JPS62295355A - Electreode for fuel cell and its manufacture - Google Patents

Electreode for fuel cell and its manufacture

Info

Publication number
JPS62295355A
JPS62295355A JP61135922A JP13592286A JPS62295355A JP S62295355 A JPS62295355 A JP S62295355A JP 61135922 A JP61135922 A JP 61135922A JP 13592286 A JP13592286 A JP 13592286A JP S62295355 A JPS62295355 A JP S62295355A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
conductive ceramic
substance
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61135922A
Other languages
Japanese (ja)
Other versions
JPH0550819B2 (en
Inventor
Toshiki Kahara
俊樹 加原
Hideo Okada
秀夫 岡田
Yoshio Iwase
岩瀬 嘉男
Koichi Mitsugi
三次 浩一
Masahito Takeuchi
将人 竹内
Koki Tamura
弘毅 田村
Ryutaro Jinbo
神保 龍太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61135922A priority Critical patent/JPS62295355A/en
Publication of JPS62295355A publication Critical patent/JPS62295355A/en
Publication of JPH0550819B2 publication Critical patent/JPH0550819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the continuous operational property, by using a ceramic material with an electric conductivity for a base material, and adding thereover a metal with an active property to the electrode reaction of the fuel cell. CONSTITUTION:This electrode consists of a porous conductive ceramic base, and a substance of an active property electrically to the electrode reaction of a fuel cell, covering at least the surface of the base. As the conductive ceramic material, a compound including at least one element of nitrogen, boron, silicon, and carbon is used. Since the conductive ceramics is used for a base material, there occurs no sudden drop of the electron conductivity to deteriorate the cell property, even though the base is not covered by a metal active to the electrode reaction, actually with no exposed portion. And, although no sintering of the conductive ceramics occurs at the operating temperature of the fuel cell, the ceramics may be sintered beforehand at the temperature above such an operating temperature with no other trouble.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は燃料電池用電極及びその製法に関し。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to an electrode for fuel cells and a method for manufacturing the same.

特に溶融炭酸塩を電解質とする燃料電池の電極及びその
製法に関する。
In particular, the present invention relates to a fuel cell electrode using molten carbonate as an electrolyte and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

溶融炭酸塩を電解質として用いる燃料電池は溶融塩型燃
料電池と呼ばれ、600〜700Cで運転される。溶融
塩型燃料電池では燃料として水素リッチのガスが、酸化
剤として空気と炭酸ガスの混合ガスが用いられている。
Fuel cells using molten carbonate as an electrolyte are called molten salt fuel cells and are operated at 600-700C. Molten salt fuel cells use hydrogen-rich gas as a fuel and a mixed gas of air and carbon dioxide as an oxidizing agent.

アノードにはニッケルの粉末を焼結した多孔質ニッケル
板が、カソードにはニッケル粉末を焼結後、酸化処理し
た多孔質板が一般に用いられている。
Generally, a porous nickel plate made of sintered nickel powder is used for the anode, and a porous plate made of sintered nickel powder and then oxidized is used for the cathode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この型の電池は600〜700rの高温で運転
されるためアノードの多孔質ニッケル板がクリープ(焼
結)して気孔率〔=(マトリックスに含まれる細孔の体
積)/(マトリックス全体の体積)〕及び表面積が減少
し、そのために電池性能が低下してくるという問題があ
る。
However, since this type of battery is operated at high temperatures of 600 to 700 r, the porous nickel plate of the anode creeps (sinters), resulting in porosity [=(volume of pores included in the matrix)/(total volume of the matrix). There is a problem in that the volume) and surface area decrease, resulting in a decrease in battery performance.

一方、カソードは前記したように酸化ニッケルが用いら
れているが、長期間運転していると酸化ニッケルが溶融
炭酸塩に溶解し、カソードが脆化するという問題がある
。この問題を解決するために、溶融炭酸塩に対して安定
であるセラミックスを使用し、まず、そのセラミックス
の粒子を作り。
On the other hand, as described above, nickel oxide is used for the cathode, but there is a problem in that during long-term operation, the nickel oxide dissolves in the molten carbonate, causing the cathode to become brittle. To solve this problem, we used a ceramic that is stable to molten carbonates and first made particles of that ceramic.

