JPH1187752A - Solar battery, manufacture thereof and photolithography mask therefor - Google Patents

Solar battery, manufacture thereof and photolithography mask therefor

Info

Publication number
JPH1187752A
JPH1187752A JP24526997A JP24526997A JPH1187752A JP H1187752 A JPH1187752 A JP H1187752A JP 24526997 A JP24526997 A JP 24526997A JP 24526997 A JP24526997 A JP 24526997A JP H1187752 A JPH1187752 A JP H1187752A
Authority
JP
Japan
Prior art keywords
film
solar cell
resist film
metal electrode
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24526997A
Other languages
Japanese (ja)
Inventor
Kozo Miyoshi
三好  幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP24526997A priority Critical patent/JPH1187752A/en
Publication of JPH1187752A publication Critical patent/JPH1187752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To complete photolithographic process for forming a resist film in a single process to reduce a manufacturing cost by patterning a transparent conductive film together with a metal electrode and an a-Si film in first etching and patterning the metal electrode and the a-Si film in second etching. SOLUTION: Etching is done using a stepped film 10 to pattern a transparent electrode 10 together with a laminated a-Si film 3 and a metal electrode 4. An ashing process for removing the resist film stops when a thin resist film 10b is eliminated. The resist film at a part 10a remains as a resist film 10'. The resist film 10' is used to perform etching again and pattern the a-Si film 3 and the metal electrode 4 simultaneously. A protective film 6 is printed between elements to prevent short-circuiting between adjacent transparent electrodes 2 or between the transparent electrode 2 and the metal electrode 4, and conductive paste is applied to connect the metal electrode 4 of the element A with the transparent electrode 2 of the element B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に電極と非
晶質シリコン膜を積層してなる太陽電池に関する。
The present invention relates to a solar cell having an electrode and an amorphous silicon film laminated on a substrate.

【0002】[0002]

【従来の技術】基板上に電極とP−I−N接合型の非晶
質シリコン膜を積層して形成した太陽電池は、動作時の
シリコン膜の起電力が0.4〜0.5V程度に止どまる
ため、例えば電子腕時計の電源として用いる場合、1個
の素子では回路を動作させるのに電圧が足りない。そこ
で基板上に複数の太陽電池素子(例えば4個分)を配置
して、これらの素子を直列接続した構成とすることによ
り、加算された起電力を得る構造が取られる。
2. Description of the Related Art A solar cell formed by laminating an electrode and a PIN-junction amorphous silicon film on a substrate has an electromotive force of about 0.4 to 0.5 V during operation. For example, when used as a power supply for an electronic wristwatch, one element has insufficient voltage to operate the circuit. Therefore, a structure is obtained in which a plurality of solar cell elements (for example, four) are arranged on a substrate and these elements are connected in series to obtain an added electromotive force.

【0003】図3(F)に太陽電池の一構造の断面を模
型的に示す。この太陽電池は、ガラスの基板1上に透明
導電膜2を形成し、その上にP−I−N接合型の非晶質
シリコン膜(a−Si膜と略記)3を形成し、さらにそ
の上に金属電極4を形成したものである。基板1の下方
からの入射光によりa−Si膜に発生する光起電力は、
a−Si膜をはさんでいる透明導電膜2と金属電極4か
ら取り出すことができる。基板上の積層構造は図3
(F)のほぼ中央部で左右に分離されていて、その両側
は別の太陽電池素子領域をなしているので、便宜上、左
側を素子A、右側を素子Bと呼ぶことにする。素子Aの
金属電極4と素子Bの透明導電膜2が連結されており、
これによって二つの素子は直列接続している。
FIG. 3F schematically shows a cross section of one structure of a solar cell. In this solar cell, a transparent conductive film 2 is formed on a glass substrate 1 and a P-I-N junction type amorphous silicon film (abbreviated as a-Si film) 3 is formed thereon. A metal electrode 4 is formed thereon. The photovoltaic power generated in the a-Si film by the incident light from below the substrate 1 is:
It can be extracted from the transparent conductive film 2 and the metal electrode 4 sandwiching the a-Si film. Figure 3 shows the laminated structure on the substrate.
(F) is separated into right and left at substantially the center, and both sides thereof form another solar cell element region. For convenience, the left side will be referred to as element A and the right side will be referred to as element B. The metal electrode 4 of the element A and the transparent conductive film 2 of the element B are connected,
Thus, the two elements are connected in series.

