JPS62295355A - Electreode for fuel cell and its manufacture - Google Patents
Electreode for fuel cell and its manufactureInfo
- Publication number
- JPS62295355A JPS62295355A JP61135922A JP13592286A JPS62295355A JP S62295355 A JPS62295355 A JP S62295355A JP 61135922 A JP61135922 A JP 61135922A JP 13592286 A JP13592286 A JP 13592286A JP S62295355 A JPS62295355 A JP S62295355A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- electrode
- conductive ceramic
- substance
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 13
- 238000003411 electrode reaction Methods 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims 3
- 229910000510 noble metal Inorganic materials 0.000 claims 3
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000000843 powder Substances 0.000 description 7
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 5
- 229910000480 nickel oxide Inorganic materials 0.000 description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910019918 CrB2 Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 244000245420 ail Species 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- KUVFGOLWQIXGBP-UHFFFAOYSA-N hafnium(4+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Hf+4] KUVFGOLWQIXGBP-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は燃料電池用電極及びその製法に関し。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to an electrode for fuel cells and a method for manufacturing the same.
特に溶融炭酸塩を電解質とする燃料電池の電極及びその
製法に関する。In particular, the present invention relates to a fuel cell electrode using molten carbonate as an electrolyte and a method for manufacturing the same.
溶融炭酸塩を電解質として用いる燃料電池は溶融塩型燃
料電池と呼ばれ、600〜700Cで運転される。溶融
塩型燃料電池では燃料として水素リッチのガスが、酸化
剤として空気と炭酸ガスの混合ガスが用いられている。Fuel cells using molten carbonate as an electrolyte are called molten salt fuel cells and are operated at 600-700C. Molten salt fuel cells use hydrogen-rich gas as a fuel and a mixed gas of air and carbon dioxide as an oxidizing agent.
アノードにはニッケルの粉末を焼結した多孔質ニッケル
板が、カソードにはニッケル粉末を焼結後、酸化処理し
た多孔質板が一般に用いられている。Generally, a porous nickel plate made of sintered nickel powder is used for the anode, and a porous plate made of sintered nickel powder and then oxidized is used for the cathode.
しかし、この型の電池は600〜700rの高温で運転
されるためアノードの多孔質ニッケル板がクリープ(焼
結)して気孔率〔=(マトリックスに含まれる細孔の体
積)/(マトリックス全体の体積)〕及び表面積が減少
し、そのために電池性能が低下してくるという問題があ
る。However, since this type of battery is operated at high temperatures of 600 to 700 r, the porous nickel plate of the anode creeps (sinters), resulting in porosity [=(volume of pores included in the matrix)/(total volume of the matrix). There is a problem in that the volume) and surface area decrease, resulting in a decrease in battery performance.
一方、カソードは前記したように酸化ニッケルが用いら
れているが、長期間運転していると酸化ニッケルが溶融
炭酸塩に溶解し、カソードが脆化するという問題がある
。この問題を解決するために、溶融炭酸塩に対して安定
であるセラミックスを使用し、まず、そのセラミックス
の粒子を作り。On the other hand, as described above, nickel oxide is used for the cathode, but there is a problem in that during long-term operation, the nickel oxide dissolves in the molten carbonate, causing the cathode to become brittle. To solve this problem, we used a ceramic that is stable to molten carbonates and first made particles of that ceramic.
その表面をニッケルおよび銅で完全に被覆した後。After fully coating its surface with nickel and copper.
焼結して多孔質板を作り、これを燃料電池の電極とする
ことが提案されている(特開昭57−92753)。It has been proposed to sinter the material into a porous plate and use it as an electrode for a fuel cell (Japanese Unexamined Patent Publication No. 57-92753).