その表面をニッケルおよび銅で完全に被覆した後。After fully coating its surface with nickel and copper.

焼結して多孔質板を作り、これを燃料電池の電極とする
ことが提案されている(特開昭57−92753)。
It has been proposed to sinter the material into a porous plate and use it as an electrode for a fuel cell (Japanese Unexamined Patent Publication No. 57-92753).

しかし、この発明で提案されているセラミックス材はア
ルミン酸リチウム、チタン酸ストロンチウムあるいはα
−アルミナであり、いずれも電気的に絶縁物である。し
たがって、セラミックス粒子を実質的に露出がない状態
に被覆しないと電子導電性が光分でなく、電極の内部抵
抗が犬きくなり、そのために電池性能が低下するという
問題がある。
However, the ceramic materials proposed in this invention are lithium aluminate, strontium titanate, or α
- Alumina, both of which are electrically insulating materials. Therefore, unless the ceramic particles are coated with substantially no exposure, the electronic conductivity will not be as high as that of light, and the internal resistance of the electrode will become too high, resulting in a problem that the battery performance will deteriorate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、前記した従来の燃料電池のアノード及
びカソードの問題点を解決し、高性能のアノード及びカ
ソード及びその製法を提供することにある。
An object of the present invention is to solve the problems of the conventional fuel cell anode and cathode described above, and to provide a high-performance anode and cathode and a method for manufacturing the same.

本発明の第1の発明は電気導電性を有するセラミックス
材を母体とし、その表面に燃料電池の電極反応に対し活
性な性質を有する金属を添加した燃料電池用の電極であ
る。
A first aspect of the present invention is an electrode for a fuel cell, which has a ceramic material having electrical conductivity as a base material, and a metal having properties active in the electrode reaction of the fuel cell is added to the surface thereof.

更に1本発明の第2の発明は、導電性セラミックスの粉
末表面に燃料電池のtrA反応に対し活性な性質を有す
る金属を被着した後、この粉末を焼結する多孔質焼結体
から成る燃料電池用電極の製法である。
Furthermore, a second aspect of the present invention is a porous sintered body in which a metal having properties active against the trA reaction of a fuel cell is deposited on the surface of a conductive ceramic powder, and then this powder is sintered. This is a method for manufacturing electrodes for fuel cells.

更に1本発明の第3の発明は、導電性セラミックスの粉
末をまず焼結して多孔質焼結基体を形成し、この多孔質
焼結基体の表面から燃料電池の電極反応と対し活性な性
質を有する金属を含浸させる燃料電池用電極の製法であ
る。
Furthermore, the third aspect of the present invention is to first sinter conductive ceramic powder to form a porous sintered substrate, and to obtain properties that are active for the electrode reaction of the fuel cell from the surface of the porous sintered substrate. This is a method for producing a fuel cell electrode impregnated with a metal having the following properties.

本発明で用いることのできる導電性セラミックス材とし
ては、窒素、ホウ素、ケイ素及び炭素のうちの少なくと
も一種類を含む化合物である。具体的化合物としては以
下のものがあげられる。
The conductive ceramic material that can be used in the present invention is a compound containing at least one of nitrogen, boron, silicon, and carbon. Specific compounds include the following.

(1)  fli含有導電性セラミックス材TiN、Z
rN、IIfN、VN、NbN 、TaN。
(1) fli-containing conductive ceramic materials TiN, Z
rN, IIfN, VN, NbN, TaN.

Cr t N * Cr N e M 02N m W
N(2)ホウ素含有導電性セラミックス材T I B2
 、Z rBz p HfB2p VB 2 # Nb
Bz 5TaBz、CrB2.MQBz 1w2B、N
bB、TaB ICrB、MoB (3)  ケイ素含有導電性セラミックス材’rts1
2#Zr5tzeV812e Nb8”2+ Ta81
2+erSiz 、 MoS iz 、 WS 1t(
4)炭素含有導電性セラミックス材 TiC,ZrC,HfC,VC,NbC,TaC。
Cr t N * Cr N e M 02N m W
N(2) Boron-containing conductive ceramic material T I B2
, Z rBz p HfB2p VB 2 # Nb
Bz 5TaBz, CrB2. MQBz 1w2B, N
bB, TaB ICrB, MoB (3) Silicon-containing conductive ceramic material'rts1
2#Zr5tzeV812e Nb8”2+ Ta81
2+erSiz, MoSiz, WS 1t(
4) Carbon-containing conductive ceramic materials TiC, ZrC, HfC, VC, NbC, TaC.