【0004】図3(F)の範囲外の箇所でも、隣接する
素子の金属電極4と透明導電膜2を同様に導電接続して
あり、これにより基板1上に形成した複数の太陽電池素
子を直列接続して、所望の起電力の太陽電池を構成して
いるのである。
[0004] The metal electrode 4 of the adjacent element and the transparent conductive film 2 are similarly electrically conductively connected to each other at a position outside the range of FIG. 3 (F), so that a plurality of solar cell elements formed on the substrate 1 can be formed. They are connected in series to form a solar cell having a desired electromotive force.

【0005】このような太陽電池の製造法を引き続き図
3により簡単に説明する。図3(A)にて、基板1上の
透明導電膜2は例えばCVD法によってSnO2膜を形
成したものであるが、この透明導電膜2をエッチングす
るためのレジスト膜7をフォトリソグラフィ(以下「フ
ォトリソ」と略記)により形成する。
A method for manufacturing such a solar cell will be briefly described with reference to FIG. In FIG. 3A, the transparent conductive film 2 on the substrate 1 is formed by forming a SnO 2 film by, for example, a CVD method, and a resist film 7 for etching the transparent conductive film 2 is formed by photolithography (hereinafter, referred to as “photolithography”). "Photolithography").

【0006】図3(B)にて、エッチングを行ってレジ
スト膜7でマスクされている部分以外の透明導電膜2を
除去してパターニングする。この後、レジスト膜7を剥
離する。これで透明導電膜2が所要の電極形状になる。
Referring to FIG. 3B, the transparent conductive film 2 other than the portion masked by the resist film 7 is removed by etching to perform patterning. Thereafter, the resist film 7 is stripped. Thus, the transparent conductive film 2 has a required electrode shape.

【0007】図3(C)にて、透明導電膜2の上にCV
D法によってa−Si膜3を積層し、これをエッチング
するためのレジスト膜8を、再度、フォトリソにより形
成する。
[0007] In FIG. 3 (C), CV is placed on the transparent conductive film 2.
The a-Si film 3 is laminated by the method D, and a resist film 8 for etching the a-Si film 3 is formed again by photolithography.

【0008】図3(D)にて、再びエッチングを行って
a−Si膜3をパターニングし、レジスト膜8を剥離す
る。これによってa−Si膜3が所要の形状になる。
In FIG. 3D, etching is performed again to pattern the a-Si film 3, and the resist film 8 is peeled off. Thereby, the a-Si film 3 has a required shape.

【0009】図3(E)にて、透明導電膜2とa−Si
膜3の上に金属電極4となる金属膜をスパッタリングで
成膜し、これらをエッチングするためのレジスト膜9
を、3度目のフォトリソにより形成する。
In FIG. 3E, the transparent conductive film 2 and a-Si
A metal film to be the metal electrode 4 is formed on the film 3 by sputtering, and a resist film 9 for etching these is formed.
Is formed by a third photolithography.

【0010】図3(F)にて、3度目のエッチングを行
って金属電極4をパターニングし、レジスト膜を剥離す
る。これにて基板上の積層構造が所要の形状になり、各
領域がそれぞれ太陽電池素子になるとともに、前述のご
とく、素子Aの金属電極4と素子Bの透明導電膜2が導
電接続しており、これによって素子Aと素子Bは直列接
続となる。
In FIG. 3F, a third etching is performed to pattern the metal electrode 4, and the resist film is stripped. As a result, the laminated structure on the substrate has a required shape, and each region becomes a solar cell element. As described above, the metal electrode 4 of the element A and the transparent conductive film 2 of the element B are conductively connected. Thus, the element A and the element B are connected in series.

【0011】図示の範囲外の素子も同様に構成され、基
板1上に形成された複数の太陽電池素子は直列接続して
いて、合成された起電力を生じるものとなる。この後、
上面に保護膜を塗布するなどして太陽電池が完成する。
The elements outside the range shown in the figure are similarly configured, and the plurality of solar cell elements formed on the substrate 1 are connected in series and generate a combined electromotive force. After this,
The solar cell is completed by, for example, applying a protective film on the upper surface.

