JPS6035471A - Electrode for fuel cell - Google Patents

Electrode for fuel cell

Info

Publication number
JPS6035471A
JPS6035471A JP58141132A JP14113283A JPS6035471A JP S6035471 A JPS6035471 A JP S6035471A JP 58141132 A JP58141132 A JP 58141132A JP 14113283 A JP14113283 A JP 14113283A JP S6035471 A JPS6035471 A JP S6035471A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
nickel
porous body
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58141132A
Other languages
Japanese (ja)
Other versions
JPH02821B2 (en
Inventor
Yoichi Seta
瀬田 曜一
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58141132A priority Critical patent/JPS6035471A/en
Publication of JPS6035471A publication Critical patent/JPS6035471A/en
Publication of JPH02821B2 publication Critical patent/JPH02821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce the amount of metal used for an electrode and stabilize cell performance by applying electroless deposition of active metal layer to the surface of a ceramic porous body which is chemically stable to molten carbonate electrolyte. CONSTITUTION:At least one of ceramics powder and fiber such as lithium aluminate which is chemically stable to molten carbonate electrolyte at operating temperature of a fuel cell is sintered. Electrochemically active metal layer such as nickel is formed on the surface of the ceramic porous body formed by sintering by applying electroless deposition. By this process, an electrode for unit cell of a fuel cell is obtained. The amount of nickel metal used for electrode is reduced and cost of electrode is also decreased. Shape and diameter of pores in the electrode are uniform and operation of the fuel cell is steady over a long period of time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、溶融炭酸塩を電解質とする燃料電池の単位電
池に組込1れる電極に係り、特に低価格化および長寿命
化を図れるようにした電極に関する。 ・ 〔発明の技術的背須と問題点〕 従来、水素のように酸化石れ易いガスと、酸素のように
酸化力のある力スとを電気化学反>er、プロセスを経
て反応させることによシ直流電力を得るようにした燃料
電池が広く知られている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electrode that is incorporated into a unit cell of a fuel cell using molten carbonate as an electrolyte, and particularly relates to an electrode that is incorporated in a unit cell of a fuel cell using molten carbonate as an electrolyte, and in particular, an electrode that is designed to be low in price and have a long life. Regarding electrodes.・ [Technical issues and problems with the invention] Conventionally, a gas that easily oxidizes, such as hydrogen, and a gas that has oxidizing power, such as oxygen, were reacted through an electrochemical reaction process. Fuel cells that obtain direct current power are widely known.

この燃料電池は、使用する電解質によってリン酸型、溶
融炭酸塩型、固体電解置型等に大別される。
Fuel cells are broadly classified into phosphoric acid type, molten carbonate type, solid electrolyte type, etc. depending on the electrolyte used.

ところで、上記のよう々燃料電池のうち、浴融炭酸塩型
の燃料電池は、650℃近辺の温度で動作させるように
したもので、その主要部は通常、炭酸リチウム、炭酸カ
リウム等の炭敏塩の電解質とりチウムアルミネート等の
セラミック系保持材とを平板状に一体化してなる電解質
層の両面にニッケル合金系のガス拡散電極を当てがって
単位電池を構成し、この単位電池を複数個、相互間に双
極性隔離板を介在させて積層した積層体に構成されてい
る。
By the way, among the above-mentioned fuel cells, bath-molten carbonate fuel cells are designed to operate at temperatures around 650°C, and their main components are usually carbonaceous materials such as lithium carbonate and potassium carbonate. A unit battery is constructed by applying nickel alloy gas diffusion electrodes to both sides of an electrolyte layer made by integrating a salt electrolyte and a ceramic holding material such as tium aluminate into a flat plate. It is constructed as a laminate in which the individual electrodes are laminated with bipolar separators interposed between them.

