JPS59181463A - Gas diffusion electrode - Google Patents

Gas diffusion electrode

Info

Publication number
JPS59181463A
JPS59181463A JP58055548A JP5554883A JPS59181463A JP S59181463 A JPS59181463 A JP S59181463A JP 58055548 A JP58055548 A JP 58055548A JP 5554883 A JP5554883 A JP 5554883A JP S59181463 A JPS59181463 A JP S59181463A
Authority
JP
Japan
Prior art keywords
carbon powder
catalyst
electrode
gas diffusion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58055548A
Other languages
Japanese (ja)
Other versions
JPH0722020B2 (en
Inventor
Tadanori Maoka
忠則 真岡
Sanji Ueno
上野 三司
Tamotsu Shirogami
城上 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58055548A priority Critical patent/JPH0722020B2/en
Publication of JPS59181463A publication Critical patent/JPS59181463A/en
Publication of JPH0722020B2 publication Critical patent/JPH0722020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a gas diffusion electrode for fuel battery which assures good contactness between electrode catalyst layer and electrolyte at the time of forming battery and forms and maintain a good reactive interface between them by adding a hydrophilic carbon powder to a catalyst black mix. CONSTITUTION:As a carbon powder which supports noble metal powder such as platinum or platinum group element used as the catalyst, a hydrophilic carbon powder is used together with the graphitized carbon powder used existingly. On the occasion of manufacturing gas diffusion electrode using such carbon powder, the powder of platinum or platinum group metral of 5-15wt% is added and mixed with the graphitized carbon powder. Moreover, the hydropholic carbon powder in the amount mentioned above is added thereto. Next, adequate amount of water is also added thereto and they are mixed and stirred sufficiently so that fine inside of carbon powder is sufficiently wet. A dispersion of flurine resin used as the binding agent is added and mixed while they are stirred and thereby a catalyst black mix can be obtained. Such black mix is applied the porous substrate and is baked. Thereafter, wanted gas diffusion electrode can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は新規なガス拡散電極、特に電池形成時、電極触
媒又はその層と電解液との間で良好な反応界面を維持さ
せるようにした高性能の燃料電池用ガス拡散電極に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a novel gas diffusion electrode, particularly a high-temperature gas diffusion electrode which maintains a good reaction interface between an electrocatalyst or its layer and an electrolyte during battery formation. The present invention relates to high performance gas diffusion electrodes for fuel cells.

(1)                  リ17〔
発明の技術的背景とその問題点〕 炭化水素類を改質してえられる炭酸ガス等の不純物混在
のままの水素を負極活物質として用いて起電するりん酸
或は硫酸などの濃厚酸性溶液を電解質とする燃料電池は
、一般に炭素粉末に貴金属系触媒を担持させた電極触媒
をフッ素樹脂の如き結着剤で結着させてなる触媒合剤を
多孔性炭素基板に塗着焼成してその基板上に電極触媒層
を形成してつ(られた一対のガス拡散電極間に前記の如
き電解質を保持したマトリックス層を介在させて単位電
池が形成されている。
(1) Li17 [
Technical background of the invention and its problems] A concentrated acid solution such as phosphoric acid or sulfuric acid that generates electricity using hydrogen, which is obtained by reforming hydrocarbons and still contains impurities such as carbon dioxide gas, as a negative electrode active material. A fuel cell using carbon as an electrolyte is generally produced by coating a porous carbon substrate with a catalyst mixture made by binding an electrode catalyst in which a precious metal catalyst is supported on carbon powder with a binder such as a fluororesin, and then firing the mixture. A unit cell is formed by forming an electrode catalyst layer on a substrate and interposing a matrix layer holding an electrolyte as described above between a pair of gas diffusion electrodes.

従来から、かかる燃料電池用のガス拡散電極において触
媒粉末を担持する担体として用いられる炭素粉末の開発
が進められ、長期間にわたる起電反応に供するためには
、その炭素粉末として黒鉛化の進んだ材料、例えば黒鉛
粉末やアセチレンブラックあるいは黒鉛化処理されたフ
ァーネスブラックが適当であることが知られている。
Conventionally, carbon powder used as a carrier for supporting catalyst powder in gas diffusion electrodes for fuel cells has been developed. Materials such as graphite powder, acetylene black or graphitized furnace black are known to be suitable.