Cr s C21MOz C* 9VC本発明ではこれ
らの導電性セラミシクス材を粉末あるいは多孔質焼結板
のいずれの形状でも用いることができる。多孔質焼結板
の場合には、この表面に燃料電池の電極反応に活性を示
す物質を添加するだけで電極(アノード及びカソード)
として用いることができる。粉末の場合には、粉末をあ
らかじめ焼結して多孔質板として用いるか、あるいはそ
の表面に燃料電池の電極反応に活性を示す物質を添加し
たのち、この活性物質の一部を焼結することによって多
孔質板として用いることができる。燃料電池の電極反応
に活性を示す物質として、溶融炭酸塩型燃料電池のアノ
ードにはニッケルおよび銅が適し、カソードには酸化ニ
ッケル訃よび銀が適する。他の型の燃料電池では白金。
Cr s C21MOz C* 9VC In the present invention, these conductive ceramic materials can be used in either the form of a powder or a porous sintered plate. In the case of porous sintered plates, electrodes (anodes and cathodes) can be formed by simply adding a substance that is active in fuel cell electrode reactions to the surface.
It can be used as In the case of powder, the powder can be sintered in advance and used as a porous plate, or a substance that is active in fuel cell electrode reactions can be added to the surface of the plate, and then a part of this active substance can be sintered. It can be used as a porous plate. As substances active in electrode reactions of fuel cells, nickel and copper are suitable for the anode of a molten carbonate fuel cell, and nickel oxide and silver are suitable for the cathode. Platinum in other types of fuel cells.

パラジウムなどの貴金属や鉄、クロム、コバルト及びこ
れらの酸化物なども適する。これらの活性物質は導電性
セラミックス材に無電解メッキ法。
Precious metals such as palladium, iron, chromium, cobalt and their oxides are also suitable. These active substances are electrolessly plated onto conductive ceramic materials.

電気メツキ法、含浸法、拡散法、イオンプレーテング法
、蒸着法などで添加することができる。いずれの方法を
用いても本発明を得ることができる。
It can be added by electroplating, impregnation, diffusion, ion plating, vapor deposition, etc. The present invention can be obtained using either method.

本発明で用いることのできる導電性セラミックス材の抵
抗を第1表に示す。
Table 1 shows the resistance of conductive ceramic materials that can be used in the present invention.

第  1  表 〔作用〕 本発明は導電性セラミックスを母材として用いるため、
電極反応に活性な金属で実質的に露出部なく被覆しなく
ともそのことによって電子導電性が急激に低下し、i離
性能を下げることはない。
Table 1 [Function] Since the present invention uses conductive ceramics as a base material,
Even if substantially all exposed parts are not coated with a metal active in electrode reactions, this will not cause a sudden decrease in electronic conductivity and will not lower i-separation performance.

又、燃料電池の運転温度では導電性セラミックスの焼結
が起こらないが、その以上の温度であらかじめ焼結させ
ておいても何らさしつかえないものである。
Further, although sintering of the conductive ceramic does not occur at the operating temperature of the fuel cell, there is no harm in sintering it in advance at a temperature higher than that.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって更に詳述する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 導電性セラミックス材の一例として、耐溶融塩性に優れ
るチッ化クロム(Cr2 N )を取#)あげた。
Example 1 Chromium nitride (Cr2N), which has excellent molten salt resistance, was used as an example of a conductive ceramic material.