しかしながら、上記のように構成された溶融炭酸塩型燃
料電池にあっては次のような問題があった。すなわち、
単位電池に組込まれる電極として多孔質ニッケル焼結板
を使用しておシ、この焼結板は高価であることからして
、電池全体が高価格化する問題があった。また、多孔質
ニッケル焼結板は長時間の電池の作動中に、ニッケル粒
子同志で焼結が進行し、電極の気孔径形状が変化し寿命
が短かい問題もあった。一般に電池の特性は、電解質、
電極、反応ガスから成る三相界面の電気化学的な活性点
の量に大きく左右される。したがって、作動初期に最適
な構造を有していた電極でも電池動作中に気孔形状、気
孔径に変化が生ずると、電池特性が劣化することになる
However, the molten carbonate fuel cell configured as described above has the following problems. That is,
Although a porous nickel sintered plate is used as an electrode incorporated in a unit battery, this sintered plate is expensive, so there is a problem in that the entire battery becomes expensive. In addition, the porous nickel sintered plate has the problem that sintering progresses among the nickel particles during long-term battery operation, resulting in changes in the pore size and shape of the electrode, resulting in a short lifespan. In general, the characteristics of batteries are electrolyte,
It greatly depends on the amount of electrochemically active sites at the three-phase interface consisting of the electrode and the reactant gas. Therefore, even if the electrode has an optimal structure at the initial stage of operation, if the pore shape and diameter change during battery operation, the battery characteristics will deteriorate.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、溶融炭酸塩月料電池の単位電池
に組込まれる電極にあって、高価なニッケルの使用量を
減すことができ、しかも長時間の電池作動においても気
孔形状、気孔径の大幅な変化が起こらず、電池特性を安
定に維持させ得る燃料電池用電極を提供することにある
The present invention has been made in view of the above circumstances, and its purpose is to reduce the amount of expensive nickel used in electrodes incorporated in unit cells of molten carbonate lunar batteries. An object of the present invention is to provide an electrode for a fuel cell, which can maintain cell characteristics stably without significant changes in pore shape and pore diameter even during long-term cell operation.

〔発明の概要〕[Summary of the invention]

本発明に係る電極は、電池の動作温度下で溶融炭酸塩に
対して化学的に安定なセラミックスの粒子または繊維の
少なくとも一方を焼結して形成された空孔率50〜90
%の多孔質体と、この多孔質体の前記セラミックスの表
面に無電解メッキによって形成された電池反応に対して
電気化学的に活性な金属層とで構成されることを特徴と
している。
The electrode according to the present invention has a porosity of 50 to 90 and is formed by sintering at least one of ceramic particles or fibers that are chemically stable against molten carbonate at the operating temperature of the battery.
%, and a metal layer that is electrochemically active for battery reactions and formed on the surface of the ceramic of this porous body by electroless plating.

さらに詳しく説明すれば前記多孔質体を構成するセラミ
ックスは、アルミン酸リチウム、チタン酸ストロンチウ
ム、チタン酸リチウム、ジルコン酸リチウム、酸化ジル
コニウム、窒化ホウ素、窒化ケイ素およびこれらの混合
物の中から選ばれたものであり、また、前記金属層は、
ニッケル、ニッケル・クロム合金、ニッケル・コバルト
合金およびニッケル・アルミニウム合金の中から選ばれ
た1種の金属で形成されている。
More specifically, the ceramic constituting the porous body is selected from lithium aluminate, strontium titanate, lithium titanate, lithium zirconate, zirconium oxide, boron nitride, silicon nitride, and mixtures thereof. and the metal layer is
It is made of one metal selected from nickel, nickel-chromium alloy, nickel-cobalt alloy, and nickel-aluminum alloy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ニッケル系金属の使用量の少ない電極
を得ることができ、それだけ電池全体の低価格化に寄与
できる。貰だ、多孔質ニッケル系滋結板で形成されたも
のに較べて気孔形状、気孔径の変化が少なく、シたがっ
て長時間にわたり、燃料電池に安定な作動を行なわせる
ことができる。
According to the present invention, it is possible to obtain an electrode that uses a small amount of nickel-based metal, which can contribute to lowering the price of the entire battery. In addition, compared to those formed from porous nickel-based retention plates, there are fewer changes in pore shape and pore diameter, and therefore the fuel cell can operate stably over a long period of time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 直径1μ、平均長さ5μのγ型のアルミン酸リチウム(
γ−LiAtO2)のセラミックス粒子を用い、この粒
子に対して1重it%のポリビニルブチラール結着剤を
メタノール溶液として冷加混合攪拌後、乾燥した。乾燥
粉末を200に9/an2で冷間プレスし、空気中で1
000℃で1時間加熱した後、室温にまで炉内冷却した
Example 1 γ-type lithium aluminate with a diameter of 1μ and an average length of 5μ
Using ceramic particles of γ-LiAtO2), a methanol solution of 1 weight it % polyvinyl butyral binder was mixed and stirred under cooling, and then dried. The dry powder was cold pressed at 9/an2 to 200 and 1/2 in air.
After heating at 000° C. for 1 hour, the mixture was cooled to room temperature in the furnace.