しかし、この発明で提案されているセラミックス材はア
ルミン酸リチウム、チタン酸ストロンチウムあるいはα
−アルミナであり、いずれも電気的に絶縁物である。し
たがって、セラミックス粒子を実質的に露出がない状態
に被覆しないと電子導電性が光分でなく、電極の内部抵
抗が犬きくなり、そのために電池性能が低下するという
問題がある。However, the ceramic materials proposed in this invention are lithium aluminate, strontium titanate, or α
- Alumina, both of which are electrically insulating materials. Therefore, unless the ceramic particles are coated with substantially no exposure, the electronic conductivity will not be as high as that of light, and the internal resistance of the electrode will become too high, resulting in a problem that the battery performance will deteriorate.
本発明の目的は、前記した従来の燃料電池のアノード及
びカソードの問題点を解決し、高性能のアノード及びカ
ソード及びその製法を提供することにある。An object of the present invention is to solve the problems of the conventional fuel cell anode and cathode described above, and to provide a high-performance anode and cathode and a method for manufacturing the same.
本発明の第1の発明は電気導電性を有するセラミックス
材を母体とし、その表面に燃料電池の電極反応に対し活
性な性質を有する金属を添加した燃料電池用の電極であ
る。A first aspect of the present invention is an electrode for a fuel cell, which has a ceramic material having electrical conductivity as a base material, and a metal having properties active in the electrode reaction of the fuel cell is added to the surface thereof.
更に1本発明の第2の発明は、導電性セラミックスの粉
末表面に燃料電池のtrA反応に対し活性な性質を有す
る金属を被着した後、この粉末を焼結する多孔質焼結体
から成る燃料電池用電極の製法である。Furthermore, a second aspect of the present invention is a porous sintered body in which a metal having properties active against the trA reaction of a fuel cell is deposited on the surface of a conductive ceramic powder, and then this powder is sintered. This is a method for manufacturing electrodes for fuel cells.
更に1本発明の第3の発明は、導電性セラミックスの粉
末をまず焼結して多孔質焼結基体を形成し、この多孔質
焼結基体の表面から燃料電池の電極反応と対し活性な性
質を有する金属を含浸させる燃料電池用電極の製法であ
る。Furthermore, the third aspect of the present invention is to first sinter conductive ceramic powder to form a porous sintered substrate, and to obtain properties that are active for the electrode reaction of the fuel cell from the surface of the porous sintered substrate. This is a method for producing a fuel cell electrode impregnated with a metal having the following properties.
本発明で用いることのできる導電性セラミックス材とし
ては、窒素、ホウ素、ケイ素及び炭素のうちの少なくと
も一種類を含む化合物である。具体的化合物としては以
下のものがあげられる。The conductive ceramic material that can be used in the present invention is a compound containing at least one of nitrogen, boron, silicon, and carbon. Specific compounds include the following.
(1) fli含有導電性セラミックス材TiN、Z
rN、IIfN、VN、NbN 、TaN。(1) fli-containing conductive ceramic materials TiN, Z
rN, IIfN, VN, NbN, TaN.
Cr t N * Cr N e M 02N m W
N(2)ホウ素含有導電性セラミックス材T I B2
、Z rBz p HfB2p VB 2 # Nb
Bz 5TaBz、CrB2.MQBz 1w2B、N
bB、TaB ICrB、MoB
(3) ケイ素含有導電性セラミックス材’rts1
2#Zr5tzeV812e Nb8”2+ Ta81
2+erSiz 、 MoS iz 、 WS 1t(
4)炭素含有導電性セラミックス材
TiC,ZrC,HfC,VC,NbC,TaC。Cr t N * Cr N e M 02N m W
N(2) Boron-containing conductive ceramic material T I B2
, Z rBz p HfB2p VB 2 # Nb
Bz 5TaBz, CrB2. MQBz 1w2B, N
bB, TaB ICrB, MoB (3) Silicon-containing conductive ceramic material'rts1
2#Zr5tzeV812e Nb8”2+ Ta81
2+erSiz, MoSiz, WS 1t(
4) Carbon-containing conductive ceramic materials TiC, ZrC, HfC, VC, NbC, TaC.