ところが、これらの黒鉛化の進んだ炭素材料は導電性が
高(酸化溶解に対する耐性、即ち耐酸化(2) 性に優れており高性能、長寿命も期待されていたが、そ
れ自体が撥水性でありその上元来撥水性であるフッ素樹
脂と練り合わせて用いるので、電池形成時、電極触媒乃
至電極触媒層は非常に電解液に濡れ難くこのため起電反
応にあづかる界面が狭(なることが多く、高性能の電極
を製作することが困難であった。
However, these highly graphitized carbon materials have high electrical conductivity (resistance to oxidative dissolution, i.e., oxidation resistance (2)), and were expected to have high performance and long life, but they themselves lack water repellency. In addition, since it is used in combination with a fluororesin that is inherently water repellent, the electrode catalyst or electrode catalyst layer is very difficult to wet with the electrolyte during battery formation, resulting in a narrow interface that takes part in the electromotive reaction. It was difficult to produce high-performance electrodes.

〔発明の目的〕[Purpose of the invention]

かくて本発明は上記の如き困難を解決して、電池形成時
電極触媒乃至電極触媒層と電解液との濡れをよ(しそれ
らの間に良好な反応界面を形成維持しつる高性能の燃料
電池用ガス拡散電極を提供することを目的とするもので
ある。
Thus, the present invention solves the above-mentioned difficulties and provides a high-performance fuel that maintains the wetting of the electrode catalyst or electrode catalyst layer with the electrolytic solution (and maintains the formation of a good reaction interface between them) during battery formation. The object of the present invention is to provide a gas diffusion electrode for batteries.

〔発明の概要〕[Summary of the invention]

本発明は、貴金属系触媒を黒鉛化の進んだ炭素粉末に担
持させた電極触媒をフッ素樹脂で結着させてなる触媒合
剤を多孔性炭素基体に塗着、焼成して該基体上に電極触
媒層を形成してなるガス拡散電極において、前記触媒合
剤に更に親水性の炭素粉末を添加して、電池形成時、前
記電極触媒又は電極触媒層と電解液の濡れをよ(しそれ
らの間に良好な反応界面を形成、維持せしめるようにし
たことを特徴とする高性能の燃料電池用ガス拡散電極を
提供するものである。
In the present invention, a catalyst mixture consisting of an electrode catalyst in which a noble metal catalyst is supported on highly graphitized carbon powder and bound with a fluororesin is coated on a porous carbon substrate, fired, and an electrode is formed on the substrate. In a gas diffusion electrode formed with a catalyst layer, hydrophilic carbon powder is further added to the catalyst mixture to improve wetting of the electrode catalyst or the electrode catalyst layer with the electrolyte during battery formation (and to improve the wetting of the electrode catalyst or the electrode catalyst layer with the electrolyte). The object of the present invention is to provide a high-performance gas diffusion electrode for a fuel cell, which is characterized in that a good reaction interface is formed and maintained between the electrodes.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明について詳細に説明すれば、本発明に係るガス拡
散電極では、触媒たる白金或は白金族元累等の貴金属粉
末を担持する炭素粉末として従来用いられていた黒鉛化
の進んだ炭素粉末とともに、親水性の炭素粉末を用いる
のである。
To explain the present invention in detail, the gas diffusion electrode according to the present invention uses highly graphitized carbon powder that has been conventionally used as carbon powder to support noble metal powder such as platinum or platinum group elements as a catalyst. , hydrophilic carbon powder is used.

−・般に炭素粉末の親水性は炭素粉末表面の種々の親水
性の官能基、たとえば水酸基、カルボキシル基、り”l
・ン基、ラクトン、キノン等の多少によって変化し、こ
の数は活性炭〉カーボンブラック〉黒鉛の順に多い。こ
れら炭素粉末を加熱するとこれらの官能基は減少し、黒
鉛化が進む、即ち炭素・炭素原子間の結合距離が短くな
る。このため漸次撥水性が強(なってくる。
- Generally, the hydrophilicity of carbon powder is determined by various hydrophilic functional groups on the surface of carbon powder, such as hydroxyl groups, carboxyl groups,
・The number varies depending on the amount of carbon groups, lactones, quinones, etc., and the number is highest in the order of activated carbon, carbon black, and graphite. When these carbon powders are heated, these functional groups decrease and graphitization progresses, that is, the bond distance between carbon atoms becomes shorter. For this reason, water repellency gradually becomes stronger.

