JPS59169069A - Electrode for fuel cell - Google Patents

Electrode for fuel cell

Info

Publication number
JPS59169069A
JPS59169069A JP58042284A JP4228483A JPS59169069A JP S59169069 A JPS59169069 A JP S59169069A JP 58042284 A JP58042284 A JP 58042284A JP 4228483 A JP4228483 A JP 4228483A JP S59169069 A JPS59169069 A JP S59169069A
Authority
JP
Japan
Prior art keywords
electrode
catalyst
fuel cell
powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58042284A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Hisao Yamashita
寿生 山下
Seiji Takeuchi
瀞士 武内
Mamoru Mizumoto
水本 守
Teruo Kumagai
熊谷 輝夫
Akio Honchi
章夫 本地
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58042284A priority Critical patent/JPS59169069A/en
Publication of JPS59169069A publication Critical patent/JPS59169069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide an electrode for a fuel cell having high performance, good mechanical strength, and long life by mixing a catalyst carrier comprising catalyst, carrier for catalyst, and binder with graphite powder and carbon black having a specified particle size in a specified ratio. CONSTITUTION:At least one electrode of positive and negative electrodes consists of an electrode substrate and a catalyst layer comprising catalyst, carrier for catalyst, and binder. The carrier for catalyst comprises a mixture of natural graphite powder having a particle size of 0.1-5mum and furnace carbon black having a particle size of 0.01-0.1mum. The mixing ratio of graphite powder to the total mixed powder is specified to 25-75wt%. Thereby, an electrode for fuel cell having high performance and long life is provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池用電極に係わシ、とシわけ、その電極
の触媒担持層の組成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electrode for a fuel cell, and specifically to the composition of a catalyst support layer of the electrode.

〔従来技術〕[Prior art]

燃料電池の電極に関しては、これまでに幾多の発明がな
されてきた。それらのうちの大部分は、ガス拡散電極に
関するものである。ガス拡散電極の発明の内訳を見ると
金属あるいは炭素の多孔質焼結体を電極基体に用いるも
の、あるいはプラスチック系結着剤によって金属粉末、
触媒、導電性粉末を結着保持して電極を形成するものの
二種類に大別される。しかし、近年、燃料電池触媒の高
活性化のため、および燃料電池の実用化に際する低コス
ト化の必要性のため、触媒貴金属を炭素粉末等の導電性
粉末に高分散担持させる技術が注目されている。この技
術を適用することは、すなわち、大部分が炭素粉末であ
る触媒担持粉末を電極に成形することになる。触媒担体
の炭素粉末としては比表面頂が大きく、平均粒径の小さ
いものつまシ一般に嵩密度が小さく、吸水量の多いカー
ボンブラック・系Ii索粉末が用いられる。このような
嵩高い粉末を結着塗布して電極にするには30〜70憾
程度の多量のプラスチック系結着剤を用いなければ均一
で強度が十分にして、ヒビ割れのない電極は作れない。
Many inventions have been made regarding electrodes for fuel cells. Most of them concern gas diffusion electrodes. Looking at the details of the inventions of gas diffusion electrodes, there are those that use a porous sintered body of metal or carbon as the electrode base, or those that use metal powder or a plastic binder.
There are two types: catalysts and those that bind and hold conductive powder to form electrodes. However, in recent years, in order to increase the activation of fuel cell catalysts and to reduce costs when putting fuel cells into practical use, technology in which catalyst precious metals are highly dispersed and supported on conductive powders such as carbon powder has attracted attention. has been done. Applying this technique means forming the catalyst-supported powder, which is mostly carbon powder, into an electrode. As the carbon powder for the catalyst carrier, a carbon black type Ii powder having a large specific surface peak and a small average particle diameter is generally used, which has a small bulk density and a large amount of water absorption. In order to make electrodes by binding and coating such bulky powder, a large amount of plastic binder (about 30 to 70%) must be used to make an electrode that is uniform, strong enough, and crack-free. .

しかし、そのように多量の結着剤を用いることは結着剤
によって炭素粉末に担持された触媒の活性点のがなりの
部分が被覆されてしまうことにな糺電極の性能低下をき
たすことにガる。また、可溶性反応物(たとえばメタノ
部への反応物の浸透を妨げるものであって、更に好まし
くないものとなる。
However, using such a large amount of binder may cause the binder to cover the active sites of the catalyst supported on the carbon powder, resulting in a decrease in the performance of the glue electrode. Garu. It also prevents the penetration of soluble reactants (for example, reactants into the methanopart), making it even more undesirable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記、従来技術の問題点を解決するため
に、軒たな組成の電極塗布層を提供するにある。それに
よって高性能、長寿命の燃料電池用電極が得られる。
An object of the present invention is to provide an electrode coating layer having a uniform composition in order to solve the problems of the prior art described above. As a result, a fuel cell electrode with high performance and long life can be obtained.

〔発明の概要〕[Summary of the invention]

従来技術においては結着剤を多量に使用することが問題
でめった。しかし、カーボンブラック系担体を使用する
限シ、上記の問題点を回避することが出来ない。なぜな
らばカーボンブラックは吸水量が大きく、嵩高い粉末で
あるから、結着剤を多量に用いずに強度が十分な電極に
塗布することができないからである。そこで発明者らは
比表面積が大きく、多孔性電極を作りやすいというカー
ボンブラックの長所を保ちながら上記問題点を解決する
ために、カーボンブラックと黒鉛粉末の混合粉末を使用
することを考案した。黒鉛粉末はその結晶性の筒さのた
め導電性が高いという電極材料として好ましい性質を持
っている。しがし、反面、その結晶性の高さのため表面
の官能基が少なく、電極反応に活性な場を提供しに<<
、比表面積も小さく、高密度が大きいため多孔性電極を
作シにくいという欠点がある。しかし、これらの欠点は
カーボンブラックが備えている長所であって、まさにカ
ーボンブラックと黒鉛とは相補的関係にあシ、両者を混
合して用いることにょシ他めて好ましい電極が得られる
ものと考えられる。用いるカーボンブラックとしては、
アセチレンブラック、サーマルブラック、ファーネスブ
ラック、ランプブラック、チャンネルブラックのいずれ
も使用可能であり、粒子径が0.O1〜0.1μmのも
のが好ましい。黒鉛粉末は、天然黒鉛、人造黒鉛のいず
れも使用可能であるが、カーボンブラックとの十分な混
合状態を得るために粒径0.1〜5μmの比較的粗、径
の小さいものが好ましい。
In the prior art, the use of large amounts of binders has been problematic. However, as long as a carbon black carrier is used, the above problems cannot be avoided. This is because carbon black has a large amount of water absorption and is a bulky powder, so it cannot be applied to an electrode with sufficient strength without using a large amount of a binder. Therefore, the inventors devised the use of a mixed powder of carbon black and graphite powder in order to solve the above problems while maintaining the advantages of carbon black, such as having a large specific surface area and making it easy to form porous electrodes. Graphite powder has high conductivity due to its crystalline cylindrical shape, which is desirable as an electrode material. However, on the other hand, due to its high crystallinity, there are few functional groups on the surface, making it difficult to provide an active field for electrode reactions.
However, since the specific surface area is small and the density is high, it is difficult to fabricate porous electrodes. However, these drawbacks are the advantages of carbon black, and carbon black and graphite are in a complementary relationship, and a preferable electrode can only be obtained by using a mixture of the two. Conceivable. The carbon black used is
Any of acetylene black, thermal black, furnace black, lamp black, and channel black can be used, and the particle size is 0. Preferably, the thickness is 01 to 0.1 μm. As the graphite powder, both natural graphite and artificial graphite can be used, but in order to obtain a sufficient mixing state with carbon black, a relatively coarse and small particle size of 0.1 to 5 μm is preferable.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面に従って更に詳しく説明する。 The present invention will be explained in more detail below with reference to the drawings.

第1図は本発明の対象である燃料電池の断面模式図であ
る。図において1.6はそれぞれ燃料極および酸化剤極
であって、本発明はこの両電極に係わる。燃料極1と酸
化剤極6の間には電解液室5があシ、ここには強アルカ
リあるいは強酸などの電導性の高い水溶液が電解液とし
て満たされている。1.6はそれぞれ燃料室2、酸化剤
室7にも面しておシ、それぞれの入口4,8、出口3,
9よシ反応物質の供給と排出がなされる。本発明に係わ
る1、6の拡大断面を第2図に示す。図において12は
金属金網、金属および炭素などの多孔質体で形成される
導電性の電極基体であって、一般に反応物質室2.7に
面した側に配置される。
FIG. 1 is a schematic cross-sectional view of a fuel cell that is the object of the present invention. In the figure, numerals 1 and 6 are a fuel electrode and an oxidizer electrode, respectively, and the present invention relates to these two electrodes. There is an electrolyte chamber 5 between the fuel electrode 1 and the oxidizer electrode 6, which is filled with a highly conductive aqueous solution such as a strong alkali or a strong acid as an electrolyte. 1.6 also face the fuel chamber 2 and oxidizer chamber 7, respectively, and have respective inlets 4, 8, outlets 3,
9. Reactants are supplied and discharged. FIG. 2 shows enlarged cross sections of Nos. 1 and 6 according to the present invention. In the figure, 12 is a conductive electrode base made of a porous material such as a metal wire mesh, metal, and carbon, and is generally arranged on the side facing the reactant chamber 2.7.

13は塗布層であって、この組成が本発明の主要部分で
あるが、一般には触媒、金属ないしは炭素などの導電性
粉末、ポリテトラフルオロエチレン、ポリスチレン、ポ
リ塩化ビニルなどのプラスチック系結着剤などによシ形
成される。燃料電池の電極反応はこの塗布層で起きるた
め、燃料電池の性・能全体を大きく左右する部分でめシ
、この部分の改良の意義は極めて大きい。
Reference numeral 13 denotes a coating layer, whose composition is the main part of the present invention, and generally includes a catalyst, a conductive powder such as metal or carbon, and a plastic binder such as polytetrafluoroethylene, polystyrene, or polyvinyl chloride. It is formed by such methods. Since the electrode reaction of a fuel cell occurs in this coating layer, it is the part that greatly affects the overall performance and performance of the fuel cell, so improvements in this part are extremely significant.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

(実施例1) 平均粒径0.7μmの天然黒鉛粉末と平均粒径0.02
μmのファーネスブラック系カーボンブラックを重量比
にして1:0,3:1,1:1.3゜0:1の割合に分
取し、これをライカイ機に移し、炭素粉末10jrに対
し水30mtを加え1時間中分に混轢する。得られた混
、4i1!*32gに対して水250〜350mt、塩
化白金e ()fxPtc74−61(2015,4g
を加えマグネティックスター2で十分に混合し、そこへ
33憾のホルマリン20m1を加工更に混合し、10憾
水酸化力リウム水□溶液somtを加える。その後2時
間攪拌を続けた後、口過、水洗し、空気中100cで乾
燥し、触媒担持炭素粉末を得る。得られた粉末10重量
部に対し、水40重量部、ポリテトラフルオロエチレン
(PTFEI微粉末1微粉末1加址十分に混練し、80
メツシユの白金金網に塗布し乾燥する。そののち窒業中
250〜350t:’で1〜2時間焼成する。得られた
電極を2mol/lの硫酸と1mot/lのメタノール
を含む水溶中に浸し、25Cで電極の電流密度−電位特
性を測定した。得られた結果を第3図に示す。第3図で
は横軸の黒鉛粉末含有量(重量パーセント)に対する電
流密度40mん4−のときの電位が縦軸に取っである。
(Example 1) Natural graphite powder with an average particle size of 0.7 μm and an average particle size of 0.02
Furnace black type carbon black of μm was fractionated at a weight ratio of 1:0, 3:1, 1:1.3゜0:1, transferred to a Raikai machine, and 10jr of carbon powder was mixed with 30mt of water. Add and stir for 1 hour. The resulting mixture, 4i1! *250-350mt of water for 32g, platinum chloride e ()fxPtc74-61 (2015, 4g
Add and mix thoroughly with Magnetic Star 2, process and mix 20ml of 33ml formalin, and add 10ml of hydrium hydroxide aqueous solution somt. Thereafter, stirring was continued for 2 hours, followed by filtration, washing with water, and drying in air at 100 °C to obtain a catalyst-supported carbon powder. To 10 parts by weight of the obtained powder, 40 parts by weight of water, 1 part of polytetrafluoroethylene (PTFEI fine powder, 1 part of fine powder) were thoroughly kneaded, and 80 parts by weight of powder was added.
Apply to mesh platinum wire mesh and let dry. Thereafter, it is fired for 1 to 2 hours at 250 to 350 tons in a nitrogen tank. The obtained electrode was immersed in an aqueous solution containing 2 mol/l sulfuric acid and 1 mot/l methanol, and the current density-potential characteristics of the electrode were measured at 25C. The results obtained are shown in FIG. In FIG. 3, the vertical axis shows the potential at a current density of 40 m<4> with respect to the graphite powder content (weight percent) on the horizontal axis.

図よシ明らかなように黒鉛有量が75幅以上になると電
極電位が高くなる、つti性能が低下することがわかる
。しかし、黒鉛官有量が少ないときには性能は十分であ
るが強度的に問題がある。このことを第4図に示す。第
4図は黒鉛含有量が01,251,501の電極を2m
oA/lの硫酸と1mot/lのメタノールを含む25
Cの水溶液中に浸し、60mλ/cm”の電流密度で連
続放電したときの電位の経時変化を示したものである。
As is clear from the figure, when the amount of graphite exceeds 75%, the electrode potential increases and the ti performance decreases. However, when the graphite content is small, the performance is sufficient, but there are problems in terms of strength. This is shown in FIG. Figure 4 shows a 2 m electrode with a graphite content of 01,251,501.
25 containing oA/l sulfuric acid and 1 mot/l methanol
This figure shows the change in potential over time when the sample was immersed in an aqueous solution of C and continuously discharged at a current density of 60 mλ/cm''.

図よシ明らかなように黒鉛含有量が0憾のものは極端に
性能が低い。これは肉眼で戚察された塗布層のはがれと
一致していた。
As is clear from the figure, those with zero graphite content have extremely low performance. This was consistent with peeling of the coating layer, which was observed with the naked eye.

以上から明らかなように塗布層中の黒鉛含有量の好まし
い範囲は25〜75噛であることがわかった。この範囲
の組成の炭素粉末を触媒担体に用いた電極によって性能
も十分に高く、かつ強度的にも問題のない高性能電極が
得られる。
As is clear from the above, it was found that the preferable range of graphite content in the coating layer is 25 to 75 parts. An electrode using carbon powder having a composition within this range as a catalyst carrier can provide a high-performance electrode with sufficiently high performance and no problems in terms of strength.

(実施例2) 平均粒径0.7μmの天然黒鉛粉末と平均粒径0.04
μmのカーボンブラックを重量比にして1:0.3.:
1.1 : 1.1 :3.0 : 1の割合に秤量し
、これをライカイ機に移し、炭素粉末10gに対し、水
30mtを加え1時間中分に混練する得られた混線物に
PTFE微粉末1gを加えて十分に混疎し、80メツシ
ユの白金金網に塗布し乾燥する。
(Example 2) Natural graphite powder with an average particle size of 0.7 μm and an average particle size of 0.04
The weight ratio of μm carbon black is 1:0.3. :
1.1 : 1.1 : 3.0 : 1 weighed, transferred to a Raikai machine, added 30 mt of water to 10 g of carbon powder, and kneaded for 1 hour. PTFE was added to the resulting mixture. Add 1 g of fine powder, mix well, apply to 80 mesh platinum wire mesh and dry.

そののち空気中250〜300Cで1〜2時間焼成する
。得られた電極上に塩化白金酸のエタノール溶液を含浸
させ乾燥後、150Cの水素気流中 ゛に2時間保持し
還元した。得られた電極の性能は第3図、および第4図
と同様の傾向を示した。
Thereafter, it is fired in air at 250 to 300 C for 1 to 2 hours. The obtained electrode was impregnated with an ethanol solution of chloroplatinic acid, dried, and then kept in a hydrogen stream at 150 C for 2 hours to reduce the electrode. The performance of the obtained electrode showed the same tendency as shown in FIGS. 3 and 4.

〔発明の効果〕〔Effect of the invention〕

本発明によシ高性能にして、しかも十分な強度のある長
寿命の燃料電池用電極が得られるようになった。
According to the present invention, a fuel cell electrode with high performance, sufficient strength and long life can now be obtained.

上記実施例では発明の適用対象が酸性電解液型メタノー
ル燃料電池のメタノール極であったが、本発明の適用は
それに限定されることなく、広く燃料電池一般に対し可
能でるる。すなわち酸性およびアルカリ性電Saの燃料
電池の燃料極および酸化剤性に対して有効であ夛、その
場合酸化剤および燃料は液体、気体のいずれであっても
問題はない。
In the above embodiments, the invention was applied to the methanol electrode of an acidic electrolyte methanol fuel cell, but the invention is not limited thereto and can be applied to a wide range of fuel cells in general. That is, it is effective for the fuel electrode and oxidizing agent of acidic and alkaline Sa fuel cells, and there is no problem whether the oxidizing agent and fuel are liquid or gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、燃料電池の断面模式図、第2図は燃料電池用
電極の断面図、第3図は本発明による電極の初期性を比
較した線図、j@4図は本発明による電極の寿命特性を
比較した線図である。 1・・・燃料極、2・・・燃料呈、3・・・燃料出口、
4・・・燃料入口、5・・・電解成案、6・・・酸化剤
極、10・・・電池容器。 代理人 弁理士 高橋明夫 第1閃 茶2図 1/ r5ゝ−一               ′\茅3 
図 θ                        
  /θO黒鉛者令朱官有+ <7.) $4目 0                       2
/θ#衾 埼 間  <h) 4、°黒G含有量θ7゜ δ:    #     zs;/。 C:5σ2 第1頁の続き ・塑発 明 者 松田臣平 日立市幸町3丁目1番1号株式 %式%
Fig. 1 is a schematic cross-sectional view of a fuel cell, Fig. 2 is a cross-sectional view of an electrode for a fuel cell, Fig. 3 is a diagram comparing the initiality of electrodes according to the present invention, and Fig. j@4 is a cross-sectional diagram of an electrode according to the present invention. FIG. 2 is a diagram comparing the life characteristics of . 1...Fuel electrode, 2...Fuel outlet, 3...Fuel outlet,
4... Fuel inlet, 5... Electrolytic formation, 6... Oxidizer electrode, 10... Battery container. Agent Patent Attorney Akio Takahashi Daiichi Sencha 2 Figure 1/ r5ゝ-1 ′\Kaya 3
Figure θ
/θO graphite person Rei Zhu Kanyu+ <7. ) $4 0 2
/ θ # 衾 弼 < h ) 4, ° Black G content θ 7 ° δ: # zs; /. C: 5σ2 Continuation of page 1 - Plastic invention Inventor Omihira Matsuda 3-1-1 Saiwaimachi, Tachi-shi Stock% formula %

Claims (1)

【特許請求の範囲】[Claims] 1、負極である燃料極、正極でるる酸化剤極、両電極の
間にあって両電極を電気化学的に接続する電解液よ勺形
成される燃料電池の単位電池において、正負両電極の少
なくとも一方が電極基体と触媒層から成シ、かつ、その
触媒層が、触媒、触媒担体、結着剤を含むものであって
、該触媒担体が粒径0.1〜5μmの黒鉛粉末と粒径0
.01〜0.1μmのカーボンブラックの混合物からな
)、その混合割合は黒鉛粉末が全混合粉末に対し25〜
75重量幅を占めることを特徴とする燃料電池用電極。
1. In a unit cell of a fuel cell formed by a fuel electrode as a negative electrode, an oxidizer electrode as a positive electrode, and an electrolyte between the two electrodes to electrochemically connect the two electrodes, at least one of the positive and negative electrodes is It is composed of an electrode base and a catalyst layer, and the catalyst layer contains a catalyst, a catalyst carrier, and a binder, and the catalyst carrier is composed of graphite powder with a particle size of 0.1 to 5 μm and a particle size of 0.
.. 01~0.1μm), the mixing ratio of graphite powder is 25~0.1μm to the total mixed powder.
A fuel cell electrode characterized in that it occupies a weight range of 75.
JP58042284A 1983-03-16 1983-03-16 Electrode for fuel cell Pending JPS59169069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042284A JPS59169069A (en) 1983-03-16 1983-03-16 Electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042284A JPS59169069A (en) 1983-03-16 1983-03-16 Electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPS59169069A true JPS59169069A (en) 1984-09-22

Family

ID=12631745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042284A Pending JPS59169069A (en) 1983-03-16 1983-03-16 Electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS59169069A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252058A (en) * 1990-02-28 1991-11-11 Fuji Electric Co Ltd Electrode catalyst layer for fuel cell
JPH10241703A (en) * 1997-02-21 1998-09-11 Toyota Motor Corp Electrode and power-generating layer for fuel cell, and manufacture of the same
JP2001236968A (en) * 2000-02-23 2001-08-31 Asahi Kasei Corp Fuel cell reactor and method of using the same
JP2009081064A (en) * 2007-09-26 2009-04-16 Toshiba Corp Catalyst layer, manufacturing method of catalyst layer, fuel cell, and manufacturing method of fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252058A (en) * 1990-02-28 1991-11-11 Fuji Electric Co Ltd Electrode catalyst layer for fuel cell
JPH10241703A (en) * 1997-02-21 1998-09-11 Toyota Motor Corp Electrode and power-generating layer for fuel cell, and manufacture of the same
JP2001236968A (en) * 2000-02-23 2001-08-31 Asahi Kasei Corp Fuel cell reactor and method of using the same
JP2009081064A (en) * 2007-09-26 2009-04-16 Toshiba Corp Catalyst layer, manufacturing method of catalyst layer, fuel cell, and manufacturing method of fuel cell

Similar Documents

Publication Publication Date Title
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
Wikander et al. Alternative catalysts and carbon support material for PEMFC
JPS6322023B2 (en)
TW200300618A (en) Catalyst agglomerates for membrane electrode assemblies
JPH09257687A (en) Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
JPH06103984A (en) Electrode structure for fuel cell
JPS59169069A (en) Electrode for fuel cell
CN111788728B (en) Electrode catalyst for fuel cell and fuel cell using the same
JP2003100308A (en) Cathode electrode catalyst for fuel cell and method of manufacturing the same
US3940510A (en) Process for the manufacture of silver-coated tungsten carbide electrode material
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
JPH02821B2 (en)
JPS59181463A (en) Gas diffusion electrode
JPH06223835A (en) Gas diffusion electrode
JP2905551B2 (en) Method for producing electrode for fuel cell
JPS6074272A (en) Manufacture of fused carbonate type fuel cell
JPH0766809B2 (en) Raw material powder for gas diffusion electrode
JPS62287570A (en) Material for gas diffusion electrode
JP3456270B2 (en) Paste for forming electrode catalyst layer
JPS6032251A (en) Gas electrode for fuel cell
JPH07130372A (en) Solid polymer fuel cell electrode and manufacture thereof
JPH0548581B2 (en)
JPS58126673A (en) Fuel electrode for liquid fuel cell
JPS5940468A (en) Multilayer electrodes stepwisely divided in grain size and component weight ratio