Cr s C21MOz C* 9VC本発明ではこれ
らの導電性セラミシクス材を粉末あるいは多孔質焼結板
のいずれの形状でも用いることができる。多孔質焼結板
の場合には、この表面に燃料電池の電極反応に活性を示
す物質を添加するだけで電極(アノード及びカソード)
として用いることができる。粉末の場合には、粉末をあ
らかじめ焼結して多孔質板として用いるか、あるいはそ
の表面に燃料電池の電極反応に活性を示す物質を添加し
たのち、この活性物質の一部を焼結することによって多
孔質板として用いることができる。燃料電池の電極反応
に活性を示す物質として、溶融炭酸塩型燃料電池のアノ
ードにはニッケルおよび銅が適し、カソードには酸化ニ
ッケル訃よび銀が適する。他の型の燃料電池では白金。Cr s C21MOz C* 9VC In the present invention, these conductive ceramic materials can be used in either the form of a powder or a porous sintered plate. In the case of porous sintered plates, electrodes (anodes and cathodes) can be formed by simply adding a substance that is active in fuel cell electrode reactions to the surface.
It can be used as In the case of powder, the powder can be sintered in advance and used as a porous plate, or a substance that is active in fuel cell electrode reactions can be added to the surface of the plate, and then a part of this active substance can be sintered. It can be used as a porous plate. As substances active in electrode reactions of fuel cells, nickel and copper are suitable for the anode of a molten carbonate fuel cell, and nickel oxide and silver are suitable for the cathode. Platinum in other types of fuel cells.
パラジウムなどの貴金属や鉄、クロム、コバルト及びこ
れらの酸化物なども適する。これらの活性物質は導電性
セラミックス材に無電解メッキ法。Precious metals such as palladium, iron, chromium, cobalt and their oxides are also suitable. These active substances are electrolessly plated onto conductive ceramic materials.
電気メツキ法、含浸法、拡散法、イオンプレーテング法
、蒸着法などで添加することができる。いずれの方法を
用いても本発明を得ることができる。It can be added by electroplating, impregnation, diffusion, ion plating, vapor deposition, etc. The present invention can be obtained using either method.
本発明で用いることのできる導電性セラミックス材の抵
抗を第1表に示す。Table 1 shows the resistance of conductive ceramic materials that can be used in the present invention.
第 1 表
〔作用〕
本発明は導電性セラミックスを母材として用いるため、
電極反応に活性な金属で実質的に露出部なく被覆しなく
ともそのことによって電子導電性が急激に低下し、i離
性能を下げることはない。Table 1 [Function] Since the present invention uses conductive ceramics as a base material,
Even if substantially all exposed parts are not coated with a metal active in electrode reactions, this will not cause a sudden decrease in electronic conductivity and will not lower i-separation performance.
又、燃料電池の運転温度では導電性セラミックスの焼結
が起こらないが、その以上の温度であらかじめ焼結させ
ておいても何らさしつかえないものである。Further, although sintering of the conductive ceramic does not occur at the operating temperature of the fuel cell, there is no harm in sintering it in advance at a temperature higher than that.
以下、本発明を実施例によって更に詳述する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1
導電性セラミックス材の一例として、耐溶融塩性に優れ
るチッ化クロム(Cr2 N )を取#)あげた。Example 1 Chromium nitride (Cr2N), which has excellent molten salt resistance, was used as an example of a conductive ceramic material.
平均粒子径2μmの粒状チッ化クロム100gt”、5
0g/lの塩化ニッケル、200g/lのクエン酸ナト
リウム及び50g/Lの次亜リン酸ナトリラムを含有す
る1tの水溶液中に浸漬し、pHを水酸化ナトリウムに
よって10に調整して、チッ化クロムの表面にニッケル
を添加した。次にこの粉末を水洗し、100Cで乾燥後
スラリー状とし。Granular chromium nitride 100gt" with an average particle size of 2μm, 5
chromium nitride by immersion in 1 t of aqueous solution containing 0 g/l nickel chloride, 200 g/l sodium citrate and 50 g/l sodium hypophosphite and adjusting the pH to 10 with sodium hydroxide. Nickel was added to the surface. Next, this powder was washed with water, dried at 100C, and made into a slurry.