本発明では種々の炭素粉末の親水性を、炭素粉末を水に
分散させフッ素樹脂分散液とともに混線(3) してえられたものをカーボンペーパーに塗着後焼成した
後このペーパーに対し0.05ccの105%リン酸を
滴下した時の液滴の接触角を測定して判断する。その時
の液滴の接触角(のが小さくて鋭角をなすときは親水性
であり、これが大きく鈍角をなすときは撥水性と判断さ
れる。上述の活性炭、カーボンブラック等黒鉛化されず
非晶質の炭素粉末は鋭角の接触角をなして親水性であり
、黒鉛粉、或は黒鉛化したカーボンブラック等黒鉛化の
進んだ結晶質の炭素粉末は鈍角の接触角をなし、撥水性
が強い。
In the present invention, the hydrophilicity of various carbon powders is determined by dispersing the carbon powder in water and mixing it with a fluororesin dispersion (3), applying it to carbon paper, baking it, and then applying it to this paper at 0%. Judgment is made by measuring the contact angle of a droplet when 0.5 cc of 105% phosphoric acid is dropped. When the contact angle of the droplet is small and forms an acute angle, it is considered hydrophilic, and when it forms a large and obtuse angle, it is considered water repellent. Carbon powder forms an acute contact angle and is hydrophilic, while highly graphitized crystalline carbon powder such as graphite powder or graphitized carbon black forms an obtuse contact angle and is highly water repellent.

今市板され、容易に入手し得る各種炭素粉末について前
記の如くして液滴の接触角を測定してみれば、関東化学
(株)製の活性炭の接触角は82〜86° 、米国キャ
ポット社製商品名C3X−99の炭素粉末は72〜88
°であって親水性であり、従って濡れ性がよく、これに
対して東京電気化学工業(株)製の商品名デンカブラッ
クの接触角は116〜123°、日本黒鉛(株)製黒鉛
粉商品名AUPは115〜133°同USSPは111
〜122°などと接触(4) 角が太き(、撥水性が強くなる。
When the contact angle of a droplet was measured as described above for various types of carbon powders that are commercially available and easily available, the contact angle of activated carbon manufactured by Kanto Kagaku Co., Ltd. was 82 to 86 degrees, and the contact angle of activated carbon manufactured by Kanto Kagaku Co., Ltd. was 82 to 86 degrees, and the contact angle of activated carbon manufactured by Kanto Kagaku Co., Ltd. The carbon powder of the company's product name C3X-99 is 72 to 88
°, it is hydrophilic and therefore has good wettability.On the other hand, the contact angle of the product name Denka Black manufactured by Tokyo Denki Kagaku Kogyo Co., Ltd. is 116 to 123 °, and the contact angle of graphite powder manufactured by Nippon Graphite Co., Ltd. The name AUP is 115-133° and the USSP is 111
Contact with angles such as ~122° (4) The corners are thick (and the water repellency becomes stronger.

尚結着剤として用いられるフッ素樹脂分散液の量の多少
によっても撥水性は左右され、これが多いほど撥水性は
犬と1.c、る。
Water repellency is also affected by the amount of fluororesin dispersion used as a binder, and the higher the amount, the better the water repellency will be. c.ru.

黒鉛化の進んだ撥水性の強い炭素粉末に加えられる親水
性の炭素粉末の量は体積で前者に対して10〜70%の
範囲が好ましい。親水性炭素粉末の添加量は組合わせる
炭素粉末の種類によって変わるが、親水性炭素粉末をあ
まり多量に混合すると濡れ性は向上するが酸化溶解に対
する耐性が弱まり触媒機能の低下、電極の劣化が加速さ
れるので好ましくなく、はぼ上述の範囲内とするのが好
ましい。尚両炭素粉末の組合わせに当ってはなるべ(夫
々の比表面積が同等程度のものを選択するのが望ましい
The amount of hydrophilic carbon powder added to highly water-repellent highly graphitized carbon powder is preferably in the range of 10 to 70% by volume of the former. The amount of hydrophilic carbon powder added varies depending on the type of carbon powder to be combined, but if too much hydrophilic carbon powder is mixed, wettability will improve, but resistance to oxidative dissolution will be weakened, reducing catalyst function and accelerating electrode deterioration. However, it is preferable to keep it within the above-mentioned range. When combining the two carbon powders, it is preferable to select those having similar specific surface areas.

