JPS63143751A - Manufacture of positive electrode gas diffusion electrode for fuel battery - Google Patents

Manufacture of positive electrode gas diffusion electrode for fuel battery

Info

Publication number
JPS63143751A
JPS63143751A JP61288682A JP28868286A JPS63143751A JP S63143751 A JPS63143751 A JP S63143751A JP 61288682 A JP61288682 A JP 61288682A JP 28868286 A JP28868286 A JP 28868286A JP S63143751 A JPS63143751 A JP S63143751A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
gas
positive
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61288682A
Other languages
Japanese (ja)
Inventor
Noboru Segawa
昇 瀬川
Sanji Ueno
上野 三司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61288682A priority Critical patent/JPS63143751A/en
Publication of JPS63143751A publication Critical patent/JPS63143751A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To retain the high performance for a long time by depositing water repellent functional group on the surface of a positive electrode porous carbon substrate through CVD method to increase water-repellency thereof. CONSTITUTION:In manufacturing a fuel battery, which has a pair of the gas- diffusion electrode comprising a negative electrode and a positive electrode with porous carbon substrate, phosphoric acid electrolyte, a negative electrode active substance comprising fuel gas with hydrogen component and a positive electrode active substance comprising fuel gas with oxygen component, a water- repellent functional group (alkyl, phenyl group) is deposited on the surface of positive electrode porous carbon substrate through CVD to form a positive gas diffusion electrode. By the arrangement, decrease in gas diffusion powder of the positive electrode is prevented and a high-voltage retained positive gas diffusion electrode of fuel battery is obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃料電池の製造方法に関し、特に正極多孔質
ノー素基体の撥水性を強化し長時間高い性能を維持する
燃料電池の正極ガス拡散fu極の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a fuel cell, and in particular, to a method for manufacturing a fuel cell, in particular a method for enhancing the water repellency of a positive electrode porous non-atomic substrate and maintaining high performance for a long period of time. The present invention relates to a method for manufacturing a positive gas diffusion fu electrode for a fuel cell.

(従来の技術) 従来燃料電池の素電池は’/IFJ JjZリン酸など
からなる電解質を含有する耐薬品性、耐熱性、耐酸化性
にすぐれた含浸層からなる電解質層を中間にして正極と
なる多孔質炭素板と負極となる多孔質素板とが相対向し
て密着一体化されて構成され、水素を主成分とする燃料
ガスが負極活物質、酸素を主成分とする空気等の酸化剤
ガスが正極活物質として用いられている。このような素
電池のAρ電力は高くても1v程度であり実用発電装置
を構成するには数十、数百の:@組電池積層化すること
が必要である。
(Prior art) A conventional fuel cell unit has a positive electrode and an electrolyte layer in between, which is an impregnated layer containing an electrolyte such as phosphoric acid and has excellent chemical resistance, heat resistance, and oxidation resistance. A porous carbon plate and a porous blank plate, which will be a negative electrode, are closely integrated with each other facing each other, and a fuel gas mainly composed of hydrogen is used as a negative electrode active material, and an oxidizing agent such as air mainly composed of oxygen. A gas is used as the positive electrode active material. The Aρ power of such a unit cell is about 1 V at most, and to construct a practical power generation device, it is necessary to stack tens or hundreds of assembled batteries.

素電池を積層するに当っては各素電池と素電池の間に高
密度の導電性炭素板を介在させている。
When stacking unit cells, a high-density conductive carbon plate is interposed between each unit cell.

この炭素板は素電池を構成する電極のn造により異なっ
ている。例えば正極、負極とも平滑な電極よりなる場合
には、上面と下面に夫々異なる方向の燃料ガス、酸化剤
ガス流通路を設けた炭素板を使用し、正極5負極ともに
ガス流通路を有する電極を用いる場合には上下面ともに
平滑な炭素板を用いる。又正極に平滑電極、負極にガス
流通路を有する電極を用いる場合には正極に接する側に
ガス流通路の溝を設け、負極に接する側は平滑にした所
謂、片面溝付炭素板を使用している。
This carbon plate differs depending on the structure of the electrodes constituting the unit cell. For example, if both the positive and negative electrodes are made of smooth electrodes, use a carbon plate with fuel gas and oxidant gas flow paths in different directions on the top and bottom surfaces, respectively. When used, carbon plates with smooth upper and lower surfaces are used. In addition, when using a smooth electrode for the positive electrode and an electrode with a gas flow passage for the negative electrode, a so-called single-sided grooved carbon plate with grooves for the gas flow passage provided on the side in contact with the positive electrode and smooth on the side in contact with the negative electrode is used. ing.