20メツシユ、&IIO22rmのステンレス鋼金網に
・ 塗布したのち100Cで乾燥した。この乾燥物を
水素雰囲気中5oot:’で15分間焼結して、多孔質
板を得た。この多孔質板を溶融炭酸塩のアノードとして
用いた。一方、カソードとし−にれを用いるために、こ
の多孔質板を空気中8000で1時間加熱処理して、ニ
ッケルの酸化物を作った。20 mesh, &IIO22rm stainless steel wire mesh and dried at 100C. This dried material was sintered for 15 minutes at 5oot:' in a hydrogen atmosphere to obtain a porous plate. This porous plate was used as a molten carbonate anode. On the other hand, in order to use garlic as a cathode, this porous plate was heat treated in air at 8000C for 1 hour to produce nickel oxide.
これをカソードとして用いた。このアノード及びカソー
ドを用いて通常の溶融炭酸塩型燃料電池を作υ、電池温
度650C,電流密度150mA/cm ”で連続運転
した。その結果を第1図に記号Aで示す。比較のために
従来の多孔質ニッケル板をアノードに、これを酸化処理
したものをカソードに用いた溶融炭酸塩型燃料電池の連
続運転性能を第1図に記号Bで示す。This was used as a cathode. A normal molten carbonate fuel cell was fabricated using this anode and cathode, and operated continuously at a cell temperature of 650C and a current density of 150mA/cm.The results are shown as symbol A in Figure 1.For comparison. The continuous operation performance of a molten carbonate fuel cell using a conventional porous nickel plate as an anode and an oxidized version of the same as a cathode is shown by symbol B in FIG.
本発明に係わる1!極を使用した溶融炭酸塩型燃料電池
では出力電圧が3500時間以上運転しても一定である
のに対し、従来の燃料電池では1000時間の運転を越
すと出力電圧は急激に低下する。1 related to the present invention! In a molten carbonate fuel cell using electrodes, the output voltage remains constant even after 3,500 hours of operation, whereas in a conventional fuel cell, the output voltage drops rapidly after 1,000 hours of operation.
実施例2
導電性セラミックス材の他の例として、チツ化ハフニウ
ム(HfN)を取シあげた。平均粒子径3μmのチツ化
ハフニウム100gを実施例1と同様にしてその表面に
ニッケルを添加した。その後。Example 2 Hafnium titanide (HfN) was taken up as another example of the conductive ceramic material. In the same manner as in Example 1, nickel was added to the surface of 100 g of hafnium titanate having an average particle diameter of 3 μm. after that.
実施例1とまったく同じ処理をして溶融炭酸塩型燃料電
池のアノード及びカンード忙した。このアノードとカソ
ードを用いた連続運転結果を第2図に記号Cで示す。The anode and canard of a molten carbonate fuel cell were prepared using exactly the same process as in Example 1. The results of continuous operation using this anode and cathode are shown by symbol C in FIG.
本実施例の場合も3000時間の連続運転してもその出
力電圧は若干の低下が見られるのみであった。In the case of this example as well, even after 3000 hours of continuous operation, only a slight decrease in the output voltage was observed.
実施例3
平均粒子径2μmのチツ化クロム100gに水を加えて
スラリー状とし、これを20メツシユ、線径0.2aa
mのステンレス鋼金網に塗布し、不活性ガス中1300
7:’で30分間加熱して、導電性セラミックス材の多
孔質板を得た。この多孔質板の気孔率は72%であった
。この多孔質板に50g/lの濃度の水酸化ニッケルを
含浸し、風乾後、水素雰囲気中800Cで30分間加熱
した。この操作によって、多孔質板の表面にニッケルを
添加した。Example 3 Water was added to 100 g of chromium nitride with an average particle size of 2 μm to form a slurry, and this was made into a slurry with a wire diameter of 0.2 aa and 20 meshes.
1300 m in an inert gas.
7:' for 30 minutes to obtain a porous plate of conductive ceramic material. The porosity of this porous plate was 72%. This porous plate was impregnated with nickel hydroxide at a concentration of 50 g/l, air-dried, and then heated at 800 C for 30 minutes in a hydrogen atmosphere. Through this operation, nickel was added to the surface of the porous plate.
これを溶融炭酸塩のアノードとし、さらに空気中goo
rで30分間加熱したものをカソードにした。これらを
用いた溶融炭酸塩型燃料電池の連続運転性能を第3図に
記号りで示す。This is used as an anode for molten carbonate, and further
The cathode was heated for 30 minutes at r. The continuous operation performance of a molten carbonate fuel cell using these is shown by symbols in Fig. 3.
実施例4
実施例3で得た導電性セラミックス板に50g/lの硝
酸銀水溶液を含浸させたのち、空気中700Cで30分
間加熱して、表面に銀を添加したカソードを作った。こ
のカソードと実施例3で得たアノードを用いて溶融炭酸
塩型燃料電池を作り連続運転した結果を第3図に記号E
で示す。カソードにニッケルの酸化物を使用するよシも
、銀の酸化物を利用した方が燃料電池の性能が高いこと
が判かる。Example 4 The conductive ceramic plate obtained in Example 3 was impregnated with a 50 g/l silver nitrate aqueous solution and then heated in air at 700 C for 30 minutes to produce a cathode with silver added to the surface. A molten carbonate fuel cell was made using this cathode and the anode obtained in Example 3, and the results of continuous operation are shown in Figure 3 with symbol E.
Indicated by Although nickel oxide is used for the cathode, it is clear that the performance of the fuel cell is higher when silver oxide is used.
実施例5
実施例3で得た導電性セラミックス板に100g/lの
塩化調水溶液を含浸させたのち水素ガス雰囲気中で75
0Cに1時間加熱して、銅を添加した。これをアノード
どし、カソードとしてさらにこれを空気雰囲気中800
2:’で1時間加熱した。Example 5 The conductive ceramic plate obtained in Example 3 was impregnated with 100 g/l of chloride aqueous solution and then heated to 75% in a hydrogen gas atmosphere.
Heated to 0C for 1 hour and added copper. This is used as an anode and then as a cathode in an air atmosphere at 800°C.
It was heated at 2:' for 1 hour.
これらを用いた溶融炭酸塩型燃料電池の連続運転性能を
第4図に記号Fで示す。The continuous operation performance of a molten carbonate fuel cell using these is shown by symbol F in FIG.
本発明は実施例で示したように、従来の溶融炭酸塩型燃
料電池の連続運転性能を大幅に向上することができる。As shown in the examples, the present invention can significantly improve the continuous operation performance of conventional molten carbonate fuel cells.
この理由は前記したアノードのクリープ(焼結)が防止
できること及びカソードの脆化現象を抑制できることで
ある。以上の結果から本発明はその工業的価値が極めて
犬である。The reason for this is that the creep (sintering) of the anode described above can be prevented and the embrittlement phenomenon of the cathode can be suppressed. From the above results, the present invention has extremely high industrial value.
第1図は本発明と従来技術によるアノード及びカソード
を用いた溶融炭酸塩型燃料電池の連続運転性能の比較図
、第2図乃至第4図は本発明の他、′7−:、。
の実施例による電池の連続運転性能図である。 l
゛、′XFIG. 1 is a comparison diagram of continuous operation performance of a molten carbonate fuel cell using an anode and a cathode according to the present invention and a conventional technique, and FIGS. FIG. 3 is a continuous operation performance diagram of a battery according to an example. l
゛、′X
Claims (1)
少なくとも表面部を被う燃料電池の電極反応に対して電
気化学的に活性な性質を有する物質とから成ることを特
徴とする燃料電池用電極。 2、導電性セラミック基板が焼結体であることを特徴と
する特許請求の範囲第1項記載の燃料電池用電極。 3、導電性セラミック基体は窒素、ホウ素、ケイ素及び
炭素のうちの少なくとも一種を含む化合物であることを
特徴とする特許請求の範囲第1項又は第2項記載の燃料
電池。 4、電気化学的に活性な性質を有する物質は白金、パラ
ジウム等の貴金属、鉄、クロム、コバルト、ニッケル、
銀、銅及びこれ等の酸化物から選ばれることを特徴とす
る特許請求の範囲第1項又は第2項又は第3項記載の燃
料電池用電極。 5、燃料電池が溶融炭酸塩を電解質とする燃料電池であ
ることを特徴とする特許請求の範囲第1項又は第2項又
は第3項記載の燃料電池用電極。 6、電気化学的に活性な性質を有する物質はニッケル、
銅、銀及びそれ等の酸化物から選ばれることを特徴とす
る特許請求の範囲第5項記載の燃料電池用電極。 7、粉末状の導電性セラミックスの表面に燃料電池の電
極反応に対し電気化学的に活性な性質を有する物質を被
着した後、上記粉末状導電性セラミックスを加熱して焼
結することを特徴とする燃料電池用電極の製法。 8、粉末状の導電性セラミックスは窒素、ホウ素、ケイ
素及び炭素のうちの少なくとも一種を含む化合物である
ことを特徴とする特許請求の範囲第7項記載の燃料電池
用電極の製法。 9、活性な性質を有する物質は白金、パラジウム等の貴
金属、鉄、コバルト、クロム、ニッケル、銅、銀及びこ
れ等の酸化物から選ばれることを特徴とする特許請求の
範囲第7項又は第8項記載の燃料電池用電極の製法。 10、粉末状の導電性セラミックスを加熱して焼結して
導電性セラミックスの多孔質焼結基体を形成し、更に上
記基体表面から燃料電池の電極反応に対し活性な性質を
有する物質を含浸させた後加熱して上記物質を上記基体
に密着させることを特徴とする燃料電池用電極の製法。 11、粉末状の導電性セラミックスは窒素、ホウ素、ケ
イ素及び炭素のうちの少なくとも一種を含む化合物であ
ることを特徴とする特許請求の範囲第10項記載の燃料
電池用電極の製法。 12、活性な性質を有する物質は白金、パラジウム等の
貴金属、鉄、コバルト、クロム、ニッケル、銅、銀及び
これ等の酸化物から選ばれることを特徴とする特許請求
の範囲第10項又は第11項記載の燃料電池用電極の製
法。[Scope of Claims] 1. A porous conductive ceramic substrate, and a substance covering at least the surface of the substrate and having properties that are electrochemically active for the electrode reaction of a fuel cell. Features of electrodes for fuel cells. 2. The electrode for a fuel cell according to claim 1, wherein the conductive ceramic substrate is a sintered body. 3. The fuel cell according to claim 1 or 2, wherein the conductive ceramic substrate is a compound containing at least one of nitrogen, boron, silicon, and carbon. 4. Substances with electrochemically active properties include noble metals such as platinum and palladium, iron, chromium, cobalt, nickel,
The electrode for a fuel cell according to claim 1, 2, or 3, characterized in that the electrode is selected from silver, copper, and oxides thereof. 5. The electrode for a fuel cell according to claim 1, 2, or 3, wherein the fuel cell is a fuel cell using molten carbonate as an electrolyte. 6. Substances with electrochemically active properties include nickel,
The electrode for a fuel cell according to claim 5, characterized in that the electrode is selected from copper, silver and oxides thereof. 7. A substance having electrochemically active properties for fuel cell electrode reactions is deposited on the surface of the powdered conductive ceramic, and then the powdered conductive ceramic is heated and sintered. A method for manufacturing electrodes for fuel cells. 8. The method for producing an electrode for a fuel cell according to claim 7, wherein the powdered conductive ceramic is a compound containing at least one of nitrogen, boron, silicon, and carbon. 9. Claim 7 or 9, characterized in that the substance having active properties is selected from noble metals such as platinum and palladium, iron, cobalt, chromium, nickel, copper, silver and oxides thereof. A method for producing a fuel cell electrode according to item 8. 10. Heating and sintering powdered conductive ceramics to form a porous sintered base of conductive ceramics, and further impregnating the surface of the base with a substance that is active in the electrode reaction of a fuel cell. 1. A method for producing an electrode for a fuel cell, which comprises heating the substance after heating to bring the substance into close contact with the substrate. 