【0012】[0012]

【発明が解決しようとする課題】上記のような従来の太
陽電池の製造方法においては、エッチングを3度行って
いる。すなわち図3(B)の透明導電膜2のエッチン
グ、同図(D)のa−Si膜3のエッチング、および同
図(F)の金属電極4のエッチングである。各エッチン
グに先立ってフォトリソでレジスト膜を形成するから、
フォトリソも3度行われる。それらのフォトリソのため
にパターンの異なる3種類のマスクが必要である。もし
フォトリソを1回で済ますことができれば、製造工程が
短縮されるとともにマスクも1種類で済み、製造コスト
の大幅な削減となる。本発明はこのような製造方法の簡
略化を可能にするものである。
In the conventional method for manufacturing a solar cell as described above, etching is performed three times. That is, etching of the transparent conductive film 2 in FIG. 3B, etching of the a-Si film 3 in FIG. 3D, and etching of the metal electrode 4 in FIG. Since a resist film is formed by photolithography prior to each etching,
Photolithography is also performed three times. Three types of masks having different patterns are required for the photolithography. If photolithography can be performed only once, the manufacturing process can be shortened and only one type of mask can be used, resulting in a significant reduction in manufacturing cost. The present invention makes it possible to simplify such a manufacturing method.

【0013】[0013]

【課題を解決するための手段】本発明では、フォトリソ
によって形成するレジスト膜が厚さの薄い部分と厚い部
分からなるものを用いる。基板上に最初に透明導電膜、
a−Si膜、そして金属電極膜を全部積層しておき、こ
れにフォトリソを行って上記のような二通りの厚さを持
つレジスト膜を形成する。これを用いてエッチングし、
基板上の全積層体を共通にパターニングする。次にプラ
ズマによるレジスト膜の除去(いわゆるアッシング)を
行うが、この時レジスト膜を全部剥がすのでなく、アッ
シングが進んでレジスト膜の厚さが減少し、膜厚の薄い
部分がなくなり厚い部分が残っている段階でアッシング
を停止する。そして残っているレジスト膜を用いて再び
エッチングを行い、今度は金属電極とa−Si膜をパタ
ーニングするのである。言い替えれば、1回目のエッチ
ングによって透明導電膜を金属電極およびa−Si膜と
一緒にパターニングし、2回目のエッチングによって金
属電極とa−Si膜をパターニングする。これで従来3
回行っていたレジスト膜形成のためのフォトリソ工程が
1回で済む。
According to the present invention, a resist film formed by photolithography includes a thin portion and a thick portion. First, a transparent conductive film on the substrate,
The a-Si film and the metal electrode film are all laminated, and photolithography is performed on the film to form a resist film having two different thicknesses as described above. Etching using this,
All the laminates on the substrate are commonly patterned. Next, the resist film is removed by plasma (so-called ashing). At this time, the resist film is not completely removed, but ashing proceeds to reduce the thickness of the resist film. Stop ashing at any stage. Then, etching is performed again using the remaining resist film, and then the metal electrode and the a-Si film are patterned. In other words, the transparent conductive film is patterned together with the metal electrode and the a-Si film by the first etching, and the metal electrode and the a-Si film are patterned by the second etching. With this, conventional 3
The photolithography process for forming the resist film, which has been performed once, can be performed only once.