このようにして成形きれた板状の多孔質体(気孔率65
%)をニッケル無電解メッキを行なうために増感した。
A plate-shaped porous body (porosity 65
%) was sensitized for electroless nickel plating.

増感液は、1oi7tのS HCl2と4重tt%のH
Clから成る水溶液で、この増感液中に多孔質体を室温
で2分間超音波でa拌しながら浸漬した。次に、増感液
を水洗〔、多孔質体を乾燥した後、この多孔質体を19
のPdCl2と10 ccのHClと4.5tの水との
混合液からなる40℃の活性化液中に約2分間、攪拌し
ながら浸漬した。次に、活性化液を水洗し、多孔質体を
乾燥した。このようにして活性化した多孔質体をシー−
マー8680(日本カニゼン(株)製)5倍液を水で5
倍に希釈したニッケル無電解メッキ液中に浸漬した。メ
ッキ液温度は50℃で浸漬時間は5分である。メッキ終
了後蒸留水で洗浄し、乾燥して板状の電極を得た。
The sensitizing solution was 1oi7t S HCl2 and 4tt% H
The porous body was immersed in an aqueous solution consisting of Cl at room temperature for 2 minutes while stirring with ultrasonic waves. Next, after washing the sensitizing solution with water and drying the porous body, the porous body was
of PdCl2, 10 cc of HCl, and 4.5 t of water at 40° C. for about 2 minutes while stirring. Next, the activation liquid was washed with water, and the porous body was dried. The activated porous body is sealed in this way.
5 times solution of Mar 8680 (manufactured by Nippon Kanigen Co., Ltd.) with water.
It was immersed in a diluted nickel electroless plating solution. The plating solution temperature was 50° C. and the immersion time was 5 minutes. After plating was completed, it was washed with distilled water and dried to obtain a plate-shaped electrode.

このようにして得られたニッケル被覆アルミン酸リチウ
ム多孔質体からなる電極は、平均孔径3〜4μm1約6
2チの空孔率を有していた。
The electrode made of the nickel-coated lithium aluminate porous material thus obtained has an average pore diameter of 3 to 4 μm1 about 6
It had a porosity of 2.

実施例2 実施例1におけるセラミック粒子をチタン酸ストロンチ
ウムとし、実施例1と同じ手順で平均孔径1〜3μ、約
60係の空孔率のニッケル被徳チタン版ストロンチウム
多孔質体からなる電極を作成した。
Example 2 Using the ceramic particles in Example 1 as strontium titanate, an electrode was created using the same procedure as in Example 1, consisting of a nickel-covered titanium strontium porous body with an average pore diameter of 1 to 3 μm and a porosity of about 60 parts. did.

実施例3 実施例1におけるセラミック粒子をチタン酸リチウムの
繊維として、実施例1と同様の手順で平均孔径2〜3μ
、空孔率63%の多孔質体からなる電極を作成した。
Example 3 The ceramic particles in Example 1 were used as lithium titanate fibers, and the average pore size was adjusted to 2 to 3 μm using the same procedure as in Example 1.
An electrode made of a porous material with a porosity of 63% was prepared.

実施例4 実施例1におけるセラミック粒子を酸化セリウムとして
実施例1と同様の手順で多孔質体からなる電極を作成し
た。
Example 4 An electrode made of a porous body was prepared in the same manner as in Example 1 except that cerium oxide was used as the ceramic particles in Example 1.

実施例5 実施例1における無電解メッキ液として、ニッケルーコ
バルト合金メッキ液を使用した。多孔質板の増感、活性
化処理は実施例1と同様に行ない、無電解メッキ液とし
て、301//lの塩化コバルト、30fi/lの塩化
ニッケル、2001//lのロソセル塩、501/lの
塩化アンモニウム、2011/lの次亜リン酸ソーダ混
合溶液をアンモニア水で−19に調整したものを用いた
。メッキは90℃で2分間浸漬して行なった。メッキ後
、多孔質板を蒸留水で洗浄し乾燥した。このようにして
得られた二ノケルーコバル)−t&[アルミン酸リチウ
ム多孔質板からなる電極は平均孔径3〜4μm1約61
%の空孔率を有していた。
Example 5 As the electroless plating solution in Example 1, a nickel-cobalt alloy plating solution was used. The porous plate was sensitized and activated in the same manner as in Example 1, and the electroless plating solution was 301//l of cobalt chloride, 30fi/l of nickel chloride, 2001//l of rosocel salt, and 501//l of nickel chloride. A mixed solution of 1/l of ammonium chloride and 2011/l of sodium hypophosphite adjusted to -19/l with aqueous ammonia was used. Plating was performed by dipping at 90°C for 2 minutes. After plating, the porous plate was washed with distilled water and dried. The thus obtained electrode consisting of a porous plate of lithium aluminate had an average pore diameter of 3 to 4 μm, approximately 61
% porosity.

実施例6 表面層をβ−L1At02化した直径3μ、反さ300
μ〜1.5咽のアルミナの繊維をポリメチルメタアクリ
レート3重量%のブタノール溶液と混合し、スラリー状
とし、テープキャスト7A )r:よシポリエステルの
フ1ルム上に流し込み、室温90℃で乾燥し、厚さ0−
8 tanの柔軟なシートを苛た。同様に平均粒径0.
1μmの微粒のβ−N+hto2をポリメチルメタアク
リレート3重量襲のゲタノール溶液と混合しスラリー状
とし、その流し込み乾燥によシ、厚さ帆6酬の柔軟なシ
ートを得た。これら2枚のシートを表面にアルミナのコ
ーティングを施したローラ間に通し、厚さ1.3調の柔
軟な乾燥シートとした後、多孔質のアルミナ板間にはさ
んで約20117σ2の加圧を行ないつつ、炭酸ガスと
空気の混合ガス下1000〜1050℃で1h焼成して
、厚さ方向で平均孔径の異なるアルミナ〜γ−L + 
Ato 2多孔質体を得た。アルミナ繊維側の平均孔径
は5μ、β−L i 1102側(焼成後はγ−LIA
tO2となっている。)の平均孔径は0.7μであった
Example 6 Surface layer made of β-L1At02, diameter 3μ, inverseness 300
Alumina fibers of μ~1.5 mm are mixed with a 3% by weight butanol solution of polymethyl methacrylate, made into a slurry, and poured onto a tape cast 7A) r: Yoshi polyester film at room temperature of 90°C. Dry, thickness 0-
8 Tan's flexible sheet was tormented. Similarly, the average particle size is 0.
A slurry of 1 μm fine particles of β-N+hto2 was mixed with a getanol solution containing 3 parts by weight of polymethyl methacrylate, and the slurry was poured and dried to obtain a flexible sheet with a thickness of 6 parts. These two sheets were passed between rollers whose surfaces were coated with alumina to form a flexible dry sheet with a thickness of 1.3, and then placed between porous alumina plates and subjected to a pressure of approximately 20117σ2. Alumina with different average pore diameters in the thickness direction - γ-L +
An Ato 2 porous body was obtained. The average pore diameter on the alumina fiber side is 5 μ, and the β-Li 1102 side (after firing is γ-LIA
It is tO2. ) had an average pore diameter of 0.7μ.