これらの炭素粉末を用いてガス拡散電極を製造するに当
っては、たとえば白金或は白金族金属の粉末を黒鉛化の
進んだ炭素粉末にこの炭素粉末に対して5〜15重量%
の量加えて混合し、更に親水性の炭素粉末を上記の如き
量添加し、次に適当の水を加え炭素粉の細孔内部まで充
分ぬれるよう(費拌、混合する。これに結着剤たるフッ
素樹脂、例えばポリテトラフルオロエチレン(PTFE
、商品名テフロン)のディスパージョンをJf拌しなか
ら加え練り合わせて触媒合剤を得る。
When manufacturing gas diffusion electrodes using these carbon powders, for example, platinum or platinum group metal powder is added to highly graphitized carbon powder in an amount of 5 to 15% by weight based on the carbon powder.
Then, add the hydrophilic carbon powder in the above amount, and then add appropriate water to thoroughly wet the inside of the pores of the carbon powder (stir and mix). Fluororesins such as polytetrafluoroethylene (PTFE)
, trade name Teflon) was added and kneaded with Jf stirring to obtain a catalyst mixture.

このようにしてえられた触媒合剤を多孔性炭素基板に塗
着、焼成して電極触媒層を形成するのであるが、この炭
素基板としてはたとえば黒鉛化繊維を抄紙法によって薄
板化した嵩比重0.28()、 60の平板状のカーボ
ンペーパー、或はリブ付のカーボンペーパーを用いるこ
とができる。塗着にあたっては例えばこの基板の裏面か
ら真空吸引しつつ表面から噴霧すると良好に塗着するこ
とができる。
The catalyst mixture obtained in this way is applied to a porous carbon substrate and fired to form an electrode catalyst layer.This carbon substrate is made of, for example, a bulk graphite fiber made of graphitized fiber made into a thin plate using a papermaking method. 0.28(), 60 flat carbon paper, or ribbed carbon paper can be used. When applying, for example, applying vacuum suction from the back side of the substrate and spraying from the front side can achieve good application.

ついでプレスした後、ヘリウム、屋素等の不活性ガス雰
囲気中で焼成すると、目的とするガス拡散電極かえられ
る。
Then, after pressing, the material is fired in an atmosphere of an inert gas such as helium or nitrogen to obtain the desired gas diffusion electrode.

勿論この製法は一例を示すものであり、これに限ボされ
るものではない。
Of course, this manufacturing method is just an example, and is not limited to this.

このようにしてえられたガス拡散電極を用いると、寛解
液と電極触媒乃至電極触媒層との藺れ性が良(、その間
で良好な反応界面を維持し、高性能で長寿命の燃料電池
を得ることができるのであり、これは以下の実施例によ
り明らかである。尚、本発明はこれらの実施例に限定さ
れるべきでなく、この他種々の変形、応用例を有するこ
とは理解さるべきである。
When using the gas diffusion electrode obtained in this way, it is possible to maintain a good reaction interface between the ameliorating liquid and the electrode catalyst or the electrode catalyst layer, resulting in a high-performance and long-life fuel cell. This is made clear by the following examples.It is understood that the present invention is not limited to these examples, and includes various other modifications and applications. Should.

〔発明の実施例〕[Embodiments of the invention]

実施例1 黒鉛粉(日本黒鉛(株)製USSP、平均粒子径1μ、
比表面積438→/9 ) K白金を15重量%加えて
合計量207とし、これに導電性がよぐ親水性の純水5
00m1を加えた後、炭素粉の細孔内部までが充分にぬ
れるようによ(ミキサーにて充分攪拌する。これに60
重量%のポリテトラフルオロエチレン(PTFE )デ
ィスパージョン12ツを攪拌しながら徐々に加えて触媒
合剤とする。
Example 1 Graphite powder (USSP manufactured by Nippon Graphite Co., Ltd., average particle size 1μ,
Specific surface area: 438→/9) 15% by weight of K platinum was added to make a total amount of 207%, and to this was added 5% of hydrophilic pure water with good conductivity.
After adding 00ml of carbon powder, make sure that the inside of the pores of the carbon powder is sufficiently wet (stir thoroughly with a mixer.
12 parts by weight of polytetrafluoroethylene (PTFE) dispersion were gradually added with stirring to form a catalyst mixture.

この触媒をカーボンペーパー(県別化学工業(株)製E
−71.5.多孔度77%、厚さ0.4調9面積抵抗0
.4Ωm)の裏面を真空吸引しつつ、スプレーガンにて
ノズル圧3 K9/ad で一様に吹きつける。
This catalyst was coated with carbon paper (E made by Kenbetsu Kagaku Kogyo Co., Ltd.).
-71.5. Porosity 77%, thickness 0.4 tone 9 area resistance 0
.. While applying vacuum suction to the back side of 4Ωm), spray uniformly with a spray gun at a nozzle pressure of 3K9/ad.

ついでローラーにて2 Kg/cni  でプレス後ヘ
リウムガス中330℃で15分間乾燥、焼成することに
より電極を作製した。
Then, the electrode was produced by pressing with a roller at 2 Kg/cni, then drying and firing in helium gas at 330° C. for 15 minutes.

このようにしてえられた電極を用いて単電池を作製し、
燃料として天然カス改質の模擬ガスである水素80%士
炭酸ガス20%の混合ガスを、酸化剤として空気、電解
質としてリン酸を用い、ガス流量は最大分極電流値の理
論量の3倍量とし、200℃、常圧にて分極特性を測定
した。
Using the electrode obtained in this way, a single cell is produced,
A mixed gas of 80% hydrogen and 20% carbon dioxide, which is a simulated natural gas reforming gas, was used as the fuel, air was used as the oxidizing agent, and phosphoric acid was used as the electrolyte, and the gas flow rate was three times the theoretical amount of the maximum polarization current value. The polarization characteristics were measured at 200° C. and normal pressure.

比較のため、親水性のカーボンブラック粉末を用いない
外は実施例1と同様にして作製された従来の電極を用い
て単電池をつ(り同様に分極特性を測定した。
For comparison, a single cell was prepared using a conventional electrode prepared in the same manner as in Example 1 except that no hydrophilic carbon black powder was used, and the polarization characteristics were measured in the same manner.

これらの測定の結果を第1図のグラフに併わせて示した
。このグラフにおいて曲線1か本発明電極を用いた電池
の場合、曲線2が従来の電極を用いた電池の場合を示し
ている。これより明らかなように、本発明に係る電極に
よる時は親水性の炭素粉末を添加混合したことにより、
電解液と電極触媒乃至その層との間で良好な反応界面を
維持することができたため、親水性の炭素粉末を用いな
い従来の電極による場合に比べて一定屯流で分極したと
き、より高い電池電圧を示すことができた。
The results of these measurements are also shown in the graph of FIG. In this graph, curve 1 represents a battery using the electrode of the present invention, and curve 2 represents a battery using a conventional electrode. As is clear from this, when using the electrode according to the present invention, by adding and mixing hydrophilic carbon powder,
Because we were able to maintain a good reaction interface between the electrolyte and the electrode catalyst or its layer, the polarization rate was higher when polarized at a constant flow rate than with conventional electrodes that do not use hydrophilic carbon powder. I was able to show the battery voltage.

次に同じ二つの単電池を用い定格電流220mA/aA
で分極したときの電池電圧の経時変化、即ち寿命特性を
比較した結果を第2図に示した。図中曲線1が本発明電
極の場合、曲線2が従来電極の場合を示すものであり本
発明の場合、より長寿命の特性を示すことが明らかであ
る。
Next, use the same two cells and have a rated current of 220 mA/aA.
Figure 2 shows the results of a comparison of the changes in battery voltage over time, that is, the life characteristics when polarized. In the figure, curve 1 shows the case of the electrode of the present invention, and curve 2 shows the case of the conventional electrode, and it is clear that the case of the present invention exhibits a longer life characteristic.