【0014】上記のような厚さに段階のあるレジスト膜
を形成する方法に関し、本発明は特徴的な手段を用い
る。レジスト膜を形成するフォトリソにおいて、基板上
の積層体表面にレジスト剤を塗布し、露光装置によりマ
スクを用いてレジスト面を感光させる場合、例えば感光
によって硬化するレジスト剤であれば、感光部はレジス
ト剤が硬化し未感光部はそうでないから、現像時に未感
光部が洗い流されて、感光した部分のレジスト剤がエッ
チング用のマスクとして残る。この場合、マスク・パタ
ーンはレジスト剤に感光させる部分は透明にし、感光さ
せない部分は遮光するようにしてある。しかし本発明で
は、上記のようにレジスト膜に厚い部分と薄い部分を設
けるので、本発明で用いる露光用のマスクは、レジスト
膜のない部分は完全に遮光し、レジスト膜を厚くする部
分は透明にして十分に感光させるようにし、そしてレジ
スト膜を薄くする部分は、露光装置の解像度以下の細か
い寸法の透光パターンと遮光パターンを混在させて、一
種の網目のようにしたものとする。このような細かいパ
ターンの組み合わせを通して露光させると、個々のパタ
ーンが露光装置の解像度以下なので、この部分はパター
ンがそのままレジスト剤に転写されるのでなく、不十分
な光量で露光されることになる。従ってレジスト剤も厚
さの一部のみが硬化して現像後に残り、厚さの残りの部
分は流失するので、この部分が薄いレジスト膜になるの
である。
In the method of forming a resist film having a step with a thickness as described above, the present invention uses characteristic means. In photolithography for forming a resist film, when a resist agent is applied to the surface of the laminated body on the substrate and the resist surface is exposed using a mask by an exposure device, for example, if the resist agent is cured by exposure, the exposed portion is a resist. Since the agent is hardened and the unexposed portion is not so, the unexposed portion is washed away during development, and the resist agent in the exposed portion remains as a mask for etching. In this case, portions of the mask pattern that are exposed to the resist agent are transparent, and portions that are not exposed are shielded from light. However, in the present invention, since a thick portion and a thin portion are provided in the resist film as described above, the mask for exposure used in the present invention completely shields light from the portion without the resist film, and the portion where the resist film is thickened is transparent. In this case, a portion where the resist film is thinned is formed as a kind of mesh by mixing a light-transmitting pattern and a light-shielding pattern having fine dimensions smaller than the resolution of the exposure apparatus. When exposure is performed through such a combination of fine patterns, since each pattern is equal to or less than the resolution of the exposure apparatus, the pattern is not transferred to the resist material as it is, but is exposed with an insufficient amount of light. Therefore, only part of the thickness of the resist material is hardened and remains after development, and the remaining portion of the thickness flows away, so that this portion becomes a thin resist film.

【0015】[0015]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態を説明する。図1は本発明による太陽電池の製造
手順を示すものである。図1(A)にて、基板1上に透
明導電膜2、a−Si膜3、金属電極4を順次積層し、
その上にフォトリソによりレジスト膜10を形成する。
素子A側のレジスト膜は厚い部分10aだけが見えてい
るが、素子B側のレジスト膜は厚い部分10aと薄い部
分10bが見えている。11の箇所にはレジスト膜を設
けない。ここでは露光により硬化するレジスト剤を用い
る場合を説明する。フォトリソに用いるマスクは、レジ
スト膜を厚くする10aの部分を透明にし、レジスト膜
を作らない11の部分をマスクする。そしてレジスト膜
を薄くする10bの部分は、前述のように透光部と遮光
部の細かいパターンが混じったものとする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a procedure for manufacturing a solar cell according to the present invention. 1A, a transparent conductive film 2, an a-Si film 3, and a metal electrode 4 are sequentially laminated on a substrate 1,
A resist film 10 is formed thereon by photolithography.
In the resist film on the element A side, only the thick part 10a is visible, whereas on the element B side, the thick part 10a and the thin part 10b are visible. No resist film is provided at the position 11. Here, the case of using a resist agent that is cured by exposure will be described. As a mask used for photolithography, a portion 10a where the resist film is thickened is made transparent, and a portion 11 where no resist film is formed is masked. The portion 10b where the resist film is thinned is a mixture of the fine patterns of the light transmitting portion and the light shielding portion as described above.