この2重孔径の多孔質焼結体の孔径の大きな側のみに増
感、活性化処理を施すため、まず溶融温度80℃のロウ
材を孔径の小さな側だけに含浸させて撥水処理を施した
。これに実施例1と同様な方法で増感、活性化処理を施
した。
In order to perform the sensitization and activation treatment only on the larger pore side of this double-pore porous sintered body, first impregnate only the smaller pore side with a brazing material with a melting temperature of 80°C to apply water repellent treatment. did. This was subjected to sensitization and activation treatment in the same manner as in Example 1.

次に、温アセトン中で撥水剤として使用したロウ材を除
去した後、実施例1と同様な方法により、ニッケルの無
電解メッキを飾して電極を得た。この電極のニッケルの
被覆が行われた側Ω平均孔径は4.58m1空孔率65
%、ニッケルの被覆が行われていない側の平均孔径は帆
7μ八空孔率は60%であった。
Next, after removing the brazing material used as a water repellent in warm acetone, the electrode was decorated with electroless plating of nickel in the same manner as in Example 1. The nickel-coated side of this electrode has an average pore diameter of 4.58 m1 and a porosity of 65
%, the average pore diameter on the side not coated with nickel was 7 μm, and the porosity was 60%.

実施例1〜5の金属被覆セラミック多孔質体からなる電
極をそれぞれアノードとし、カッ−としテ40 ”10
 ノLI AZO2,32w10ノに2COλ1.、竪
28 ”10のLi2CO3の混合粉末を加圧加熱成型
したものを用いてそれぞれ単位電池を構成し、650℃
にてそれぞれの電流電圧特性を測定した。その結果、5
00時間後の特性は図に示す通9であった。なお、図中
Iは実施例1の電極を、■は実施例2の電極を、■、■
は実施例3.4の電極を、■は実施例5の電極を用いた
特性をそれぞれ示している。
The electrodes made of the metal-coated ceramic porous bodies of Examples 1 to 5 were used as anodes, and the electrodes were heated to 40"10.
ノLI AZO2, 32w10ノ 2COλ1. , vertical 28" 10 Li2CO3 mixed powder was pressurized and heated to form a unit cell, and the battery was heated to 650°C.
The current-voltage characteristics of each were measured. As a result, 5
The characteristics after 00 hours were as shown in the figure. In the figure, I indicates the electrode of Example 1, ■ indicates the electrode of Example 2, and ■, ■
1 shows the characteristics using the electrode of Example 3.4, and 2 shows the characteristics using the electrode of Example 5, respectively.

比較例として、平均孔径3μ何、空孔率65チのNi−
10%Cr合金粉末の多孔質焼結体をアノードとし他は
同じ構成とした単位電池について500時間後の電流、
電圧特性を測定したところ図中Xで示す結果を得た。こ
の図から判るように本発明の電極においても、従来のア
ノードを用いたものとほぼ同等の性能が得られることが
確認された。また、500時間運転した各単位電池から
アノードをとり出し、無水酢酸で炭、?塩を洗浄除去し
て、その孔径分布を水銀圧入紐で測定した。その結果、
本発明実施例1〜5のアノードは平均孔径の増大の程度
が運転試験開始前の5%以内に収まっていた。これに対
して従来のアノードではそれが約15%であり、本発明
の電極は焼結の進行の程度の小さいことが明らかになっ
た。
As a comparative example, Ni-
Current after 500 hours for a unit battery with the same configuration except that a porous sintered body of 10% Cr alloy powder was used as an anode,
When the voltage characteristics were measured, the results indicated by X in the figure were obtained. As can be seen from this figure, it has been confirmed that the electrode of the present invention can provide almost the same performance as that using the conventional anode. In addition, the anode was taken out from each unit battery that had been operated for 500 hours, and charcoal was added with acetic anhydride. The salt was washed away and the pore size distribution was measured using a mercury intrusion string. the result,
In the anodes of Examples 1 to 5 of the present invention, the degree of increase in average pore diameter was within 5% of that before the start of the operational test. On the other hand, in the case of the conventional anode, it was about 15%, and it became clear that the degree of sintering progressed in the electrode of the present invention was small.

実施例60片面に金属被噛を施した2重孔径のセラミッ
ク多孔質焼結体からなる電極に、水素ガス、炭酸ガス、
窒素ガスの雰囲気下630℃で減圧してLi2CO3/
に2CO3がモル比で62738の炭酸塩を含浸した。
Example 60 Hydrogen gas, carbon dioxide gas,
Li2CO3/
was impregnated with carbonate with a molar ratio of 2CO3 to 62738.

この炭酸塩含浸体をアノードと電解質層との一体形成要
素とし、平均孔径911fn、空孔率70チのニッケル
粉末多孔質焼結体をカソードとして単位電池を構成し、
650℃で発電試験を行った。この単位電池の500時
間後の150mA/crn2における電圧は、0.75
Vと前述した比較例に較べ50 mV高い値を得た。−
また、電流1kHzで測定した嚇位電池の交流抵抗は比
較列に較べ、0.1Ω・副2だけ低く、このような−(
4,形成要素構造にすると、電極と電解質間のギヤング
に伴なう抵抗が軽減されることが確認きれた。
This carbonate-impregnated body is used as an integral component of an anode and an electrolyte layer, and a unit cell is constructed using a nickel powder porous sintered body with an average pore diameter of 911fn and a porosity of 70cm as a cathode,
A power generation test was conducted at 650°C. The voltage of this unit battery at 150 mA/crn2 after 500 hours is 0.75
A value 50 mV higher than that of the comparative example described above was obtained. −
In addition, the AC resistance of the power supply battery measured at a current of 1 kHz was lower by 0.1Ω・sub2 than that of the comparison series, and such -(
4. It was confirmed that the forming element structure reduces the resistance caused by the gigang between the electrode and the electrolyte.

なお、本発明は−F述した実施例に限定さ汎るものでは
ない。
Note that the present invention is not limited to the embodiments described above.

たとえば、セラミックス多孔質体形成用材料としては、
ジルコン酸リチウム、酸化ジルコニウム、窒化ホウ素、
窒化ケイ素等も使用できる。
For example, as a material for forming porous ceramic bodies,
Lithium zirconate, zirconium oxide, boron nitride,
Silicon nitride etc. can also be used.

また、セラミックス多孔質体に無電解メッキを施す金属
としてはニッケルークロム、ニッケルーアルミニウム等
も使用することができる。また、本発明に係る電極は、
カソードとしても勿論使用できる。さらに、実施例1〜
5の電極と組み合わせた電池の電解質層としては、リチ
ウムアルミネートとアルカリ金属炭酸塩電解質との混合
粉を加圧成型したもの以外に、リチウムアルミネートや
ストロンチウムチタネート、ジルコン酸リチウムの繊維
または粉末を単独または混合物を焼結して多孔質体とし
たもの、あるいは電気泳動法により実施例1〜5の電極
表面に層状に析出させ、これらにアルカリ金属炭酸塩電
解質を含浸させたものを用いることもある。
Furthermore, nickel-chromium, nickel-aluminum, etc. can also be used as the metal for electroless plating on the ceramic porous body. Further, the electrode according to the present invention is
Of course, it can also be used as a cathode. Furthermore, Examples 1-
For the electrolyte layer of the battery combined with electrode 5, in addition to pressure-molding mixed powder of lithium aluminate and alkali metal carbonate electrolyte, fibers or powder of lithium aluminate, strontium titanate, or lithium zirconate may be used. It is also possible to use a porous body obtained by sintering a single substance or a mixture thereof, or a layer formed by depositing it on the electrode surface of Examples 1 to 5 by electrophoresis and impregnating it with an alkali metal carbonate electrolyte. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る電極を組込んだ単位電池の特性と従来
の電極を組込んだ単位電池の特性とを比較して示す図で
ある。
The figure is a diagram showing a comparison between the characteristics of a unit battery incorporating an electrode according to the present invention and the characteristics of a unit battery incorporating a conventional electrode.

Claims (6)

【特許請求の範囲】[Claims] (1) 溶融炭酸塩を電解質として用いる燃料電池の単
位電池に組込まれる電極であって、電池の動作温度下で
溶融炭酸塩に対して化学的に安定なセラミックスの粒子
または繊維の少なくとも一方を焼結して形成された空孔
率50〜90襲の多孔質体と、この多孔質体の前記セラ
ミツ、eスの表面に無電解メッキによって形成されだセ
池反応に対して電気化学的に活性な金属層とを具備して
なることを特徴とする燃料電池用電極。
(1) An electrode to be incorporated into a unit cell of a fuel cell using molten carbonate as an electrolyte, in which at least one of ceramic particles or fibers that are chemically stable to molten carbonate at the operating temperature of the cell is sintered. A porous body with a porosity of 50 to 90 is formed, and the ceramic of this porous body is electrochemically active against the cell reaction formed by electroless plating on the surface of the ceramic. 1. An electrode for a fuel cell, comprising a metal layer.
(2) 前記多孔質体′f6:構成するセラミックスは
、アルミン酸リチウム、チタンばストロンチウム、チタ
ン酸リチウム、ジルコン酸リチウム、酸化ジルコニウム
、酸化セリウム、窒化ホウ素、窒化ケイ素およびこれら
の混合物の中から選ばれたものであることを特徴とする
特許請求の範囲第1項記載の燃料電池用電極。
(2) The porous body 'f6: The constituting ceramic is selected from lithium aluminate, strontium titanium, lithium titanate, lithium zirconate, zirconium oxide, cerium oxide, boron nitride, silicon nitride, and mixtures thereof. The electrode for a fuel cell according to claim 1, wherein the electrode is an electrode for a fuel cell according to claim 1.
(3)前記金属層は、ニッケル、ニッケル・クロム合金
、ニッケル・コバルト合金オヨヒニッケル・アルミニウ
ム合金の中から選ばれた1種の金属で形成されてなるこ
とを特徴とする特許請求の範囲第1項記載の燃料電池用
電極。
(3) The metal layer is formed of one kind of metal selected from nickel, nickel-chromium alloy, nickel-cobalt alloy, nickel-aluminum alloy. The fuel cell electrode described above.
(4)前記金属層は、前記多孔質体を厚み方向に2分し
た片側だけに形成されてなることを特徴とする特許請求
の範囲第1項記載の燃料型孔用′藏極。
(4) The fuel mold hole electrode according to claim 1, wherein the metal layer is formed only on one side of the porous body divided into two in the thickness direction.
(5)前記多孔質体の前記金属層の形成されない側は、
上記金属層が形成されている側よシ平均孔径が小さい多
孔質層に形成されてなることを特徴とする特許請求の範
囲第4項記載の燃料電池用電極。
(5) The side of the porous body on which the metal layer is not formed is
5. The electrode for a fuel cell according to claim 4, wherein the electrode is formed as a porous layer having a smaller average pore diameter from the side where the metal layer is formed.
(6) 前記平均孔径の小さい多孔質層は、溶融炭酸塩
を保持した電解質層を兼用してなることを特徴とする特
許請求の範囲第5項記載の燃料電池用′電極。
(6) The electrode for a fuel cell according to claim 5, wherein the porous layer having a small average pore diameter also serves as an electrolyte layer holding molten carbonate.
JP58141132A 1983-08-03 1983-08-03 Electrode for fuel cell Granted JPS6035471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141132A JPS6035471A (en) 1983-08-03 1983-08-03 Electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141132A JPS6035471A (en) 1983-08-03 1983-08-03 Electrode for fuel cell

Publications (2)

Publication Number Publication Date
JPS6035471A true JPS6035471A (en) 1985-02-23
JPH02821B2 JPH02821B2 (en) 1990-01-09

Family

ID=15284906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141132A Granted JPS6035471A (en) 1983-08-03 1983-08-03 Electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS6035471A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165869A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fused carbonate type fuel cell
JPS62295355A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Electreode for fuel cell and its manufacture
JPS6386363A (en) * 1986-09-30 1988-04-16 Toshiba Corp Manufacture of electrode supporting plate for molten carbonate fuel cell
JP2006503408A (en) * 2002-10-15 2006-01-26 エム・テー・ウー・シーエフシー・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ELECTROLYTE MATRIX, ELECTROLYTE MATRIX FOR MOLTEN CARBONATE FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2006054089A (en) * 2004-08-11 2006-02-23 Central Res Inst Of Electric Power Ind Electrode for molten carbonate fuel cell and anode electrode optimizing method for optimizing anode electrode
JP2007179916A (en) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology Ceramic electrode
JP2009129627A (en) * 2007-11-21 2009-06-11 Sumitomo Wiring Syst Ltd Terminal metal fitting
US9147944B2 (en) 2012-01-23 2015-09-29 Autonetworks Technologies, Ltd. Terminal fitting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165869A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fused carbonate type fuel cell
JPS62295355A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Electreode for fuel cell and its manufacture
JPH0550819B2 (en) * 1986-06-13 1993-07-30 Hitachi Ltd
JPS6386363A (en) * 1986-09-30 1988-04-16 Toshiba Corp Manufacture of electrode supporting plate for molten carbonate fuel cell
JP2006503408A (en) * 2002-10-15 2006-01-26 エム・テー・ウー・シーエフシー・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ELECTROLYTE MATRIX, ELECTROLYTE MATRIX FOR MOLTEN CARBONATE FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2006054089A (en) * 2004-08-11 2006-02-23 Central Res Inst Of Electric Power Ind Electrode for molten carbonate fuel cell and anode electrode optimizing method for optimizing anode electrode
JP4666975B2 (en) * 2004-08-11 2011-04-06 財団法人電力中央研究所 Molten carbonate fuel cell electrode
JP2007179916A (en) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology Ceramic electrode
JP2009129627A (en) * 2007-11-21 2009-06-11 Sumitomo Wiring Syst Ltd Terminal metal fitting
US9147944B2 (en) 2012-01-23 2015-09-29 Autonetworks Technologies, Ltd. Terminal fitting

Also Published As

Publication number Publication date
JPH02821B2 (en) 1990-01-09

Similar Documents

Publication Publication Date Title
JPS6035471A (en) Electrode for fuel cell
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
CN1988226A (en) Process for preparing integrated renewable fuel double effect oxygen electrode diffusion layer
JPS60101876A (en) Manufacture method of fused carbonate salts type fuel cell
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JPH0745293A (en) Fuel reforming catalyst for fuel cell
JPS6326511B2 (en)
JPS59127372A (en) Electrode for fuel cell
US3522094A (en) Electrode including hydrophobic polymer,method of preparation and fuel cell therewith
JPS59181463A (en) Gas diffusion electrode
JPH0311503B2 (en)
JPS60140665A (en) Electrode of fused carbonate fuel cell
JPS60133662A (en) Method for manufacturing gas diffusion electrode of fuel cell
JPH0368452A (en) Production of platinum alloy catalyst
JPH01286257A (en) Electrode for liquid fuel cell
JPS62147660A (en) Manufacture of electrode for fuel cell
JPS59169069A (en) Electrode for fuel cell
JP3266525B2 (en) Method for manufacturing substrate with electrode film
JPH061700B2 (en) Composite electrode for fuel cell
JPH03297060A (en) Electrode catalyst layer for fuel cell
JPH09180734A (en) Manufacture of solid electrolyte fuel cell
JPS62165869A (en) Fused carbonate type fuel cell
JPS59186265A (en) Method for manufacture of gas diffusion electrode for battery
JPH01286256A (en) Electrode for fuel cell
JPH0797500B2 (en) Method for manufacturing fuel electrode of molten carbonate fuel cell