平均粒子径2μmの粒状チッ化クロム100gt”、5
0g/lの塩化ニッケル、200g/lのクエン酸ナト
リウム及び50g/Lの次亜リン酸ナトリラムを含有す
る1tの水溶液中に浸漬し、pHを水酸化ナトリウムに
よって10に調整して、チッ化クロムの表面にニッケル
を添加した。次にこの粉末を水洗し、100Cで乾燥後
スラリー状とし。
Granular chromium nitride 100gt" with an average particle size of 2μm, 5
chromium nitride by immersion in 1 t of aqueous solution containing 0 g/l nickel chloride, 200 g/l sodium citrate and 50 g/l sodium hypophosphite and adjusting the pH to 10 with sodium hydroxide. Nickel was added to the surface. Next, this powder was washed with water, dried at 100C, and made into a slurry.

20メツシユ、&IIO22rmのステンレス鋼金網に
・  塗布したのち100Cで乾燥した。この乾燥物を
水素雰囲気中5oot:’で15分間焼結して、多孔質
板を得た。この多孔質板を溶融炭酸塩のアノードとして
用いた。一方、カソードとし−にれを用いるために、こ
の多孔質板を空気中8000で1時間加熱処理して、ニ
ッケルの酸化物を作った。
20 mesh, &IIO22rm stainless steel wire mesh and dried at 100C. This dried material was sintered for 15 minutes at 5oot:' in a hydrogen atmosphere to obtain a porous plate. This porous plate was used as a molten carbonate anode. On the other hand, in order to use garlic as a cathode, this porous plate was heat treated in air at 8000C for 1 hour to produce nickel oxide.

これをカソードとして用いた。このアノード及びカソー
ドを用いて通常の溶融炭酸塩型燃料電池を作υ、電池温
度650C,電流密度150mA/cm ”で連続運転
した。その結果を第1図に記号Aで示す。比較のために
従来の多孔質ニッケル板をアノードに、これを酸化処理
したものをカソードに用いた溶融炭酸塩型燃料電池の連
続運転性能を第1図に記号Bで示す。
This was used as a cathode. A normal molten carbonate fuel cell was fabricated using this anode and cathode, and operated continuously at a cell temperature of 650C and a current density of 150mA/cm.The results are shown as symbol A in Figure 1.For comparison. The continuous operation performance of a molten carbonate fuel cell using a conventional porous nickel plate as an anode and an oxidized version of the same as a cathode is shown by symbol B in FIG.

本発明に係わる1!極を使用した溶融炭酸塩型燃料電池
では出力電圧が3500時間以上運転しても一定である
のに対し、従来の燃料電池では1000時間の運転を越
すと出力電圧は急激に低下する。
1 related to the present invention! In a molten carbonate fuel cell using electrodes, the output voltage remains constant even after 3,500 hours of operation, whereas in a conventional fuel cell, the output voltage drops rapidly after 1,000 hours of operation.

実施例2 導電性セラミックス材の他の例として、チツ化ハフニウ
ム(HfN)を取シあげた。平均粒子径3μmのチツ化
ハフニウム100gを実施例1と同様にしてその表面に
ニッケルを添加した。その後。
Example 2 Hafnium titanide (HfN) was taken up as another example of the conductive ceramic material. In the same manner as in Example 1, nickel was added to the surface of 100 g of hafnium titanate having an average particle diameter of 3 μm. after that.

実施例1とまったく同じ処理をして溶融炭酸塩型燃料電
池のアノード及びカンード忙した。このアノードとカソ
ードを用いた連続運転結果を第2図に記号Cで示す。
The anode and canard of a molten carbonate fuel cell were prepared using exactly the same process as in Example 1. The results of continuous operation using this anode and cathode are shown by symbol C in FIG.

本実施例の場合も3000時間の連続運転してもその出
力電圧は若干の低下が見られるのみであった。
In the case of this example as well, even after 3000 hours of continuous operation, only a slight decrease in the output voltage was observed.