【0016】図2に示すのがマスク・パターンの一例
で、図1(A)の対応箇所の符号をつけてあり、厚いレ
ジスト膜に相当する両側の10aの部分は透光部、レジ
スト膜を設けない11の部分は遮光部で、レジスト膜の
薄い10bの部分は細かい透光パターンと遮光パターン
を交互に碁盤目状に設けてある。細かいパータンの一辺
は露光装置の解像度以下にするのであって、例えば解像
度が10μmの装置であれば、パターンの一辺を5μm
にするなどである。このようなパターンを用いて露光す
るとレジスト剤にはパターンは転写されず、光量が少な
い不十分な露光が行われて、10aのような完全な透光
部よりもレジスト剤の硬化層の厚さが薄くなり、露光後
の現像で硬化の不十分だったレジスト剤が除かれて、図
1(A)に見るように厚さの薄いレジスト膜10bとな
るのである。細かいマスク・パターンは、図2のもの以
外にも縞状、格子状など種々可能であり、また透光部と
遮光部の面積比を適宜選ぶことによってレジスト膜厚を
制御する。なお、レジスト剤の性質がこの例と逆で、未
感光部が硬化するものを用いる場合は、マスクの透光部
と遮光部の配置は当然逆になる。
FIG. 2 shows an example of a mask pattern, in which the reference numerals of the corresponding portions in FIG. 1A are given, and the portions 10a on both sides corresponding to the thick resist film are formed by the light transmitting portion and the resist film. The portion 11 not provided is a light-shielding portion, and the portion 10b having a thin resist film is provided with a fine light-transmitting pattern and a light-shielding pattern alternately in a grid pattern. One side of the fine pattern is smaller than the resolution of the exposure apparatus. For example, if the resolution is 10 μm, one side of the pattern is 5 μm.
And so on. When exposure is performed using such a pattern, the pattern is not transferred to the resist agent, the amount of light is insufficient, insufficient exposure is performed, and the thickness of the cured layer of the resist agent is smaller than that of a completely transparent portion such as 10a. Is reduced, and the resist agent that has been insufficiently cured by the development after exposure is removed, resulting in a thin resist film 10b as shown in FIG. 1 (A). Various fine mask patterns such as stripes and grids other than those shown in FIG. 2 are possible, and the resist film thickness is controlled by appropriately selecting the area ratio between the light-transmitting portion and the light-shielding portion. When the resist material has a property opposite to that of this example and a non-photosensitive portion is cured, the arrangement of the light transmitting portion and the light shielding portion of the mask is naturally reversed.

【0017】図1(B)では、上記の段つきレジスト膜
10を用いてエッチングし、透明導電膜2を積層された
a−Si膜3、金属電極4と一緒にパターニングする。
In FIG. 1B, etching is performed using the stepped resist film 10, and the transparent conductive film 2 is patterned together with the laminated a-Si film 3 and metal electrode 4.

【0018】図1(C)は、レジスト膜を除去するアッ
シング工程である。これにはプラズマを用い、アッシン
グが進むにつれてレジスト膜10a、10bは共に厚さ
が減って行くが、レジスト膜を全部除去するのでなく、
薄いレジスト膜10bがなくなったところでアッシング
を停止する。その結果、10aの部分のレジスト膜は前
より厚さが減っているが、レジスト膜10′として残
る。
FIG. 1C shows an ashing step for removing the resist film. For this, plasma is used, and as the ashing proceeds, the thickness of each of the resist films 10a and 10b decreases, but instead of removing the entire resist film,
Ashing is stopped when the thin resist film 10b is gone. As a result, the thickness of the resist film in the portion 10a is smaller than before, but remains as the resist film 10 '.

【0019】図1(D)では、前記のようにして残った
レジスト膜10′を用いて再びエッチングを行い、a−
Si膜3と金属電極4を同時にパターニングする。その
後、レジスト膜10′を剥離する。
In FIG. 1D, etching is performed again using the remaining resist film 10 'as described above, and a-
The Si film 3 and the metal electrode 4 are simultaneously patterned. Thereafter, the resist film 10 'is peeled off.

【0020】図1(E)では、以上のようにして形成さ
れた素子と素子の間に保護膜6を印刷して電極間の短
絡、すなわち隣接する素子の透明導電膜2同士の短絡あ
るいは同一素子内の透明導電膜2と金属電極4の短絡等
を防ぎ、保護膜6をまたぐように導電ペースト5を塗布
して、素子Aの金属電極4と素子Bの透明導電膜2を接
続する。図示の範囲外でも同様の接続を行い、基板1上
に形成された複数の太陽電池素子を直列接続して、合成
された起電力を生じるものにする。この後、上面に保護
膜を塗布するなどして太陽電池が完成する。
In FIG. 1 (E), a protective film 6 is printed between the elements formed as described above to form a short circuit between the electrodes, that is, a short circuit between the transparent conductive films 2 of adjacent elements or the same. The conductive paste 5 is applied so as to prevent the short circuit between the transparent conductive film 2 and the metal electrode 4 in the element and to straddle the protective film 6, thereby connecting the metal electrode 4 of the element A and the transparent conductive film 2 of the element B. The same connection is made outside the illustrated range, and a plurality of solar cell elements formed on the substrate 1 are connected in series to generate a combined electromotive force. Thereafter, a solar cell is completed by, for example, applying a protective film on the upper surface.

【0021】図1の本発明による製造方法と図3の従来
の製造方法を比較すると、従来は図3(A)、(C)、
(E)の3度、フォトリソを行ってレジスト膜を形成
し、同図(B)、(D)、(F)の3度、エッチングを
行っている。これに対し、本発明ではフォトリソでレジ
スト膜を作るのは図1(A)の1度のみである。エッチ
ングは本発明でも図1(B)、(D)の2度行っている
が、従来の製造方法における図3(B)、(D)、
(F)のエッチング工程が成膜およびフォトリソである
図3(C)、(E)の工程によって分離されているのに
対し、本発明では、図1(B)、(D)のエッチング工
程の間には(C)のアッシング工程だけが介在していて
成膜やフォトリソ工程はない。エッチングもアッシング
もプラズマを用いて基板の表面層を除去するという同種
の加工であり、図1(B)、(C)、(D)の工程は、
基板を同じ処理槽に入れたまま、ガスの種類や濃度を切
り替えるだけで連続して行うことが可能である。従って
本発明の製造方法は従来の方法に比べて工程数がほほ3
分の1になるといえる。また従来は3度のフォトリソに
それぞれ異なるマスクを必要としたが、本発明ではフォ
トリソは1度であってマスクが1種類で済み、この点で
もコスト減となる。
When the manufacturing method according to the present invention shown in FIG. 1 is compared with the conventional manufacturing method shown in FIG. 3, the conventional methods shown in FIGS.
The resist film is formed by photolithography three times in (E), and etching is performed three times in FIGS. (B), (D), and (F). On the other hand, in the present invention, a resist film is formed by photolithography only once in FIG. Although etching is performed twice in FIGS. 1B and 1D in the present invention, FIGS. 3B, 3D and 3D in the conventional manufacturing method are used.
While the etching step of FIG. 3F is separated by the steps of FIGS. 3C and 3E, which are film formation and photolithography, in the present invention, the etching step of FIG. 1B and FIG. Only the ashing step (C) is interposed therebetween, and there is no film formation or photolithography step. Both etching and ashing are the same kind of processes of removing the surface layer of the substrate using plasma, and the processes of FIGS. 1B, 1C, and 1D are
It is possible to carry out continuously by simply switching the type and concentration of gas while keeping the substrate in the same processing tank. Therefore, the manufacturing method of the present invention requires about 3 steps compared to the conventional method.
It can be said that it becomes 1 /. Conventionally, a different mask was required for each of the three photolithography steps. However, in the present invention, the number of photolithography steps is one and only one type of mask is required. This also reduces the cost.

【0022】図1(E)にて素子A、Bの間に保護膜6
を設けて導電ペースト5を塗布し、素子Aの金属電極4
と素子Bの透明導電膜2を接続する構造は、図3(F)
の従来の太陽電池では見られなかったものである。これ
は従来の図3(F)の構造では素子Aの透明導電膜2の
端部がa−Si膜3で覆われて、素子Aの金属電極4や
素子Bの透明導電膜2と分離されているため、保護膜を
設けて絶縁する必要がなく、成膜とパターニングを通じ
て所要の素子Aの金属電極4と素子Bの透明導電膜2の
接続が得られるからであるが、図1(E)の本発明の太
陽電池では、素子Aの透明導電膜2の端部がa−Si膜
3で覆われておらず、また成膜とパターニングによって
は素子Aの金属電極4と素子Bの透明導電膜2の接続が
得られないので導電ペーストを用いるのであり、これは
本発明に固有の構造である。
In FIG. 1E, a protective film 6 is formed between the devices A and B.
Is provided, a conductive paste 5 is applied, and the metal electrode 4 of the element A is provided.
FIG. 3F shows a structure for connecting the transparent conductive film 2 of the element B with the transparent conductive film 2 of the element B.
Was not found in the conventional solar cell. This is because in the conventional structure of FIG. 3F, the end of the transparent conductive film 2 of the element A is covered with the a-Si film 3 and separated from the metal electrode 4 of the element A and the transparent conductive film 2 of the element B. This is because there is no need to provide a protective film to insulate the device, and the required connection between the metal electrode 4 of the device A and the transparent conductive film 2 of the device B can be obtained through film formation and patterning. In the solar cell of the present invention, the end of the transparent conductive film 2 of the element A is not covered with the a-Si film 3, and the metal electrode 4 of the element A and the transparent electrode of the element B may be formed depending on film formation and patterning. Since the connection of the conductive film 2 cannot be obtained, a conductive paste is used, which is a structure unique to the present invention.

【0023】上記の実施形態では、透明なガラス基板上
に形成した太陽電池に本発明を適用した場合を示した
が、基板に不透明な絶縁板や絶縁被覆を施した金属板等
を用い、積層体の順番を逆にして太陽電池を構成するこ
ともでき、もとより本発明はそのようなものにも適用可
能である。
In the above embodiment, the case where the present invention is applied to a solar cell formed on a transparent glass substrate has been described. However, the substrate is formed by using an opaque insulating plate or a metal plate coated with an insulating material. The solar cell can be configured by reversing the order of the body, and the present invention is naturally applicable to such a solar cell.

【0024】[0024]

【発明の効果】以上述べたごとく、本発明は、基板上に
電極や非晶質シリコン膜を積層して太陽電池を製造する
方法において、露光装置の解像度を利用したフォトリソ
グラフィを行うことにより、従来3度行っていたフォト
リソ工程を1度に削減できるとともに、それに用いるマ
スクも従来3種類必要であったものが1種類で足りる。
また従来3度行っていたエッチングも、実質上、1工程
に近い形で行うことができる。このように、本発明によ
れば太陽電池製造の工程数とマスク数を3分の1に削減
して製造コストを大幅に下げることができる。
As described above, the present invention provides a method of manufacturing a solar cell by laminating an electrode or an amorphous silicon film on a substrate by performing photolithography utilizing the resolution of an exposure apparatus. The photolithography process, which has been performed three times in the past, can be reduced to one time, and only one type of mask, which has conventionally required three types, is sufficient.
In addition, the etching which has been performed three times in the past can be performed substantially in a form close to one step. As described above, according to the present invention, the number of steps and the number of masks for manufacturing a solar cell can be reduced to one third, and the manufacturing cost can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による太陽電池とその製造方法を示す断
面図である。
FIG. 1 is a cross-sectional view illustrating a solar cell according to the present invention and a method for manufacturing the same.

【図2】本発明でフォトリソグラフィに用いるマスク・
パターンの一例である。
FIG. 2 shows a mask used for photolithography in the present invention.
It is an example of a pattern.

【図3】従来の太陽電池とその製造方法を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a conventional solar cell and a method for manufacturing the same.

【符号の説明】[Explanation of symbols]

1 基板 2 透明導電膜 3 a−Si膜 4 金属電極 5 導電ペースト 6 保護膜 7、8、9、10 レジスト膜 Reference Signs List 1 substrate 2 transparent conductive film 3 a-Si film 4 metal electrode 5 conductive paste 6 protective film 7, 8, 9, 10 resist film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に透明導電膜、非晶質シリコン膜
および金属電極を形成した太陽電池において、 隣接する太陽電池素子の間に保護膜を設けて電極間を絶
縁し、該保護膜をまたいで塗布した導電ペーストで保護
膜両側の電極を接続することにより太陽電池素子を直列
接続したことを特徴とする太陽電池。
In a solar cell having a transparent conductive film, an amorphous silicon film, and a metal electrode formed on a substrate, a protective film is provided between adjacent solar cell elements to insulate the electrodes, and the protective film is formed. A solar cell in which solar cells are connected in series by connecting electrodes on both sides of a protective film with a conductive paste applied on the other side.
【請求項2】 基板上に透明導電膜、非晶質シリコン膜
および金属電極を形成して太陽電池を製造する方法にお
いて、 基板上の積層体のパターニングのため厚さに段階のある
レジスト膜をパターン形成し、 初回のエッチングの後、薄い部分がなくなるまでレジス
ト膜の除去を行い、厚い部分の残りであるレジスト膜を
用いて次回のエッチングを行うことを特徴とする太陽電
池の製造方法。
2. A method of manufacturing a solar cell by forming a transparent conductive film, an amorphous silicon film, and a metal electrode on a substrate, comprising: forming a resist film having a stepwise thickness for patterning a laminate on the substrate. A method for manufacturing a solar cell, comprising forming a pattern, removing the resist film until the thin portion disappears after the first etching, and performing the next etching using the resist film remaining as the thick portion.
【請求項3】 請求項2に記載の太陽電池の製造方法に
おいて、 露光装置の解像度以下の寸法の透光部と遮光部が混在し
たパターンを持つマスクを用いることにより、厚さに段
階のあるレジスト膜を1回のフォトリソグラフィで形成
することを特徴とする太陽電池の製造方法。
3. The method for manufacturing a solar cell according to claim 2, wherein a mask having a pattern in which a light-transmitting portion and a light-shielding portion having dimensions smaller than the resolution of the exposure device are mixed is used, so that the thickness is graded. A method for manufacturing a solar cell, wherein a resist film is formed by one photolithography.
【請求項4】 請求項3に記載の太陽電池の製造方法の
フォトリソグラフィに用いるマスクであって、露光装置
の解像度以下の寸法の透光部と遮光部が混在したパター
ンを持つことを特徴とするマスク。
4. A mask used for photolithography in the method of manufacturing a solar cell according to claim 3, wherein the mask has a pattern in which light-transmitting portions and light-shielding portions having dimensions smaller than the resolution of an exposure device are mixed. Mask to do.
JP24526997A 1997-09-10 1997-09-10 Solar battery, manufacture thereof and photolithography mask therefor Pending JPH1187752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24526997A JPH1187752A (en) 1997-09-10 1997-09-10 Solar battery, manufacture thereof and photolithography mask therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24526997A JPH1187752A (en) 1997-09-10 1997-09-10 Solar battery, manufacture thereof and photolithography mask therefor