実施例2 実施例1の黒鉛粉(日本黒鉛(株)USSP)に代えて
次の如き黒鉛化の進んだ炭素粉末(接触角は約100〜
120°の範囲)を用いた以外、実施例1と同様にして
電極、そして電池をつ(す、測定を行なったところ、は
ぼ同様な結果かえられた。日本黒鉛(株)製A、UP(
比表面積150m’、#)、同社製C85PC比表面積
200m”/ ? ) 、スイス国LonzaGrap
hite社製H8AG−13、14、15、17(順に
比表面積113.120.123.205ttt’/7
) 、東京電気化学工業(株)製デンカブラック(平均
粒径4.2OA。
Example 2 The following highly graphitized carbon powder (contact angle is approximately 100 to
The electrodes and batteries were used in the same manner as in Example 1, except that a 120° range was used, and measurements were carried out, and the results were almost the same. Nippon Graphite Co., Ltd. A, UP (
Specific surface area 150m', #), C85PC specific surface area 200m"/?), LonzaGrap, Switzerland
H8AG-13, 14, 15, 17 manufactured by Hite (specific surface area 113.120.123.205ttt'/7 in order)
), Denka Black manufactured by Tokyo Denki Kagaku Kogyo Co., Ltd. (average particle size 4.2OA).

比表面積70)I/2)。Specific surface area 70) I/2).

実施例3 実施例1におけるカーボンブラック粉末に代えて次の如
き親水性の炭素粉末(接触角は約50〜90°の範囲)
を用いた以外、実施例1と同様にして電極を得、そして
電池をつ(す、同様に測定したところほぼ実施例1と同
様な結果かえられた。
Example 3 The following hydrophilic carbon powder (contact angle ranges from about 50 to 90 degrees) was used instead of the carbon black powder in Example 1.
An electrode was obtained in the same manner as in Example 1, except that a battery was used, and measurements were performed in the same manner as in Example 1. The results were almost the same as in Example 1.

Vulcan XC−72、Vulcan XC−72
R,(比表面績254 tr?/? 、平均粒径30m
μ) 、 Regal 6601((比表面積112?
?II、Q、平均粒径′24mμ)、Monarcbl
loo(比表面積240y&/7.平均粒径1.4mμ
)、Monarch 1300 (比表面積560m’
/l、平均粒径13mμ)。
Vulcan XC-72, Vulcan XC-72
R, (specific surface performance 254 tr?/?, average particle size 30m
μ), Regal 6601 ((specific surface area 112?
? II, Q, average particle size '24 mμ), Monarcbl
loo (specific surface area 240y&/7. average particle size 1.4mμ
), Monarch 1300 (specific surface area 560 m'
/l, average particle size 13 mμ).

実施例4 実施例11Cおけるカーボンペーパーに代えて、日本カ
ーボン(株)製リプ付カーボンペーパー(密度0.45
 f/cJ 、厚さ2陥、多孔度75〜80%)を用い
、実施例1乃至3の触媒合剤を用いて同様に電極、電池
をつくり同様に測定したところ、実施例1のときとほぼ
同様の結果が得られた。
Example 4 In place of the carbon paper in Example 11C, carbon paper with lip (density 0.45) manufactured by Nippon Carbon Co., Ltd. was used.
f/cJ, thickness 2 holes, porosity 75-80%), electrodes and batteries were made in the same manner using the catalyst mixtures of Examples 1 to 3 and measured in the same manner. Almost similar results were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図は本発明の電極を用いた単電池と従来の電極
を用いた単電池の分極特性を比較して示すグラフ、第2
図は目早′亀池の寿命特性を比較して示すグラフである
Figure 1 is a graph comparing the polarization characteristics of a cell using the electrode of the present invention and a cell using a conventional electrode.
The figure is a graph showing a comparison of the life characteristics of Mehaya'Kameike.

Claims (1)

【特許請求の範囲】[Claims] 貴金属系触媒を黒鉛化の進んだ炭素粉末に担持させた電
極触媒をフッ素樹脂で結着させてなる触媒合剤を多孔性
炭素基体に塗着、焼成して該基体上に電極触媒層を形成
してなるガス拡散電極において、前記触媒合剤に親水性
の炭素粉末を添加して、電池形成時、前記電極触媒又は
電極触媒層と電解液との間で良好な反応界面を維持させ
るようにしたことを特徴とする燃料電池用ガス拡散電極
A catalyst mixture consisting of an electrode catalyst in which a precious metal catalyst is supported on highly graphitized carbon powder and bound with a fluororesin is applied to a porous carbon substrate and fired to form an electrode catalyst layer on the substrate. In the gas diffusion electrode, hydrophilic carbon powder is added to the catalyst mixture to maintain a good reaction interface between the electrode catalyst or the electrode catalyst layer and the electrolyte during battery formation. A gas diffusion electrode for fuel cells characterized by the following.
JP58055548A 1983-03-31 1983-03-31 Method for manufacturing gas diffusion electrode Expired - Lifetime JPH0722020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055548A JPH0722020B2 (en) 1983-03-31 1983-03-31 Method for manufacturing gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055548A JPH0722020B2 (en) 1983-03-31 1983-03-31 Method for manufacturing gas diffusion electrode

Publications (2)

Publication Number Publication Date
JPS59181463A true JPS59181463A (en) 1984-10-15
JPH0722020B2 JPH0722020B2 (en) 1995-03-08

Family

ID=13001755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055548A Expired - Lifetime JPH0722020B2 (en) 1983-03-31 1983-03-31 Method for manufacturing gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH0722020B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251166A (en) * 1985-08-29 1987-03-05 Toshiba Corp Fuel cell
JPS62232860A (en) * 1986-04-01 1987-10-13 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode and manufacture thereof
JPS62232872A (en) * 1986-04-03 1987-10-13 Tanaka Kikinzoku Kogyo Kk Haogen battery
US5480735A (en) * 1990-06-25 1996-01-02 International Fuel Cells Corporation High current alkaline fuel cell electrodes
WO2006001147A1 (en) * 2004-06-23 2006-01-05 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884793A (en) * 1972-02-15 1973-11-10
JPS56152166A (en) * 1980-04-24 1981-11-25 Sanyo Electric Co Ltd Preparation of gas diffusion electrode
JPS57141871A (en) * 1980-12-13 1982-09-02 Electrochem Energieconversie Fuel battery electrode and method of producing fuel battery electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884793A (en) * 1972-02-15 1973-11-10
JPS56152166A (en) * 1980-04-24 1981-11-25 Sanyo Electric Co Ltd Preparation of gas diffusion electrode
JPS57141871A (en) * 1980-12-13 1982-09-02 Electrochem Energieconversie Fuel battery electrode and method of producing fuel battery electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251166A (en) * 1985-08-29 1987-03-05 Toshiba Corp Fuel cell
JPH0766810B2 (en) * 1985-08-29 1995-07-19 株式会社東芝 Fuel cell
JPS62232860A (en) * 1986-04-01 1987-10-13 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode and manufacture thereof
JPS62232872A (en) * 1986-04-03 1987-10-13 Tanaka Kikinzoku Kogyo Kk Haogen battery
US5480735A (en) * 1990-06-25 1996-01-02 International Fuel Cells Corporation High current alkaline fuel cell electrodes
WO2006001147A1 (en) * 2004-06-23 2006-01-05 Nissan Motor Co., Ltd. Membrane-electrode assembly for fuel cell
JP2006012476A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell

Also Published As

Publication number Publication date
JPH0722020B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
Gloaguen et al. Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates
US3912538A (en) Novel composite fuel cell electrode
Miles et al. The oxygen electrode reaction in alkaline solutions on oxide electrodes prepared by the thermal decomposition method
US7014944B2 (en) Electrodes for alkaline fuel cells with circulating electrolyte
JPH0652862A (en) Porous electrode and its manufacture
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
JPH09257687A (en) Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JPH07134996A (en) Fuel cell
JPS59181463A (en) Gas diffusion electrode
Reed et al. Porous carbon for fuel cell electrodes
JPS6035471A (en) Electrode for fuel cell
JP2003297392A (en) Proton conductor, its manufacturing method and fuel cell
JPH05234599A (en) Gas-diffusion electrode for fuel cell and its manufacture
JPH04192261A (en) Fuel electrode and its manufacture for solid electrolyte type fuel cell
JPH0218861A (en) Electrode catalyzer layer for fuel cell
JPS59169069A (en) Electrode for fuel cell
KR100423843B1 (en) Manufacturing method of electrode for fuel cell and electrode using the same
JPH08185866A (en) Solid high polymer type fuel cell and manufacture of its electrode
JP2005071851A (en) Manufacturing method of gas diffusion electrode
JP3266525B2 (en) Method for manufacturing substrate with electrode film
JPH0574190B2 (en)
JPH0227661A (en) Electrode catalyst layer for fuel cell
JPH07130372A (en) Solid polymer fuel cell electrode and manufacture thereof
JP2000012040A (en) Fuel cell electrode and its manufacture