of the same composite oxide in Comparative Example 1 and Examples 1 to 4, and have a disk shape with a diameter of 8 mm and an area of 0.5 cm 2 .
[0023]
[Table 1]
Figure 2004103338
[0024]
The solid oxide fuel cell manufactured in (2) can output power from between the positive and negative electrodes by introducing a fuel gas such as hydrogen to the negative electrode and a gas containing oxygen such as air to the positive electrode. . Note that the iron oxide and palladium oxide used for manufacturing the negative electrode are reduced by acting as a negative electrode by introducing and contacting a fuel gas.
[0025]
(3) Evaluation of output density of solid oxide fuel cell The solid oxide fuel cell manufactured in (2) was used, and the output density of this fuel cell was evaluated by the method described in (1).
In the experimental apparatus having the configuration as in (1), a room-temperature humidified hydrogen gas was introduced into the inner alumina tube on the negative electrode side, and air was introduced into the inner alumina tube on the positive electrode side. Was done. The experiment was performed at 800 ° C. in addition to 600 ° C. only in Comparative Example 1. In this power generation experiment, the maximum value of the output density (mW / cm 2 ) was calculated from the terminal voltage (mV) at the current density (mA / cm 2 ) of each of the example and the comparative example. The flow rate of the room temperature humidified hydrogen gas in the power generation experiment was 30 mL / min, and the flow rate of the air was 30 mL / min.
[0026]
(4) Evaluation Results According to the results shown in Table 1, in Comparative Example 1 using the negative electrode made of Ni-SDC cermet, the output density was extremely low at 600 ° C., and the current was substantially reduced unless the operating temperature was 800 ° C. or higher. It turns out that it cannot be taken out. On the other hand, in Examples 1 to 4 using the negative electrode containing Fe or Fe and Pd, it can be seen that a sufficient output density can be obtained even at 600 ° C. Although the output density tends to decrease as the Pd content ratio increases, the practical output density of 66 mW / cm 2 is maintained in Example 4 using the negative electrode having a Pd content of 10% by mass. Have been. In particular, in Example 2 using the negative electrode containing 3% by mass of Pd, an output density higher than that of Example 1 using the negative electrode consisting of Fe alone was obtained, and the power generation performance was more excellent. I understand.
[0027]
The solid oxide fuel cell used in Example 2 can substantially generate power even at an operating temperature of 350 ° C., as shown in FIG. 2, and a specific combination of a negative electrode and a positive electrode has a higher reaction resistance. It can be seen that it is small and greatly contributes to the low temperature operation of the fuel cell. Further, the element contained in the negative electrode is not limited to Pd, and Pt, Rh, and Ru can similarly obtain a practical output density in a temperature range of 600 ° C. or lower.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for evaluating the performance of a solid oxide fuel cell according to the present invention.
FIG. 2 is a graph showing a terminal voltage and an output density with respect to a current density in a temperature range of 350 to 600 ° C. when the fuel cell of Example 2 is used.
[Explanation of symbols]
1, solid electrolyte body, 2; negative electrode, 3; positive electrode, 4; reference electrode, 51; inner alumina tube, 52; outer alumina tube, 6; seal glass, 71; negative electrode side lead wire, 72; positive electrode side lead wire.

Claims (4)

Ba及びCeを含むペロブスカイト型複合酸化物からなる固体電解質体と、該固体電解質体の一面に設けられた負極と、該固体電解質体の他面に設けられた正極とを備える固体電解質型燃料電池であって、該負極はFeを主成分とすることを特徴とする固体電解質型燃料電池。A solid oxide fuel cell comprising: a solid electrolyte made of a perovskite-type composite oxide containing Ba and Ce; a negative electrode provided on one surface of the solid electrolyte; and a positive electrode provided on the other surface of the solid electrolyte. Wherein the negative electrode contains Fe as a main component. 上記負極が、Pd、Pt、Rh及びRuのうちの少なくとも1種を1〜10質量%含有する請求項1に記載の固体電解質型燃料電池。The solid oxide fuel cell according to claim 1, wherein the negative electrode contains at least one of Pd, Pt, Rh, and Ru in an amount of 1 to 10% by mass. 上記正極は、化学式Ln1−xCoO3±δ(但し、Lnは希土類元素、MはSr又はBaであり、0.2≦x≦0.8、0≦δ<1である。)で表される複合酸化物からなる請求項1又は2に記載の固体電解質型燃料電池。The positive electrode has a chemical formula of Ln 1-x M x CoO 3 ± δ (where Ln is a rare earth element, M is Sr or Ba, and 0.2 ≦ x ≦ 0.8 and 0 ≦ δ <1). The solid oxide fuel cell according to claim 1, comprising a composite oxide represented by the following formula: 上記固体電解質体は、化学式BaCe1−y3±δ(但し、NはY、Sm、Yb及びNdのうちの少なくとも1種であり、0.1≦y≦0.3、0≦δ<1である。)で表される複合酸化物からなる請求項1乃至3のうちのいずれか1項に記載の固体電解質型燃料電池。The solid electrolyte body has a chemical formula of BaCe 1-y N y O 3 ± δ (where N is at least one of Y, Sm, Yb and Nd, and 0.1 ≦ y ≦ 0.3, 0 ≦ The solid oxide fuel cell according to any one of claims 1 to 3, comprising a composite oxide represented by δ <1.
JP2002261934A 2002-09-06 2002-09-06 Solid electrolyte fuel cell Pending JP2004103338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261934A JP2004103338A (en) 2002-09-06 2002-09-06 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261934A JP2004103338A (en) 2002-09-06 2002-09-06 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2004103338A true JP2004103338A (en) 2004-04-02

Family

ID=32262160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261934A Pending JP2004103338A (en) 2002-09-06 2002-09-06 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2004103338A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104278A2 (en) * 2004-04-23 2005-11-03 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell and process of the same
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
JP2007172846A (en) * 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology Tube type electrochemical reactor cell and electrochemical reaction system composed by it
JP2013543835A (en) * 2010-11-12 2013-12-09 ザ ユニバーシティ オブ リバプール Mixed metal oxide
WO2018230247A1 (en) * 2017-06-15 2018-12-20 住友電気工業株式会社 Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for producing solid electrolyte member
KR20190118867A (en) * 2018-04-11 2019-10-21 현대자동차주식회사 Antioxidant for polymer electrolyte membrane fuel cell, electrolyte including the same, and membrane-electrode assembly for vehicle including the same
RU2794192C1 (en) * 2023-01-12 2023-04-12 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Solid oxide electrolyte material with proton conductivity based on neodymium barium indate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104278A2 (en) * 2004-04-23 2005-11-03 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell and process of the same
WO2005104278A3 (en) * 2004-04-23 2006-01-05 Toyota Motor Co Ltd Cathode for fuel cell and process of the same
US8257882B2 (en) 2004-04-23 2012-09-04 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell and process of the same
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
JP2007172846A (en) * 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology Tube type electrochemical reactor cell and electrochemical reaction system composed by it
JP2013543835A (en) * 2010-11-12 2013-12-09 ザ ユニバーシティ オブ リバプール Mixed metal oxide
WO2018230247A1 (en) * 2017-06-15 2018-12-20 住友電気工業株式会社 Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for producing solid electrolyte member
KR20190118867A (en) * 2018-04-11 2019-10-21 현대자동차주식회사 Antioxidant for polymer electrolyte membrane fuel cell, electrolyte including the same, and membrane-electrode assembly for vehicle including the same
CN110364756A (en) * 2018-04-11 2019-10-22 现代自动车株式会社 For the antioxidant of polymer dielectric film fuel cell, including its electrolyte, and including its vehicle membrane electrode assembly
KR102621519B1 (en) * 2018-04-11 2024-01-04 현대자동차주식회사 Antioxidant for polymer electrolyte membrane fuel cell, electrolyte including the same, and membrane-electrode assembly for vehicle including the same
RU2794192C1 (en) * 2023-01-12 2023-04-12 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Solid oxide electrolyte material with proton conductivity based on neodymium barium indate

Similar Documents

Publication Publication Date Title
JP4931362B2 (en) Fuel cell and fuel cell
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
JP2002280015A (en) Single room type solid electrolyte fuel cell and its manufacturing method
JP2000133280A (en) Anode for high performance solid oxide fuel cell
JP2001351646A (en) LaGaO3 SOLID ELECTROLYTE FUEL CELL
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP4904568B2 (en) Single-chamber solid electrolyte fuel cell and method for manufacturing the same
JP4395567B2 (en) Electrochemical element and exhaust gas purification method
JP2004103338A (en) Solid electrolyte fuel cell
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
JP4706997B2 (en) Fuel electrode material for solid oxide fuel cell and solid oxide fuel cell
JP4390530B2 (en) Electrolyte / electrode assembly and method for producing the same
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
Afzal et al. Lanthanum-doped calcium manganite (La0. 1Ca0. 9MnO3) cathode for advanced solid oxide fuel cell (SOFC)
JP6315581B2 (en) Cathode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the cathode
JP2007042422A (en) Electrode material containing copper oxide particles and manufacturing method for fuel electrode for solid oxide fuel cell using it
JP2004335131A (en) Fuel electrode for solid oxide fuel cell and its manufacturing method
JP6625856B2 (en) Steam electrolysis cell
JP6377535B2 (en) Proton conducting fuel cell
JP6367636B2 (en) Steam electrolysis cell
KR101691699B1 (en) Method for manufacturing powder for anode functional layer of solid oxide fuel cell
JP2004134131A (en) Fuel cell
JP4390531B2 (en) Electrolyte / electrode assembly
Sumi et al. Development of microtubular SOFCs for portable power sources

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606