Publications (1)

Publication Number Publication Date
JPH1187752A true JPH1187752A (en) 1999-03-30

Family

ID=17131177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24526997A Pending JPH1187752A (en) 1997-09-10 1997-09-10 Solar battery, manufacture thereof and photolithography mask therefor

Country Status (1)

Country Link
JP (1) JPH1187752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045222A1 (en) * 1999-01-27 2000-08-03 Citizen Watch Co., Ltd. Photolithography mask and method of manufacturing thereof
KR100831514B1 (en) 2005-03-30 2008-05-22 미쓰이 긴조꾸 고교 가부시키가이샤 Method for producing flexible printed wiring board and flexible printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045222A1 (en) * 1999-01-27 2000-08-03 Citizen Watch Co., Ltd. Photolithography mask and method of manufacturing thereof
KR100831514B1 (en) 2005-03-30 2008-05-22 미쓰이 긴조꾸 고교 가부시키가이샤 Method for producing flexible printed wiring board and flexible printed wiring board

Similar Documents

Publication Publication Date Title
JP4168413B2 (en) Manufacturing method of solar cell
KR100686228B1 (en) apparatus and method for photolithography, and manufacturing method for a thin film transistor array panel of a liquid crystal display using the same
TW200822369A (en) Method for manufacturing substrate of a liquid crystal display device
US4689874A (en) Process for fabricating a thin-film solar battery
JPS61154039A (en) Selective film formation on the sides and the periphery of a laminated body
JPH1187752A (en) Solar battery, manufacture thereof and photolithography mask therefor
JPS6273669A (en) Manufacture of thin-film transistor device
GB2144266A (en) Method of manufacture for ultra-miniature thin-film diodes
JPH11214719A (en) Manufacture of solar cell element
JPS5814568A (en) Manufacture of thin film transistor matrix array
JP2001044439A (en) Transistor and manufacture thereof
JPH02224278A (en) Manufacture of photovoltaic device
JPH07142737A (en) Manufacture of thin-film transistor
JPH01296535A (en) Manufacture of plane type display device
JP2001267607A (en) Solar battery and its manufacturing method
JPH0370184A (en) Photovoltaic device
CN116567924A (en) LCD circuit structure capable of reducing photomask and manufacturing method
JPH067598B2 (en) Solar cell manufacturing method
JPS6269566A (en) Manufacture of photoelectric conversion device
JPH02295132A (en) Manufacture of thin-film transistor
JPH0732259B2 (en) Photovoltaic device manufacturing method
CN113419384A (en) Array substrate, preparation method thereof and display panel
JP5348002B2 (en) Method for manufacturing thin film transistor substrate
JPS62115872A (en) Thin film transistor
JPS63275167A (en) Manufacture of contact image sensor