11. The method for producing an electrode for a fuel cell according to claim 10, wherein the powdered conductive ceramic is a compound containing at least one of nitrogen, boron, silicon, and carbon. 12. The substance having active properties is selected from noble metals such as platinum and palladium, iron, cobalt, chromium, nickel, copper, silver and oxides thereof. A method for producing a fuel cell electrode according to item 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61135922A JPS62295355A (en) | 1986-06-13 | 1986-06-13 | Electreode for fuel cell and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61135922A JPS62295355A (en) | 1986-06-13 | 1986-06-13 | Electreode for fuel cell and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62295355A true JPS62295355A (en) | 1987-12-22 |
JPH0550819B2 JPH0550819B2 (en) | 1993-07-30 |
Family
ID=15162985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61135922A Granted JPS62295355A (en) | 1986-06-13 | 1986-06-13 | Electreode for fuel cell and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62295355A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6035471A (en) * | 1983-08-03 | 1985-02-23 | Agency Of Ind Science & Technol | Electrode for fuel cell |
JPS60140665A (en) * | 1983-12-27 | 1985-07-25 | Toshiba Corp | Electrode of fused carbonate fuel cell |
-
1986
- 1986-06-13 JP JP61135922A patent/JPS62295355A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6035471A (en) * | 1983-08-03 | 1985-02-23 | Agency Of Ind Science & Technol | Electrode for fuel cell |
JPS60140665A (en) * | 1983-12-27 | 1985-07-25 | Toshiba Corp | Electrode of fused carbonate fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0550819B2 (en) | 1993-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20040002847A (en) | Solid electrolyte type fuel cell and air electrode collector for use therein | |
JP2006179479A (en) | Electrode for fuel cell, manufacturing method of electrode for fuel cell, and fuel cell | |
US3282737A (en) | Electrodes and electrode material | |
JP4639434B2 (en) | Bipolar plate and polymer electrolyte fuel cell | |
US3607433A (en) | Method of preparation of electrodes for galvanic high-temperature fuel cells having solid electrolytes | |
JP3228377B2 (en) | Molten carbonate fuel cell cathode and method for suppressing its dissolution | |
JP3565696B2 (en) | Method for manufacturing electrode of solid oxide fuel cell | |
JP2012035178A (en) | Method for manufacturing catalyst, and catalyst | |
CA2291195A1 (en) | Double layer cathode for molten carbonate fuel cells and method for producing the same | |
US7691770B2 (en) | Electrode structure and methods of making same | |
JPS62295355A (en) | Electreode for fuel cell and its manufacture | |
EP0324479B1 (en) | Method of producing a Fuel Cell | |
JP2947495B2 (en) | Fuel electrode fabrication method for solid oxide fuel cells | |
JP2002289215A (en) | Separator for solid electrolyte fuel cell with excellent conductivity | |
KR101187713B1 (en) | The cathode of SOFC including silver nanoparticles coated with carbon and the method for preparing it | |
JPH10144337A (en) | Fuel electrode of solid electrolytic fuel cell and manufacture thereof | |
JP2002324555A (en) | Thin net film electrode and its production method | |
KR20070077739A (en) | Metal supported solid oxide fuel cell containing the fuel electrode prepared by impregnation methode | |
KR102648904B1 (en) | Solid oxide fuel cell for ammonia fuel | |
JPH11233121A (en) | Air electrode material for molten carbonate fuel cell and its manufacture | |
JP2012170833A (en) | Dehumidifier | |
JP4396129B2 (en) | Fuel cell electrode and fuel cell using the same | |
KR20160143911A (en) | Protective Ceramic Bilayer For Metallic Interconnect of Solid Oxide Fuel Cell, And Method of Manufacturing the Same | |
JPS625566A (en) | Manufacture of fuel electrode of molten carbonate type fuel cell | |
Basu et al. | Development of functional SOFC anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |