JP4900747B2 - Single-chamber solid electrolyte fuel cell and method for manufacturing the same - Google Patents

Single-chamber solid electrolyte fuel cell and method for manufacturing the same Download PDF

Info

Publication number
JP4900747B2
JP4900747B2 JP2001081450A JP2001081450A JP4900747B2 JP 4900747 B2 JP4900747 B2 JP 4900747B2 JP 2001081450 A JP2001081450 A JP 2001081450A JP 2001081450 A JP2001081450 A JP 2001081450A JP 4900747 B2 JP4900747 B2 JP 4900747B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
chamber
fuel cell
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001081450A
Other languages
Japanese (ja)
Other versions
JP2002280015A (en
Inventor
高士 日比野
志郎 柿元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Spark Plug Co Ltd
Priority to JP2001081450A priority Critical patent/JP4900747B2/en
Publication of JP2002280015A publication Critical patent/JP2002280015A/en
Application granted granted Critical
Publication of JP4900747B2 publication Critical patent/JP4900747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、単室型と装置構造が単純であるため、これまで必要とされてきたガスシール材及びセパレーター材等を使用しなくても良い単室型固体電解質型燃料電池に関する。更に詳しくは、電解質を薄膜にする必要がなく、従来より低温度であっても安定した大電流を出力することができる単室型固体電解質型燃料電池に関する。
【0002】
【従来の技術】
従来の固体電解質型燃料電池は、ニッケル−ジルコニアサーメット負極に水素やメタンなどの燃料ガス、酸化マンガンランタン正極に空気を別々に供給する二室型方式でなければ、発電することかできなかった。このため、ガスシール材やセパレータ材を必要として装置が複雑になるばかりか、これらとジルコニア電解質、正極、負極間の固相反応により劣化を起こし、電池の寿命が短かった。
【0003】
また、この欠点を解決しようと、燃料ガスと空気を予め混合し、このガス中で発電できる、単室型方式の固体電解質型燃料電池が開発されたが、酸素イオン伝導性固体電解質の電極にパラジウムもしくは白金、金といった非実用的な電極部材を使用しなければならなかった(特許2810977号公報参照)。
【0004】
更に、単室型固体電解質型燃料電池セルの発電開始温度は、起動までの時間を短くすることができ、起動と停止を繰り返したときの熱応力、及びそれに伴う劣化を低減できるといったメリットがあるため、より低い方が好ましい。また、メタンは一般の都市ガスの主成分であることから、単室型固体電解質型燃料電池のガス原料として入手が容易で好適である。
【0005】
このため、近年は単室型固体電解質型燃料電池を700℃以下という比較的低温で作動させる研究が活発となっている。例えば、本発明者らがJournal of The Electrochemical Society,147(8)2888-2892(2000)にて提案した単室型固体電解質型燃料電池は、La0.9Sr0.1Ga0.8Mg0.22.85(以下、LSGMとする)やCe0.8Sm0.21.9(以下、SDCとする)を電解質とし、Ni−SDCとSm0.8Sr0.5CoO3 ±δを電極として用いることで、600℃以上であればメタンや低級炭化水素と、酸素とを混合したガス内で安定した電流出力が得られることを示した。
【0006】
【発明が解決しようとする課題】
しかし、上に示した単室型固体電解質型燃料電池は、電解質の両面に電極を形成するため、電解質を極力薄く形成しないと高い出力が得られず、電解質材料の強度が弱い場合にはセル破損に至る懸念があった。
本発明は、このような問題点を解決するものであり、電解質を薄く形成しなくても600℃以下で比較的高い電流を安定して得ることができる単室型固体電解質型燃料電池及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の単室型固体電解質型燃料電池は、単室内において酸素イオン伝導性固体電解質の同一面に正極及び負極を設けた単室型電池構造を持ち、炭化水素と空気の混合ガスを導入することにより発電が可能な単室型固体酸化物型燃料電池であって、該正極は、ストロンチウムをドープしたLn1−xSrCoO3±δ(ただし、Lnは希土類元素、0.2≦x≦0.8、δは酸素欠損等の量であって、0≦δ<1)からなり、該負極は、ニッケルと、酸化セリウムを主体とする複酸化物と、パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種と、を含み、上記パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種の含有比率は、1〜10質量%であり、該酸素イオン伝導性固体電解質は、少なくとも該正極及び該負極が接触する面における表面粗さRaが2.0×10−6m以下(更に好ましくは1.6×10−6m以下、特に好ましくは0.2×10−6m以下)であることを特徴とする。
また、ここでいう表面粗さRaは、JIS B0601でいう中心線平均粗さである。
【0008】
単室型固体酸化物型燃料電池の製造方法は、単室内において酸素イオン伝導性固体電解質の同一面に正極及び負極を設けた単室型電池構造を持ち、炭化水素と空気の混合ガスを導入することにより発電が可能な単室型固体酸化物型燃料電池であって、酸化ニッケル粉末と酸化セリウムを主体とする複酸化物粉末とを、有機溶媒中で混合粉砕した後、パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種の粉末を負極における含有量が1〜10重量%となるように加えて混合粉砕してペースト状の負極電極材を調製し、これを上記酸素イオン伝導性固体電解質の一方の面に焼き付けて負極を形成し、次いで、Ln1−xSrCoO3±δ(ただし、Lnは希土類元素、0.2≦x≦0.8、δは酸素欠損等の量であって、0≦δ<1)を有機溶媒中で混合粉砕してペースト状の正極電極材を調製し、これを該酸素イオン伝導性固体電解質の同一面に焼き付けて正極を形成することを特徴とする。
【0009】
酸素イオン伝導性固体電解質には、安定化ジルコニアなど一般に高い酸素イオン伝導度を示す酸素イオン伝導性固体電解質が使用できるが、低温域でも高い発電性能を得るためには、低温域でもより高いイオン伝導度を示す酸素イオン伝導性固体電解質が好ましい。
この例として、Ce1-yLny2- δ〔希土類元素(LnはSm、Gd又はY)、0.1≦y≦0.3、δは酸素欠損量であって、0≦δ<1〕又はLa1-zSrzGa1-wMgw3- δ(0.1≦w≦0.3、0.1≦z≦0.3、δは酸素欠損量であって、0≦δ<1)を挙げることができる。更に、これらの具体例として、サマリウムをドープした酸化セリウム(例えばSDC:Ce0.8Sm0.21.9)、及びLaサイトにSrをドープし、GaサイトにMgをドープした酸化ランタン・ガリウム(例えばLSGM:La0.9Sr0.1Ga0.8Mg0.22.85)を挙げることができる。
【0010】
また、酸素イオン伝導性固体電解質の同一面に両電極を配置した場合には、電極と接触した固体の表面近傍が酸素イオンの伝導パスとなる。このとき表面粗度によって伝導度合が大きく変化する。酸素イオン伝導性固体電解質の少なくとも各電極が接触する面の表面粗さRaを2.0×10-6m以下にすることで、酸素イオンの伝導パスが十分に短くなる。また、電極との接触抵抗が小さくなるため、高い出力が得られるようになる。
【0011】
更に、上記正極及び上記負極の間隙が100μm〜3mmとすることができる。電極の間隙の大小によって電気的抵抗値が左右され、小さくするほど電気的抵抗値が抵抗が低くなり高い発電性能が得られる。しかし、電極の間隙を小さくしすぎると短絡等の不都合が著しく起きやすくなるため、上記範囲の間隙とすることで、短絡等が起きにくいものとしつつ、低い電気的抵抗値となるようにした。
【0012】
本単室型固体電解質型燃料電池の上記負極は、ニッケルと、酸化セリウムを主体とする複酸化物とを含むものであればよく、酸化セリウムを主体とする複酸化物として、Ce1−yLn2−δ(LnはSm、Gd又はY、0.1≦y≦0.3、δは酸素欠損量であって、0≦δ<1、更に具体的にはCe0.8Sm0.21.9)を例示できる。
また負極はパラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種を含む。これらの金属を少量添加することで、ニッケル系電極である負極の触媒作用に影響を及ぼし、高い発電性能を得ることができる。更に、上記金属のうちではパラジウムが最も好ましい。
また、上記パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種の含有比率は、1〜10質量%(好ましくは、1〜7質量%、特に好ましくは、1〜5質量%)である
上記正極に用いるLn1−xSrCoO3±δ中のLnで表す希土類元素は、ランタン(La)又はサマリウム(Sm)が好ましい。また、これらの例として、La0.6Sr0.4CoO3±δとSm0.5Sr0.5CoO3±δを挙げることができる。
【0013】
〔作用〕
本発明の単室型固体電解質型燃料電池は、図1及び図2に示すように酸素イオン伝導性固体電解質1の同一面に、正極2及び負極3を設けた構造であり、炭化水素と空気の混合ガス中で発電が可能な単室型燃料電池である。
このような単室型燃料電池においては、発電可能な温度がより低いほど、短時間で起動できるとともに、起動と停止を繰り返したときの熱応力を低減できるといったメリットがあるが、固体電解質の両面に電極を配した構造では、低温で高出力を得るには、酸素イオン伝導性固体電解質を薄く形成する必要がある。
【0014】
このため本発明では、酸素イオン伝導性固体電解質の同一面に両電極を近接して配置することで、酸素イオン伝導性固体電解質を薄くすることはなく、低温でも高出力を得ることができた。このため、酸素イオン伝導性固体電解質の厚みを任意に選択可能となり、十分な機械的強度を容易に確保することができる。
【0015】
また、双方の電極材料の選定を行い、ストロンチウムをドープしたLn1-xSrxCoO3 ±δの正極と、ニッケルと、酸化セリウムを主体とする複酸化物とを含む負極を用いることで低温で高い出力を得ることができた。
【0016】
単室型固体電解質型燃料電池において、より低温域(600℃以下)で安定に発電させるためには、低温域でもニッケル系電極上で部分酸化反応(例えば2CH4+O2→2H2+2CO)を効率よく生成させる必要がある。この時、ニッケルに酸化セリウムを主体とする複酸化物を添加した電極に、パラジウム、白金、ロジウム、イリジウムから選ばれる少なくとも一種を少量添加すると、上記の部分酸化反応が効率よく進行し安定な発電が可能になる。このパラジウム等の添加は一種の触媒作用と考えられる。
【0017】
【発明の実施の形態】
以下、図1〜4を用いて本発明の単室型固体電解質型燃料電池を実施例により更に詳しく説明する。
1.単室型固体電解質型燃料電池の構成
本発明の単室型固体電解質型燃料電池は、図1及び図2に示すように、円盤状の酸素イオン伝導性固体電解質1の同一面に、それぞれ正極2及び負極3を備える構成である。また、本単室型固体電解質型燃料電池は、アルミナ管4中に収め、このアルミナ管4にメタンと空気の混合気体を流通させた状態で使用する。
【0018】
酸素イオン伝導性固体電解質1は、La1-zSrzGa1-wMgw3- δやCe1-yLny2- δが使用できるが、本実施例ではLSGM又はSDCを用いた。また、正極2は、ストロンチウムをドープしたLn1-xSrxCoO3 ±δ(Ln:希土類元素、特にLa又はSm)であり、Sm0.5Sr0.5CoO3 ±δを用いた。更に、負極3は、ニッケルと、サマリウムをドープした酸化セリウムの混合物(Ce1-ySmy2- δ)とにパラジウムを1質量%添加した電極である。サマリウムをドープした酸化セリウムの混合物は、SDC(Ce0.8Sm0.21.9)を用いた。また、NiとSDCの混合比は重量比で7:3とした。
また、正極2及び負極3は図2に示すように、所定の空隙ができるよう、間隔を空けて設けられている。
【0019】
2.単室型固体電解質型燃料電池の作製
本単室型固体電解質型燃料電池を次に示すように作製した。
始めは、酸素イオン伝導性固体電解質1の表面に負極3を形成する。酸化ニッケル粉末とSDC粉末を所定量秤量し、適当な有機溶媒を用いて混合粉砕した後、所定量の酸化パラジウム粉末を加えて混合粉砕してペースト状の電極材を調製する。これを酸素イオン伝導性固体電解質1上にスクリーン印刷し、1400℃にて焼き付け処理を行った。
【0020】
次いで、酸素イオン伝導性固体電解質1の負極3が形成された面の同じ側に負極との間に所定の間隙を空けて正極2を形成する。Ln1-xSrxCoO3 ±δ(ここでは、Sm0.5Sr0.5CoO3 ±δを使用した。)を有機溶媒に溶解させて粉砕してペースト状の電極材を調製する。これを酸素イオン伝導性固体電解質1の負極3と反対側の面にスクリーン印刷し、900℃にて焼き付け処理を行った。
【0021】
また、必要に応じて還元処理を行ってもよいし、行わずに使用することができる。還元処理を行う場合、各電極2、3が形成された酸素イオン伝導性固体電解質1を450〜550℃の温度でH2ガスを導入し、負極3の酸化ニッケル及び酸化パラジウムの還元処理を行う。また、還元処理を行わない場合であっても、流通する混合ガスがCH4+1/2O2→2H2+COの反応を起こし、還元雰囲気となり酸化ニッケル及び酸化パラジウムの還元が起き、出力を得ることができるようになる。
このように作製された単室型固体電解質型燃料電池は、メタンと酸素の混合ガスを導入することで、正負の電極から電力出力を得ることができる。
【0022】
3.単室型固体電解質型燃料電池の評価
(1)電解質の表面粗度の検討
酸素イオン伝導性固体電解質1としてSDCを用いた単室型固体電解質型燃料電池において、電極形成面の面粗度に応じた出力特性の変化を調べた。
測定に用いた単室型固体電解質型燃料電池の酸素イオン伝導性固体電解質1は、□7×10-3m、厚さ0.8×10-3mであり、表面の研磨によって表面粗さRaを、0.06×10-6、0.2×10-6、0.8×10-6、及び1.6×10-6mの4種類を用意した。
【0023】
また、負極3は幅1×10-3m、長さ5×10-3mのNi−SDC(7:3)である。正極2は、幅1×10-3m、長さ5×10-3mのSm0.5Sr0.5CoO3 ±δである。更に、これら電極の間隙は1mmである。また、使用した混合ガスの組成をエタン:酸素=1:1とし、600℃にて発電試験を行った。
【0024】
図3に示すように、いずれの表面粗度であっても、最大700W/m2以上と大きな出力が得られることがわかった。また、表面粗度Raが小さくなるほど出力が大きくなり、Raが0.2×10-6mでは約750W/m2、0.06×10-6mでは約900W/m2となった。このことから、表面粗さRaが2.0×10-6m以下であれば最大600W/m2以上の出力が望められ、十分な出力が得られることがわかる。
【0025】
(2)電極の間隙の検討
正極2と負極3の間隙による出力の検討を行った。酸素イオン伝導性固体電解質1は、□7×10-3m、厚さ0.8×10-3m、表面粗さRa0.06×10-6mとした。
また、負極3は幅0.5×10-3m、長さ5×10-3mのNi−SDC(7:3)である。正極2は、幅0.5×10-3m、長さ5×10-3mのSm0.5Sr0.5CoO3 ±δである。更に、これら電極の間隙は、0.5×10-3、1.0×10-3、1.5×10-3m、及び3.0×10-3mとした。
また、使用した混合ガスの組成をエタン:酸素=1:1とし、600℃にて発電試験を行った。
【0026】
上記条件にて試験を行った結果を図4に示す。図4に示すように、電極の間隔が3.0×10-3mでは約500W/m2、0.5×10-3mでは約1950W/m2と、狭いほど高出力となった。また、間隔が3.0×10-3m以下であれば約500W/m2以上の十分な出力が得られることがわかった。
【0027】
(3)パラジウム添加量の検討
負極のパラジウムの添加量を様々に変化させた単室型固体電解質型燃料電池における、開回路電圧と最大出力密度を求めた結果を表1に示す。使用した単室型固体電解質型燃料電池は、酸素イオン伝導性固体電解質1としてSDCを用い、□7×10-3m、厚さ0.8×10-3m、表面粗さRa0.06×10-6mとした。
また、負極3は幅0.5×10-3m、長さ5×10-3mであり、Pdを表1に示す割合で添加したNi−SDC(7:3)である。正極2は、幅0.5×10-3m、長さ5×10-3mのSm0.5Sr0.5CoO3 ±δである。更に、これら電極の間隙は1mmである。また、使用した混合ガスの組成をエタン:酸素=2:1とし、550℃にて発電試験を行った。
【0028】
【表1】

Figure 0004900747
【0029】
表1に示すように、Pd添加量が1〜10質量%の範囲で、1050W/m2以上の高い発電性能を得ることができた。また、1〜7質量%の範囲では1080W/m2以上、1〜5質量%の範囲では1100W/m2以上の特に高い発電性能を得ることができた。更に、パラジウムをロジウム、白金、ルテニウム及びイリジウムに置き換えても、1〜10質量%の範囲で高い発電性能を得ることができる。
【0030】
【発明の効果】
本発明の単室型固体電解質型燃料電池によれば、600℃以下の温度域でも十分な機械的強度を備えた厚みの酸素イオン伝導性固体電解質を使用して安定した発電を行うことができる。また、十分な機械的強度を備えるため、より信頼性の高い電池が構成できる。このことから、電池本体及び周辺部材の長寿命化と低コスト化などが可能になり、高信頼性の燃料電池を容易に実用化することができる。
【0031】
更に、電極の間隙を所定の範囲とすることで、高い出力を備えつつ、短絡等を抑制することができる。また、負極にパラジウム等の金属をドープすることで、600℃以下の温度域でも安定した発電を行うことができる。
【図面の簡単な説明】
【図1】 本単室型固体電解質型燃料電池の説明をするための模式図である。
【図2】 本単室型固体電解質型燃料電池の説明をするための模式図である。
【図3】 酸素イオン伝導性固体電解質の表面粗度による本単室型固体電解質型燃料電池の出力変化を説明するためのグラフである。
【図4】 正極と負極の間隙による本単室型固体電解質型燃料電池の出力変化を説明するためのグラフである。
【符号の説明】
1;酸素イオン伝導性固体電解質、2;正極、3;負極、4;アルミナ管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single-chamber solid electrolyte fuel cell that does not require the use of a gas seal material, a separator material, and the like that have been required so far because the single-chamber type and the device structure are simple. More specifically, the present invention relates to a single-chamber solid electrolyte fuel cell that does not require a thin electrolyte and can output a stable large current even at a lower temperature than in the past.