実施例3 平均粒子径2μmのチツ化クロム100gに水を加えて
スラリー状とし、これを20メツシユ、線径0.2aa
mのステンレス鋼金網に塗布し、不活性ガス中1300
7:’で30分間加熱して、導電性セラミックス材の多
孔質板を得た。この多孔質板の気孔率は72%であった
。この多孔質板に50g/lの濃度の水酸化ニッケルを
含浸し、風乾後、水素雰囲気中800Cで30分間加熱
した。この操作によって、多孔質板の表面にニッケルを
添加した。
Example 3 Water was added to 100 g of chromium nitride with an average particle size of 2 μm to form a slurry, and this was made into a slurry with a wire diameter of 0.2 aa and 20 meshes.
1300 m in an inert gas.
7:' for 30 minutes to obtain a porous plate of conductive ceramic material. The porosity of this porous plate was 72%. This porous plate was impregnated with nickel hydroxide at a concentration of 50 g/l, air-dried, and then heated at 800 C for 30 minutes in a hydrogen atmosphere. Through this operation, nickel was added to the surface of the porous plate.

これを溶融炭酸塩のアノードとし、さらに空気中goo
rで30分間加熱したものをカソードにした。これらを
用いた溶融炭酸塩型燃料電池の連続運転性能を第3図に
記号りで示す。
This is used as an anode for molten carbonate, and further
The cathode was heated for 30 minutes at r. The continuous operation performance of a molten carbonate fuel cell using these is shown by symbols in Fig. 3.

実施例4 実施例3で得た導電性セラミックス板に50g/lの硝
酸銀水溶液を含浸させたのち、空気中700Cで30分
間加熱して、表面に銀を添加したカソードを作った。こ
のカソードと実施例3で得たアノードを用いて溶融炭酸
塩型燃料電池を作り連続運転した結果を第3図に記号E
で示す。カソードにニッケルの酸化物を使用するよシも
、銀の酸化物を利用した方が燃料電池の性能が高いこと
が判かる。
Example 4 The conductive ceramic plate obtained in Example 3 was impregnated with a 50 g/l silver nitrate aqueous solution and then heated in air at 700 C for 30 minutes to produce a cathode with silver added to the surface. A molten carbonate fuel cell was made using this cathode and the anode obtained in Example 3, and the results of continuous operation are shown in Figure 3 with symbol E.
Indicated by Although nickel oxide is used for the cathode, it is clear that the performance of the fuel cell is higher when silver oxide is used.

実施例5 実施例3で得た導電性セラミックス板に100g/lの
塩化調水溶液を含浸させたのち水素ガス雰囲気中で75
0Cに1時間加熱して、銅を添加した。これをアノード
どし、カソードとしてさらにこれを空気雰囲気中800
2:’で1時間加熱した。
Example 5 The conductive ceramic plate obtained in Example 3 was impregnated with 100 g/l of chloride aqueous solution and then heated to 75% in a hydrogen gas atmosphere.
Heated to 0C for 1 hour and added copper. This is used as an anode and then as a cathode in an air atmosphere at 800°C.
It was heated at 2:' for 1 hour.

これらを用いた溶融炭酸塩型燃料電池の連続運転性能を
第4図に記号Fで示す。
The continuous operation performance of a molten carbonate fuel cell using these is shown by symbol F in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明は実施例で示したように、従来の溶融炭酸塩型燃
料電池の連続運転性能を大幅に向上することができる。
As shown in the examples, the present invention can significantly improve the continuous operation performance of conventional molten carbonate fuel cells.

この理由は前記したアノードのクリープ(焼結)が防止
できること及びカソードの脆化現象を抑制できることで
ある。以上の結果から本発明はその工業的価値が極めて
犬である。
The reason for this is that the creep (sintering) of the anode described above can be prevented and the embrittlement phenomenon of the cathode can be suppressed. From the above results, the present invention has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明と従来技術によるアノード及びカソード
を用いた溶融炭酸塩型燃料電池の連続運転性能の比較図
、第2図乃至第4図は本発明の他、′7−:、。 の実施例による電池の連続運転性能図である。  l 
 ゛、′X
FIG. 1 is a comparison diagram of continuous operation performance of a molten carbonate fuel cell using an anode and a cathode according to the present invention and a conventional technique, and FIGS. FIG. 3 is a continuous operation performance diagram of a battery according to an example. l
゛、′X

Claims (1)