前記の如き燃料電池において、長期に亘り高い性能を維
持するためには、燃料ガス、酸化剤ガス等の反応ガスや
水素イオンを電極反応面に十分に供給することと、反応
生成物たる水を電極反応面から迅速に除去することが必
要である。
In order to maintain high performance over a long period of time in a fuel cell such as the one described above, it is necessary to sufficiently supply reactant gases such as fuel gas and oxidant gas and hydrogen ions to the electrode reaction surface, and to remove water as a reaction product. It is necessary to quickly remove it from the electrode reaction surface.

(発明が解決しようとする問題点) そこで、多孔質炭素電極基体においては、電解質の経済
的ぬれの進行による反応ガスの供給不足を生じさせぬ様
にすること、また、反応生成物(020)が、基体空隙
中に蓄積され同様に反応ガスの供給不足を生じさせぬ様
にすること1等が必要な条件である。この様な条件を満
たすために、多孔質炭素電極基体の撥水性を高めること
を目的に、フッ素系樹脂の微粒子を含浸する方法、フッ
素ガスをWL接反応させろ方法等種々考案され、また実
用セルに用いられているが、これらの方法は、経時的に
みると(撥水粒子の)電極基体からの脱落。
(Problems to be Solved by the Invention) Therefore, in the porous carbon electrode substrate, it is necessary to prevent insufficient supply of the reaction gas due to the progress of economical wetting of the electrolyte, and to prevent the reaction product (020) from occurring. The necessary conditions include preventing the reaction gas from accumulating in the substrate voids and causing insufficient supply of the reaction gas. In order to meet these conditions, various methods have been devised to improve the water repellency of the porous carbon electrode substrate, such as impregnating it with fine particles of fluororesin, and causing a WL contact reaction with fluorine gas. However, these methods show that (water-repellent particles) fall off from the electrode substrate over time.

液相中への溶解等が生じ、長時間に亘る撥水効果の維持
を、困難にするものであった。
Dissolution into the liquid phase occurs, making it difficult to maintain the water-repellent effect over a long period of time.

かくして、本発明の目的は、正極多孔質炭素基体の撥水
性を強化し、長期間に亘って高い性能を維持することが
できる有効な燃料電池の正極ガス拡散電極の製造方法を
提供することである。
Thus, an object of the present invention is to provide an effective method for manufacturing a positive gas diffusion electrode for a fuel cell, which can enhance the water repellency of a positive porous carbon substrate and maintain high performance over a long period of time. be.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段とその作用)本発明に係
る製造方法は、正極ガス拡散電極を製造するに際し、多
孔質炭素基体の表面に、CVD法により、撥水性を有す
る官能基(3ルキル基フエニル基等)を蒸着させ、正極
多孔質炭素基体の電解液および生成水に対する撥水性を
強化し、長時間の起電反応により、正極のガス拡散能が
減少することを防止することにより、高い電圧を維持す
る燃料電池の正極ガス拡散電極の製造方法を提供できる
(Means for Solving the Problems and Their Effects) The manufacturing method according to the present invention is such that when manufacturing a positive gas diffusion electrode, a water-repellent functional group (3 (alkyl group, phenyl group, etc.) to strengthen the water repellency of the positive electrode porous carbon substrate to the electrolytic solution and generated water, and to prevent the positive electrode's gas diffusion ability from decreasing due to a long electromotive reaction. , it is possible to provide a method for manufacturing a positive gas diffusion electrode for a fuel cell that maintains a high voltage.

(実施例) 以下本発明を一実施例に基づいて説明する。第1図に、
本発明に用いたCVD法による蒸着装置の基本的な構成
図を示す。1は本実施例に用いた雰囲気炉を示し、正極
多孔質−炭素基体を載せる試料棚3と、蒸気発生源であ
る5はそれぞれ温度コントロールが別々に可能であるこ
とが望ましい。
(Example) The present invention will be described below based on an example. In Figure 1,
1 shows a basic configuration diagram of a vapor deposition apparatus using a CVD method used in the present invention. Reference numeral 1 indicates the atmospheric furnace used in this example, and it is desirable that the temperature of the sample shelf 3 on which the positive electrode porous carbon substrate is placed and 5, which is the steam generation source, can be controlled separately.

2は雰囲気ガス(キャリアガス)の流出口を示し、6は
、雰囲気ガス(キャリアガス)の流入口を示す。
2 indicates an outlet for atmospheric gas (carrier gas), and 6 indicates an inlet for atmospheric gas (carrier gas).

4は雰囲気ガス(キャリアガス)を炉内に均一に循環さ
せるための小孔を示す。
4 indicates a small hole for uniformly circulating atmospheric gas (carrier gas) in the furnace.

本実施例では、蒸気発生源を、ポリエチレングリコール
()10 (CH2Cl、 O) nCH2CBI O
H)を使用したため、その分解温度180℃以上である
。250℃を発生源5の温度とした。また多孔質炭素基
体を載せる試料棚3は、250℃〜300℃に保持した
。雰囲気ガス(キャリアガス)は、N2を使用し流入口
6から。
In this example, the steam generation source is polyethylene glycol ()10 (CH2Cl, O) nCH2CBI O
Since H) was used, its decomposition temperature was 180°C or higher. The temperature of the source 5 was 250°C. Further, the sample shelf 3 on which the porous carbon substrate was placed was maintained at 250°C to 300°C. The atmospheric gas (carrier gas) uses N2 from the inlet 6.

炉内に毎分20 Q / lll1nで予備加熱を行な
って流入した。蒸着時間は3時間程度としたが、炉の形
状により変わってくる。第1図に示したCVD法により
正極多孔質炭素基体の撥水性を強化した正極を用いて、
燃料電池を製作し、以下の条件で連続起電試験を なっ
た。
It was preheated and flowed into the furnace at a rate of 20 Q/ll1n per minute. The deposition time was about 3 hours, but it varies depending on the shape of the furnace. Using the positive electrode whose water repellency of the positive electrode porous carbon substrate has been strengthened by the CVD method shown in Fig. 1,
A fuel cell was manufactured and a continuous electromotive force test was conducted under the following conditions.

〔常圧、205℃、 220mA / al  U A
 = U F = 40%〕第2図に連続起電試験の結
果を実線で示し従来例との比較として、PTFE粒子の
含浸法により、   ゛撥水性を強化した正極を用いた
燃料電池の連続起電試験結果を点線で示した。
[Normal pressure, 205℃, 220mA / al U A
= U F = 40%] Fig. 2 shows the results of the continuous electromotive force test as a solid line.As a comparison with the conventional example, we have shown that the results of the continuous electromotive force test using a positive electrode with enhanced water repellency were demonstrated by the PTFE particle impregnation method. The electrical test results are shown by dotted lines.

〔発明の効果〕〔Effect of the invention〕

この様に本発明に係る製造方法によれば、正極多孔質炭
素基体の表面にCVD法により、撥水性を有する官能基
(3ルキル基・フェニル基)を蒸着させることにより、
正極多孔質基体が電解質および生成水によるぬれが強い
撥水性により防止され、また、この効果が燃料電池1作
動条件において。
As described above, according to the manufacturing method of the present invention, by depositing water-repellent functional groups (3-alkyl group, phenyl group) on the surface of the positive electrode porous carbon substrate by CVD method,
Wetting of the positive electrode porous substrate by the electrolyte and produced water is prevented by its strong water repellency, and this effect is maintained under the fuel cell 1 operating conditions.

長1期に亘り安定である長所を有するものである。It has the advantage of being stable over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるCVD方法を用いた官能基の蒸着
法を示す基本図、第2図は本発明の正極を用いた燃料電
池の特性図である。 1・・・雰囲気炉、 2・・・雰囲気ガス(キャリアガス)流出口、3・・・
試料棚、      4・・・小孔、5・・・蒸気発生
源、 6・・・雰囲気ガス(キャリアガス)流入口。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 1私峙閘(ん) 第2図
FIG. 1 is a basic diagram showing a functional group vapor deposition method using the CVD method according to the present invention, and FIG. 2 is a characteristic diagram of a fuel cell using the positive electrode of the present invention. 1... Atmosphere furnace, 2... Atmosphere gas (carrier gas) outlet, 3...
Sample shelf, 4... Small hole, 5... Steam generation source, 6... Atmospheric gas (carrier gas) inlet. Agent Patent Attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 1 1 Private Section Figure 2

Claims (1)

【特許請求の範囲】[Claims] 多孔質炭素基体を有する負極及び正極とからなる一対の
ガス拡散電極と、リン酸電解質を有し、水素を主成分と
する燃料ガスを負極活物質、酸素を主成分とする酸化剤
ガスを正極活物質とする燃料電池の製造方法において、
正極多孔質炭素基体の表面に、CVD(ケミカルベーパ
ーディポジィション)法により撥水性を有する官能基を
蒸着させて正極ガス電極を形成することを特徴とする燃
料電池用ガス拡散電極の製造方法。
A pair of gas diffusion electrodes consisting of a negative electrode and a positive electrode having a porous carbon substrate, a phosphoric acid electrolyte, a fuel gas mainly composed of hydrogen as a negative electrode active material, and an oxidizing gas mainly composed of oxygen as a positive electrode. In a method for manufacturing a fuel cell using as an active material,
A method for manufacturing a gas diffusion electrode for a fuel cell, which comprises forming a positive gas electrode by depositing a water-repellent functional group on the surface of a positive porous carbon substrate using a CVD (chemical vapor deposition) method.
JP61288682A 1986-12-05 1986-12-05 Manufacture of positive electrode gas diffusion electrode for fuel battery Pending JPS63143751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288682A JPS63143751A (en) 1986-12-05 1986-12-05 Manufacture of positive electrode gas diffusion electrode for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288682A JPS63143751A (en) 1986-12-05 1986-12-05 Manufacture of positive electrode gas diffusion electrode for fuel battery

Publications (1)

Publication Number Publication Date
JPS63143751A true JPS63143751A (en) 1988-06-16

Family

ID=17733322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288682A Pending JPS63143751A (en) 1986-12-05 1986-12-05 Manufacture of positive electrode gas diffusion electrode for fuel battery

Country Status (1)

Country Link
JP (1) JPS63143751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164574A (en) * 2004-12-02 2006-06-22 Dainippon Printing Co Ltd Water-repellent electrode catalyst layer for solid polymer fuel cell
JP2007273467A (en) * 2006-03-20 2007-10-18 Gm Global Technology Operations Inc Diffusion medium vapor-deposited with fluorocarbon polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164574A (en) * 2004-12-02 2006-06-22 Dainippon Printing Co Ltd Water-repellent electrode catalyst layer for solid polymer fuel cell
JP2007273467A (en) * 2006-03-20 2007-10-18 Gm Global Technology Operations Inc Diffusion medium vapor-deposited with fluorocarbon polymer

Similar Documents

Publication Publication Date Title
US5445904A (en) Methods of making oxygen distribution members for fuel cells
JP7387905B2 (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly and fuel cell
JPS5940471A (en) Electrochemical power generating element
US4461813A (en) Electrochemical power generator
JPS63143751A (en) Manufacture of positive electrode gas diffusion electrode for fuel battery
JPS63299057A (en) Manufacture of fuel cell electrode
JPS6251166A (en) Fuel cell
JPS63152876A (en) Fuel battery having matrix assembly of electrolytic liquid
JPH0258741B2 (en)
CN107887611A (en) A kind of low platinum loading electrodes preparation method of high temperature membrane cell high-performance
JPS63237363A (en) Methanol fuel cell
JP2633522B2 (en) Fuel cell
JPS5940473A (en) Electrochemical power generating element made of acid electrolyte
JP2616061B2 (en) Phosphoric acid fuel cell
JPH061700B2 (en) Composite electrode for fuel cell
JPS63184262A (en) Manufacture of fuel cell
JPS60143573A (en) Fuel cell
JPH08287924A (en) Solid high polymer fuel cell
JPH01124959A (en) Fuel cell electrode
JPH0652873A (en) Fuel cell
JPS62208555A (en) Fuel cell
JPH09219202A (en) Fuel cell and fuel cell stack
JPS61147459A (en) Manufacture of fuel cell
JPS6028172A (en) Electro-chemical power generating element
JPH0379825B2 (en)