[0002]
[Prior art]
A conventional solid oxide fuel cell could not generate electric power unless it was a two-chamber type system in which a fuel gas such as hydrogen or methane was separately supplied to a nickel-zirconia cermet negative electrode and air was separately supplied to a manganese lanthanum positive electrode. For this reason, not only the apparatus becomes complicated by requiring a gas seal material and a separator material, but also a deterioration occurs due to a solid phase reaction between these, a zirconia electrolyte, a positive electrode, and a negative electrode, resulting in a short battery life.
[0003]
In order to solve this drawback, a single-chamber type solid oxide fuel cell that can mix fuel gas and air in advance and generate power in this gas has been developed. An impractical electrode member such as palladium, platinum, or gold had to be used (see Japanese Patent No. 2810977).
[0004]
Furthermore, the power generation start temperature of the single-chamber solid electrolyte fuel cell can shorten the time until start-up, and has the merit that thermal stress and repeated deterioration can be reduced when start-up and stop are repeated. Therefore, the lower one is preferable. In addition, since methane is a main component of general city gas, it is easily available and suitable as a gas raw material for a single-chamber solid electrolyte fuel cell.
[0005]
For this reason, in recent years, research into operating a single-chamber solid electrolyte fuel cell at a relatively low temperature of 700 ° C. or less has become active. For example, the single-chamber solid electrolyte fuel cell proposed by the present inventors in the Journal of The Electrochemical Society, 147 (8) 2888-2892 (2000) is La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 (hereinafter, LSGM) or Ce 0.8 Sm 0.2 O 1.9 (hereinafter referred to as SDC) as an electrolyte, and Ni-SDC and Sm 0.8 Sr 0.5 CoO 3 ± δ as electrodes. It was shown that a stable current output can be obtained in a gas in which hydrocarbon and oxygen are mixed.
[0006]
[Problems to be solved by the invention]
However, since the single-chamber solid electrolyte fuel cell shown above forms electrodes on both sides of the electrolyte, high output cannot be obtained unless the electrolyte is made as thin as possible. There was a concern leading to breakage.
The present invention solves such problems, and a single-chamber solid electrolyte fuel cell capable of stably obtaining a relatively high current at 600 ° C. or lower without forming a thin electrolyte and its An object is to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
The single-chamber solid electrolyte fuel cell of the present invention has a single-chamber battery structure in which a positive electrode and a negative electrode are provided on the same surface of an oxygen ion conductive solid electrolyte in a single chamber, and introduces a mixed gas of hydrocarbon and air. The positive electrode has a strontium-doped Ln 1-x Sr x CoO 3 ± δ (where Ln is a rare earth element, 0.2 ≦ x ≦ 0.8, δ is the amount of oxygen deficiency, etc., and 0 ≦ δ <1), the negative electrode is nickel, a double oxide mainly composed of cerium oxide , palladium, platinum, rhodium, iridium and wherein the at least one selected from ruthenium, the palladium, platinum, rhodium, at least one content ratio selected from iridium and ruthenium, from 1 to 10 wt%, the oxygen ion Den Sex solid electrolyte, at least a surface roughness Ra of the surface of positive electrode and negative electrode are in contact with 2.0 × 10 -6 m or less (more preferably 1.6 × 10 -6 m or less, particularly preferably 0.2 × 10 −6 m or less).
Moreover, the surface roughness Ra here is a centerline average roughness as defined in JIS B0601.
[0008]
The single-chamber solid oxide fuel cell manufacturing method has a single-chamber cell structure in which a positive electrode and a negative electrode are provided on the same surface of an oxygen ion conductive solid electrolyte in a single chamber, and a mixed gas of hydrocarbon and air is introduced. A single-chamber solid oxide fuel cell capable of generating electric power by mixing and pulverizing nickel oxide powder and double oxide powder mainly composed of cerium oxide in an organic solvent, followed by palladium, platinum At least one powder selected from rhodium, iridium and ruthenium is added so that the content in the negative electrode is 1 to 10% by weight, mixed and pulverized to prepare a paste-like negative electrode material, baked on one surface sex solid electrolyte to form a cathode, then, Ln 1-x Sr x CoO 3 ± δ ( although, Ln is a rare earth element, 0.2 ≦ x ≦ 0.8, δ is oxygen defect or the like A paste-like positive electrode material is prepared by mixing and pulverizing 0 ≦ δ <1) in an organic solvent and baking this on the same surface of the oxygen ion conductive solid electrolyte to form a positive electrode It is characterized by.
[0009]
The oxygen ion conductive solid electrolyte can be an oxygen ion conductive solid electrolyte that generally shows high oxygen ion conductivity, such as stabilized zirconia, but in order to obtain high power generation performance even at low temperatures, higher ions can be used at low temperatures. An oxygen ion conductive solid electrolyte exhibiting conductivity is preferred.
As this example, Ce 1-y Ln y O 2- δ [rare earth element (Ln is Sm, Gd or Y), 0.1 ≦ y ≦ 0.3 , δ is oxygen defect amount, 0 ≦ δ < 1] or La 1-z Sr z Ga 1-w Mg w O 3− δ (0.1 ≦ w ≦ 0.3, 0.1 ≦ z ≦ 0.3, δ is the amount of oxygen deficiency, and 0 ≦ δ <1). Further, specific examples of these include cerium oxide doped with samarium (eg, SDC: Ce 0.8 Sm 0.2 O 1.9 ), and lanthanum gallium oxide doped with Sr at the La site and Mg doped at the Ga site (eg, LSGM: La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 ).
[0010]
Further, when both electrodes are arranged on the same surface of the oxygen ion conductive solid electrolyte, the vicinity of the surface of the solid in contact with the electrode serves as a conduction path for oxygen ions. At this time, the conductivity varies greatly depending on the surface roughness. By setting the surface roughness Ra of at least the surface of the oxygen ion conductive solid electrolyte in contact with each electrode to 2.0 × 10 −6 m or less, the oxygen ion conduction path becomes sufficiently short. Further, since the contact resistance with the electrode is reduced, a high output can be obtained.
[0011]
Furthermore, the gap between the positive electrode and the negative electrode can be 100 μm to 3 mm. The electrical resistance value depends on the size of the gap between the electrodes, and the smaller the electrical resistance value, the lower the electrical resistance value and the higher the power generation performance. However, if the gap between the electrodes is too small, inconveniences such as a short circuit are likely to occur. Therefore, by setting the gap within the above range, a short circuit or the like is difficult to occur and a low electrical resistance value is obtained.
[0012]
The negative electrode of the present single-chamber solid electrolyte fuel cell only needs to contain nickel and a double oxide mainly composed of cerium oxide. As the double oxide mainly composed of cerium oxide, Ce 1-y Ln y O 2−δ (Ln is Sm, Gd or Y, 0.1 ≦ y ≦ 0.3, δ is the amount of oxygen deficiency, and 0 ≦ δ <1, more specifically Ce 0.8 Sm. 0.2 O 1.9 ).
The negative electrode contains at least one selected from palladium, platinum, rhodium, iridium and ruthenium. By adding a small amount of these metals, the catalytic action of the negative electrode, which is a nickel-based electrode, is affected, and high power generation performance can be obtained. Further, among the above metals, palladium is most preferable.
Further, the palladium, platinum, rhodium, at least one content ratio selected from iridium and ruthenium, from 1 to 10% by weight (preferably 1 to 7 mass%, particularly preferably 1 to 5 mass%) is.
The rare earth element represented by Ln in Ln 1-x Sr x CoO 3 ± δ used for the positive electrode is preferably lanthanum (La) or samarium (Sm). Examples of these include La 0.6 Sr 0.4 CoO 3 ± δ and Sm 0.5 Sr 0.5 CoO 3 ± δ .
[0013]
[Action]
The single-chamber solid electrolyte fuel cell of the present invention has a structure in which a positive electrode 2 and a negative electrode 3 are provided on the same surface of an oxygen ion conductive solid electrolyte 1 as shown in FIGS. This is a single-chamber fuel cell capable of generating power in the mixed gas.
In such a single-chamber fuel cell, the lower the temperature at which power can be generated, the shorter the time it can start, and the advantage that it can reduce the thermal stress when it is repeatedly started and stopped. In the structure in which the electrode is arranged on the electrode, it is necessary to form a thin oxygen ion conductive solid electrolyte in order to obtain a high output at a low temperature.
[0014]
For this reason, in the present invention, by arranging both electrodes close to each other on the same surface of the oxygen ion conductive solid electrolyte, the oxygen ion conductive solid electrolyte is not made thin, and a high output can be obtained even at a low temperature. . Therefore, the thickness of the oxygen ion conductive solid electrolyte can be arbitrarily selected, and sufficient mechanical strength can be easily ensured.
[0015]
In addition, both electrode materials are selected, and a strontium-doped Ln 1-x Sr x CoO 3 ± δ positive electrode, a negative electrode containing nickel and a double oxide mainly composed of cerium oxide, is used at a low temperature. High output was obtained.
[0016]
In a single-chamber solid electrolyte fuel cell, in order to generate power stably at a lower temperature (600 ° C. or lower), a partial oxidation reaction (for example, 2CH 4 + O 2 → 2H 2 + 2CO) is performed on a nickel-based electrode even at a lower temperature. It is necessary to generate efficiently. At this time, if a small amount of at least one selected from palladium, platinum, rhodium and iridium is added to an electrode in which a double oxide mainly composed of cerium oxide is added to nickel, the partial oxidation reaction proceeds efficiently and stable power generation is achieved. Is possible. The addition of palladium or the like is considered as a kind of catalytic action.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the single-chamber solid electrolyte fuel cell of the present invention will be described in more detail with reference to FIGS.
1. Configuration of Single Chamber Solid Electrolyte Fuel Cell As shown in FIGS. 1 and 2, the single chamber solid electrolyte fuel cell of the present invention has a positive electrode on the same surface of a disk-shaped oxygen ion conductive solid electrolyte 1 respectively. 2 and the negative electrode 3. The single-chamber solid electrolyte fuel cell is housed in an alumina tube 4 and used in a state where a mixed gas of methane and air is circulated through the alumina tube 4.
[0018]
Oxygen ion conductive solid electrolyte 1 is La 1-z Sr z Ga 1 -w Mg w O 3- δ and Ce 1-y Ln y O 2- δ is available, use the LSGM or SDC in this embodiment It was. The positive electrode 2 is Ln 1-x Sr x CoO 3 ± δ (Ln: rare earth element, particularly La or Sm) doped with strontium, and Sm 0.5 Sr 0.5 CoO 3 ± δ is used. Furthermore, the negative electrode 3 are nickel and mixtures (Ce 1-y Sm y O 2- δ) and the electrode with the addition of palladium 1% by weight in the cerium oxide doped with samarium. SDC (Ce 0.8 Sm 0.2 O 1.9 ) was used as the mixture of samarium-doped cerium oxide. The mixing ratio of Ni and SDC was 7: 3 by weight.
Moreover, as shown in FIG. 2, the positive electrode 2 and the negative electrode 3 are provided at intervals so as to form a predetermined gap.
[0019]
2. Production of single-chamber solid electrolyte fuel cell This single-chamber solid electrolyte fuel cell was produced as follows.
First, the negative electrode 3 is formed on the surface of the oxygen ion conductive solid electrolyte 1. A predetermined amount of nickel oxide powder and SDC powder are weighed, mixed and pulverized using an appropriate organic solvent, and then a predetermined amount of palladium oxide powder is added and mixed and pulverized to prepare a paste-like electrode material. This was screen-printed on the oxygen ion conductive solid electrolyte 1 and baked at 1400 ° C.
[0020]
Next, the positive electrode 2 is formed with a predetermined gap between the negative electrode 3 and the negative electrode 3 on the same side of the surface on which the negative electrode 3 of the oxygen ion conductive solid electrolyte 1 is formed. Ln 1-x Sr x CoO 3 ± δ (here, Sm 0.5 Sr 0.5 CoO 3 ± δ was used) was dissolved in an organic solvent and pulverized to prepare a paste-like electrode material. This was screen-printed on the surface opposite to the negative electrode 3 of the oxygen ion conductive solid electrolyte 1, and baked at 900 ° C.
[0021]
Further, the reduction treatment may be performed as necessary, or the reduction treatment can be used. When performing the reduction treatment, H 2 gas is introduced into the oxygen ion conductive solid electrolyte 1 on which the electrodes 2 and 3 are formed at a temperature of 450 to 550 ° C. to reduce the nickel oxide and palladium oxide of the negative electrode 3. . Even when no reduction treatment is performed, the flowing mixed gas causes a reaction of CH 4 + 1 / 2O 2 → 2H 2 + CO, and a reduction atmosphere is generated, and reduction of nickel oxide and palladium oxide occurs to obtain output. Will be able to.
The single-chamber solid electrolyte fuel cell produced in this way can obtain power output from the positive and negative electrodes by introducing a mixed gas of methane and oxygen.
[0022]
3. Evaluation of single-chamber solid electrolyte fuel cell (1) Examination of surface roughness of electrolyte In single-chamber solid electrolyte fuel cell using SDC as oxygen ion conductive solid electrolyte 1, the surface roughness of the electrode formation surface The change in output characteristics was investigated.
The oxygen ion conductive solid electrolyte 1 of the single-chamber solid electrolyte fuel cell used for the measurement is □ 7 × 10 −3 m and a thickness of 0.8 × 10 −3 m, and the surface roughness is obtained by polishing the surface. Four types of Ra, 0.06 × 10 −6 , 0.2 × 10 −6 , 0.8 × 10 −6 , and 1.6 × 10 −6 m were prepared.
[0023]
The negative electrode 3 is Ni-SDC (7: 3) having a width of 1 × 10 −3 m and a length of 5 × 10 −3 m. The positive electrode 2 is Sm 0.5 Sr 0.5 CoO 3 ± δ having a width of 1 × 10 −3 m and a length of 5 × 10 −3 m. Furthermore, the gap between these electrodes is 1 mm. The composition of the mixed gas used was ethane: oxygen = 1: 1, and a power generation test was performed at 600 ° C.
[0024]
As shown in FIG. 3, it was found that a large output of 700 W / m 2 or more was obtained at any surface roughness. Further, the output as the surface roughness Ra becomes smaller increases, Ra is 0.2 × 10 -6 m in about 750W / m 2, was a 0.06 × 10 -6 m In about 900 W / m 2. From this, it can be seen that if the surface roughness Ra is 2.0 × 10 −6 m or less, a maximum output of 600 W / m 2 or more can be expected, and a sufficient output can be obtained.
[0025]
(2) Examination of electrode gap The output by the gap between the positive electrode 2 and the negative electrode 3 was examined. The oxygen ion conductive solid electrolyte 1 was □ 7 × 10 −3 m, thickness 0.8 × 10 −3 m, and surface roughness Ra 0.06 × 10 −6 m.
The negative electrode 3 is Ni-SDC (7: 3) having a width of 0.5 × 10 −3 m and a length of 5 × 10 −3 m. The positive electrode 2 is Sm 0.5 Sr 0.5 CoO 3 ± δ having a width of 0.5 × 10 −3 m and a length of 5 × 10 −3 m. Furthermore, the gaps between these electrodes were 0.5 × 10 −3 , 1.0 × 10 −3 , 1.5 × 10 −3 m, and 3.0 × 10 −3 m.
The composition of the mixed gas used was ethane: oxygen = 1: 1, and a power generation test was performed at 600 ° C.
[0026]
The results of testing under the above conditions are shown in FIG. As shown in FIG. 4, the electrode spacing in 3.0 × 10 -3 m to about 500 W / m 2, and about 1950W / m 2 at 0.5 × 10 -3 m, became narrower as high output. It was also found that a sufficient output of about 500 W / m 2 or more can be obtained when the distance is 3.0 × 10 −3 m or less.
[0027]
(3) Examination of addition amount of palladium Table 1 shows the results obtained for the open circuit voltage and the maximum output density in the single-chamber solid electrolyte fuel cell in which the addition amount of palladium in the negative electrode was variously changed. The single-chamber solid electrolyte fuel cell used uses SDC as the oxygen ion conductive solid electrolyte 1 and is □ 7 × 10 −3 m, thickness 0.8 × 10 −3 m, surface roughness Ra 0.06 × 10 −6 m.
The negative electrode 3 has a width of 0.5 × 10 −3 m and a length of 5 × 10 −3 m, and is Ni—SDC (7: 3) to which Pd is added at a ratio shown in Table 1. The positive electrode 2 is Sm 0.5 Sr 0.5 CoO 3 ± δ having a width of 0.5 × 10 −3 m and a length of 5 × 10 −3 m. Furthermore, the gap between these electrodes is 1 mm. Further, the composition of the mixed gas used was ethane: oxygen = 2: 1, and a power generation test was conducted at 550 ° C.
[0028]
[Table 1]
Figure 0004900747
[0029]
As shown in Table 1, high power generation performance of 1050 W / m 2 or more could be obtained when the amount of Pd added was in the range of 1 to 10% by mass. Further, in the range of 1 to 7 mass% 1080W / m 2 or more, in the range of 1 to 5 wt% could be obtained 1100W / m 2 or more, especially high power generation performance. Furthermore, even if palladium is replaced with rhodium, platinum, ruthenium and iridium, high power generation performance can be obtained in the range of 1 to 10% by mass.
[0030]
【Effect of the invention】
According to the single-chamber solid electrolyte fuel cell of the present invention, stable power generation can be performed using an oxygen ion conductive solid electrolyte having a sufficient mechanical strength even in a temperature range of 600 ° C. or lower. . Moreover, since it has sufficient mechanical strength, a more reliable battery can be configured. From this, it becomes possible to extend the life and cost of the battery body and peripheral members, and to easily put a highly reliable fuel cell into practical use.
[0031]
Furthermore, by setting the gap between the electrodes within a predetermined range, it is possible to suppress a short circuit or the like while providing a high output. In addition, by doping the negative electrode with a metal such as palladium, stable power generation can be performed even in a temperature range of 600 ° C. or lower.
[Brief description of the drawings]
FIG. 1 is a schematic view for explaining the single-chamber solid electrolyte fuel cell.
FIG. 2 is a schematic view for explaining the single-chamber solid electrolyte fuel cell.
FIG. 3 is a graph for explaining an output change of the single-chamber solid electrolyte fuel cell according to the surface roughness of the oxygen ion conductive solid electrolyte.
FIG. 4 is a graph for explaining a change in output of the single-chamber solid electrolyte fuel cell according to a gap between a positive electrode and a negative electrode.
[Explanation of symbols]
1; oxygen ion conductive solid electrolyte, 2; positive electrode, 3; negative electrode, 4; alumina tube.

Claims (3)

単室内において酸素イオン伝導性固体電解質の同一面に正極及び負極を設けた単室型電池構造を持ち、炭化水素と空気の混合ガスを導入することにより発電が可能な単室型固体酸化物型燃料電池であって、
該正極は、Ln1−xSrCoO3±δ(ただし、Lnは希土類元素、0.2≦x≦0.8、0≦δ<1)からなり、
該負極は、ニッケルと、酸化セリウムを主体とする複酸化物と、パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種と、を含み、
上記パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種の含有比率は、1〜10質量%であり、
該酸素イオン伝導性固体電解質は、少なくとも該正極及び該負極が接触する面における表面粗さRaが2.0×10−6m以下であることを特徴とする単室型固体電解質型燃料電池。
A single-chamber solid oxide type that has a single-chamber battery structure with a positive electrode and a negative electrode on the same surface of an oxygen ion conductive solid electrolyte in a single chamber and can generate power by introducing a mixed gas of hydrocarbon and air A fuel cell,
The positive electrode is made of Ln 1-x Sr x CoO 3 ± δ (where Ln is a rare earth element, 0.2 ≦ x ≦ 0.8, 0 ≦ δ <1),
The negative electrode includes nickel, a double oxide mainly composed of cerium oxide, and at least one selected from palladium, platinum, rhodium, iridium and ruthenium ,
The content ratio of at least one selected from the palladium, platinum, rhodium, iridium and ruthenium is 1 to 10% by mass,
The oxygen ion conductive solid electrolyte has a surface roughness Ra of 2.0 × 10 −6 m or less at least on a surface where the positive electrode and the negative electrode are in contact with each other, and a single-chamber solid electrolyte fuel cell.
上記正極及び上記負極の間隙が100×10−6〜3×10−3mである請求項1に記載の単室型固体電解質型燃料電池。2. The single-chamber solid electrolyte fuel cell according to claim 1, wherein a gap between the positive electrode and the negative electrode is 100 × 10 −6 to 3 × 10 −3 m. 単室内において酸素イオン伝導性固体電解質の同一面に正極及び負極を設けた単室型電池構造を持ち、炭化水素と空気の混合ガスを導入することにより発電が可能な単室型固体酸化物型燃料電池の製造方法であって、
酸化ニッケル粉末と酸化セリウムを主体とする複酸化物粉末とを、有機溶媒中で混合粉砕した後、パラジウム、白金、ロジウム、イリジウム及びルテニウムから選ばれる少なくとも一種の粉末を負極における含有量が1〜10重量%となるように加えて混合粉砕してペースト状の負極電極材を調製し、これを上記酸素イオン伝導性固体電解質の一方の面に焼き付けて負極を形成し、次いで、Ln1−xSrCoO3±δ(ただし、Lnは希土類元素、0.2≦x≦0.8、0≦δ<1)を有機溶媒中で混合粉砕してペースト状の正極電極材を調製し、これを該酸素イオン伝導性固体電解質の同一面に焼き付けて正極を形成することを特徴とする単室型固体酸化物型燃料電池の製造方法。
A single-chamber solid oxide type that has a single-chamber battery structure with a positive electrode and a negative electrode on the same surface of an oxygen ion conductive solid electrolyte in a single chamber and can generate power by introducing a mixed gas of hydrocarbon and air A fuel cell manufacturing method comprising:
Nickel oxide powder and double oxide powder mainly composed of cerium oxide are mixed and pulverized in an organic solvent, and at least one powder selected from palladium, platinum, rhodium, iridium and ruthenium has a content of 1 in the negative electrode. added in an amount of 10 wt% were mixed and pulverized by a paste-like negative electrode material was prepared, which was formed a negative electrode printed on one side of the oxygen ion conductive solid electrolyte, then, Ln 1- x Sr x CoO 3 ± δ (where Ln is a rare earth element, 0.2 ≦ x ≦ 0.8, 0 ≦ δ <1) is mixed and ground in an organic solvent to prepare a paste-like positive electrode material, A method for producing a single-chamber solid oxide fuel cell, wherein the positive electrode is formed by baking this on the same surface of the oxygen ion conductive solid electrolyte.
JP2001081450A 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same Expired - Lifetime JP4900747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081450A JP4900747B2 (en) 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081450A JP4900747B2 (en) 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002280015A JP2002280015A (en) 2002-09-27
JP4900747B2 true JP4900747B2 (en) 2012-03-21

Family

ID=18937557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081450A Expired - Lifetime JP4900747B2 (en) 2001-03-21 2001-03-21 Single-chamber solid electrolyte fuel cell and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4900747B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517601B2 (en) 2002-12-09 2009-04-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
WO2005001970A1 (en) * 2003-06-26 2005-01-06 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
JP4606043B2 (en) * 2004-03-12 2011-01-05 大日本印刷株式会社 Solid oxide fuel cell and substrate used therefor
JP2005038848A (en) * 2003-06-26 2005-02-10 Dainippon Printing Co Ltd Solid oxide fuel cell
CN100438168C (en) * 2003-06-26 2008-11-26 大日本印刷株式会社 Solid oxide fuel cell
JP2005149815A (en) * 2003-11-12 2005-06-09 Dainippon Printing Co Ltd Non-diaphragm type solid oxide fuel cell
JP4658499B2 (en) * 2004-03-23 2011-03-23 大日本印刷株式会社 Solid oxide fuel cell
JP5445554B2 (en) * 2004-11-09 2014-03-19 大日本印刷株式会社 Cogeneration system using fuel cells
US7871734B2 (en) 2005-08-23 2011-01-18 Massachusetts Institute Of Technology Micro fuel cell
JP5030436B2 (en) * 2006-02-17 2012-09-19 株式会社アツミテック Single-chamber solid oxide fuel cell
JP5128777B2 (en) 2006-02-27 2013-01-23 株式会社アツミテック Power generator
JP2007265920A (en) * 2006-03-29 2007-10-11 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2008270181A (en) 2007-03-28 2008-11-06 Univ Nagoya Electrode, electrode catalyst composition and fuel cell
JP2008270180A (en) 2007-03-28 2008-11-06 Univ Nagoya Electrode catalyst composition, electrode and fuel cell
JP5211532B2 (en) * 2007-03-30 2013-06-12 大日本印刷株式会社 Solid oxide fuel cell and stack structure thereof
JP5211533B2 (en) * 2007-03-30 2013-06-12 大日本印刷株式会社 Current collector for fuel electrode and solid oxide fuel cell using the same
US8691464B2 (en) 2007-05-25 2014-04-08 Massachusetts Institute Of Technology Three dimensional single-chamber fuel cells
JP5217567B2 (en) * 2008-03-28 2013-06-19 大日本印刷株式会社 Solid oxide fuel cell and method for producing the same
JP5387098B2 (en) * 2009-03-31 2014-01-15 大日本印刷株式会社 Single-chamber solid oxide fuel cell and its stack structure
JP6225450B2 (en) * 2013-03-28 2017-11-08 凸版印刷株式会社 Membrane electrode assembly and polymer electrolyte fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317523B2 (en) * 1992-07-27 2002-08-26 新日本石油株式会社 Solid oxide fuel cell
JPH07245118A (en) * 1994-03-02 1995-09-19 Sekiyu Sangyo Kasseika Center Fused carbonate fuel cell system and starting method therefor
JP2810977B2 (en) * 1995-03-23 1998-10-15 工業技術院長 Non-diaphragm type solid electrolyte fuel cell for cogeneration
JPH11283643A (en) * 1998-03-31 1999-10-15 Kyocera Corp Solid-electrolyte fuel cell
JP2000243412A (en) * 1999-02-23 2000-09-08 Ngk Spark Plug Co Ltd Single chamber solid electrolyte fuel cell
JP2000281438A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Zirconia sheet and its production

Also Published As

Publication number Publication date
JP2002280015A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
JP4900747B2 (en) Single-chamber solid electrolyte fuel cell and method for manufacturing the same
Huang et al. Superior perovskite oxide‐ion conductor; strontium‐and magnesium‐doped lagaO3: III, performance tests of single ceramic fuel cells
US7659025B2 (en) Electrode-supported solid state electrochemical cell
Liu et al. Enhanced performance of LSCF cathode through surface modification
Meng et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen
TWI501937B (en) Phase stable doped zirconia electrolyte compositions with low degradation
US6004688A (en) Solid oxide fuel cell and doped perovskite lanthanum gallate electrolyte therefor
Yang et al. Electrical conductivity and electrochemical performance of cobalt-doped BaZr0. 1Ce0. 7Y0. 2O3− δ cathode
JP2004199877A (en) Fuel battery
EP0763864A1 (en) High temperature solid electrolyte fuel cell
JP2021520047A (en) Solid Energy Harvester of Transition Metal Suboxide
JP2009179871A (en) Electrolytic cell and hydrogen producing apparatus
JP4904568B2 (en) Single-chamber solid electrolyte fuel cell and method for manufacturing the same
Wang et al. Electrocatalytic properties of La 0.9 Sr 0.1 MnO 3-based electrodes for oxygen reduction
JP5144236B2 (en) Solid oxide fuel cell
JP2000243412A (en) Single chamber solid electrolyte fuel cell
Nie et al. Efficient strategy to boost the electrochemical performance of yttrium stabilized zirconia electrolyte solid oxide fuel cell for low-temperature applications
JP4374631B2 (en) Oxide ion mixed conductor and its application
JP2010086762A (en) Solid oxide fuel cell
JP3448242B2 (en) Solid electrolyte fuel cell
JP6377535B2 (en) Proton conducting fuel cell
JP4479039B2 (en) Electrochemical devices
JP4024165B2 (en) Fuel electrode for solid oxide fuel cell and method for producing the same
JP2004103338A (en) Solid electrolyte fuel cell
JP2005174664A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4900747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term