【特許請求の範囲】 1、多孔質状の導電性セラミックス基体と、上記基体の
少なくとも表面部を被う燃料電池の電極反応に対して電
気化学的に活性な性質を有する物質とから成ることを特
徴とする燃料電池用電極。 2、導電性セラミック基板が焼結体であることを特徴と
する特許請求の範囲第1項記載の燃料電池用電極。 3、導電性セラミック基体は窒素、ホウ素、ケイ素及び
炭素のうちの少なくとも一種を含む化合物であることを
特徴とする特許請求の範囲第1項又は第2項記載の燃料
電池。 4、電気化学的に活性な性質を有する物質は白金、パラ
ジウム等の貴金属、鉄、クロム、コバルト、ニッケル、
銀、銅及びこれ等の酸化物から選ばれることを特徴とす
る特許請求の範囲第1項又は第2項又は第3項記載の燃
料電池用電極。 5、燃料電池が溶融炭酸塩を電解質とする燃料電池であ
ることを特徴とする特許請求の範囲第1項又は第2項又
は第3項記載の燃料電池用電極。 6、電気化学的に活性な性質を有する物質はニッケル、
銅、銀及びそれ等の酸化物から選ばれることを特徴とす
る特許請求の範囲第5項記載の燃料電池用電極。 7、粉末状の導電性セラミックスの表面に燃料電池の電
極反応に対し電気化学的に活性な性質を有する物質を被
着した後、上記粉末状導電性セラミックスを加熱して焼
結することを特徴とする燃料電池用電極の製法。 8、粉末状の導電性セラミックスは窒素、ホウ素、ケイ
素及び炭素のうちの少なくとも一種を含む化合物である
ことを特徴とする特許請求の範囲第7項記載の燃料電池
用電極の製法。 9、活性な性質を有する物質は白金、パラジウム等の貴
金属、鉄、コバルト、クロム、ニッケル、銅、銀及びこ
れ等の酸化物から選ばれることを特徴とする特許請求の
範囲第7項又は第8項記載の燃料電池用電極の製法。 10、粉末状の導電性セラミックスを加熱して焼結して
導電性セラミックスの多孔質焼結基体を形成し、更に上
記基体表面から燃料電池の電極反応に対し活性な性質を
有する物質を含浸させた後加熱して上記物質を上記基体
に密着させることを特徴とする燃料電池用電極の製法。 11、粉末状の導電性セラミックスは窒素、ホウ素、ケ
イ素及び炭素のうちの少なくとも一種を含む化合物であ
ることを特徴とする特許請求の範囲第10項記載の燃料
電池用電極の製法。 12、活性な性質を有する物質は白金、パラジウム等の
貴金属、鉄、コバルト、クロム、ニッケル、銅、銀及び
これ等の酸化物から選ばれることを特徴とする特許請求
の範囲第10項又は第11項記載の燃料電池用電極の製
法。
[Scope of Claims] 1. A porous conductive ceramic substrate, and a substance covering at least the surface of the substrate and having properties that are electrochemically active for the electrode reaction of a fuel cell. Features of electrodes for fuel cells. 2. The electrode for a fuel cell according to claim 1, wherein the conductive ceramic substrate is a sintered body. 3. The fuel cell according to claim 1 or 2, wherein the conductive ceramic substrate is a compound containing at least one of nitrogen, boron, silicon, and carbon. 4. Substances with electrochemically active properties include noble metals such as platinum and palladium, iron, chromium, cobalt, nickel,
The electrode for a fuel cell according to claim 1, 2, or 3, characterized in that the electrode is selected from silver, copper, and oxides thereof. 5. The electrode for a fuel cell according to claim 1, 2, or 3, wherein the fuel cell is a fuel cell using molten carbonate as an electrolyte. 6. Substances with electrochemically active properties include nickel,
The electrode for a fuel cell according to claim 5, characterized in that the electrode is selected from copper, silver and oxides thereof. 7. A substance having electrochemically active properties for fuel cell electrode reactions is deposited on the surface of the powdered conductive ceramic, and then the powdered conductive ceramic is heated and sintered. A method for manufacturing electrodes for fuel cells. 8. The method for producing an electrode for a fuel cell according to claim 7, wherein the powdered conductive ceramic is a compound containing at least one of nitrogen, boron, silicon, and carbon. 9. Claim 7 or 9, characterized in that the substance having active properties is selected from noble metals such as platinum and palladium, iron, cobalt, chromium, nickel, copper, silver and oxides thereof. A method for producing a fuel cell electrode according to item 8. 10. Heating and sintering powdered conductive ceramics to form a porous sintered base of conductive ceramics, and further impregnating the surface of the base with a substance that is active in the electrode reaction of a fuel cell. 1. A method for producing an electrode for a fuel cell, which comprises heating the substance after heating to bring the substance into close contact with the substrate. 11. The method for producing an electrode for a fuel cell according to claim 10, wherein the powdered conductive ceramic is a compound containing at least one of nitrogen, boron, silicon, and carbon. 12. The substance having active properties is selected from noble metals such as platinum and palladium, iron, cobalt, chromium, nickel, copper, silver and oxides thereof. A method for producing a fuel cell electrode according to item 11.
JP61135922A 1986-06-13 1986-06-13 Electreode for fuel cell and its manufacture Granted JPS62295355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135922A JPS62295355A (en) 1986-06-13 1986-06-13 Electreode for fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135922A JPS62295355A (en) 1986-06-13 1986-06-13 Electreode for fuel cell and its manufacture

Publications (2)

Publication Number Publication Date
JPS62295355A true JPS62295355A (en) 1987-12-22
JPH0550819B2 JPH0550819B2 (en) 1993-07-30

Family

ID=15162985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135922A Granted JPS62295355A (en) 1986-06-13 1986-06-13 Electreode for fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS62295355A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035471A (en) * 1983-08-03 1985-02-23 Agency Of Ind Science & Technol Electrode for fuel cell
JPS60140665A (en) * 1983-12-27 1985-07-25 Toshiba Corp Electrode of fused carbonate fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035471A (en) * 1983-08-03 1985-02-23 Agency Of Ind Science & Technol Electrode for fuel cell
JPS60140665A (en) * 1983-12-27 1985-07-25 Toshiba Corp Electrode of fused carbonate fuel cell

Also Published As

Publication number Publication date
JPH0550819B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
KR20040002847A (en) Solid electrolyte type fuel cell and air electrode collector for use therein
JP2006179479A (en) Electrode for fuel cell, manufacturing method of electrode for fuel cell, and fuel cell
US3282737A (en) Electrodes and electrode material
JP4639434B2 (en) Bipolar plate and polymer electrolyte fuel cell
US3607433A (en) Method of preparation of electrodes for galvanic high-temperature fuel cells having solid electrolytes
JP3228377B2 (en) Molten carbonate fuel cell cathode and method for suppressing its dissolution
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP2012035178A (en) Method for manufacturing catalyst, and catalyst
CA2291195A1 (en) Double layer cathode for molten carbonate fuel cells and method for producing the same
US7691770B2 (en) Electrode structure and methods of making same
JPS62295355A (en) Electreode for fuel cell and its manufacture
EP0324479B1 (en) Method of producing a Fuel Cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP2002289215A (en) Separator for solid electrolyte fuel cell with excellent conductivity
KR101187713B1 (en) The cathode of SOFC including silver nanoparticles coated with carbon and the method for preparing it
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JP2002324555A (en) Thin net film electrode and its production method
KR20070077739A (en) Metal supported solid oxide fuel cell containing the fuel electrode prepared by impregnation methode
KR102648904B1 (en) Solid oxide fuel cell for ammonia fuel
JPH11233121A (en) Air electrode material for molten carbonate fuel cell and its manufacture
JP2012170833A (en) Dehumidifier
JP4396129B2 (en) Fuel cell electrode and fuel cell using the same
KR20160143911A (en) Protective Ceramic Bilayer For Metallic Interconnect of Solid Oxide Fuel Cell, And Method of Manufacturing the Same
JPS625566A (en) Manufacture of fuel electrode of molten carbonate type fuel cell
Basu et al. Development of functional SOFC anode

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees