JPH1174072A - Thin film el panel and manufacture thereof - Google Patents

Thin film el panel and manufacture thereof

Info

Publication number
JPH1174072A
JPH1174072A JP9233618A JP23361897A JPH1174072A JP H1174072 A JPH1174072 A JP H1174072A JP 9233618 A JP9233618 A JP 9233618A JP 23361897 A JP23361897 A JP 23361897A JP H1174072 A JPH1174072 A JP H1174072A
Authority
JP
Japan
Prior art keywords
light
panel
film
thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9233618A
Other languages
Japanese (ja)
Inventor
Mikihiro Noma
幹弘 野間
Satoshi Inoue
智 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9233618A priority Critical patent/JPH1174072A/en
Publication of JPH1174072A publication Critical patent/JPH1174072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of contrast in a thin film EL element, by equipping a micro lens whose optical refraction factor of a translucent member having a protruded type shape is set higher than that of insulating liquid. SOLUTION: A thin film EL panel incorporates many micro lenses 16 to one picture element, constituted at a refraction factor difference of 0.22 between, a protruded type shape 10a having a refraction factor of 1.52 composed of high-refraction-factor translucent resin having a protruded lens shape, and low- refraction-factor insulation liquid 15a having a refraction factor of 1.3, in a panel inside; thereby improving brightness, also obtaining sharp picture image. That is, light, never outgoing in the front direction from a sealing glass 8 so far, can be taking out in the front direction, thereby improving brightness. Also, the distance, between the picture element of a thin film EL element 7 and the micro lens 16, can be shortened by the refraction factor difference, thereby preventing the incidence of light from the other picture element into the micro lens 16 corresponding to some picture element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロレンズを
備えた薄膜ELパネル及びその製造方法に関するもので
ある。
[0001] 1. Field of the Invention [0002] The present invention relates to a thin-film EL panel having a microlens and a method of manufacturing the same.

【0002】[0002]

【従来の技術】情報化産業時代の到来と共にフラットデ
ィスプレイの需要が高まり、その中で薄膜ELパネルも
長寿命であることから特にFA用ディスプレイとして注
目されている。
2. Description of the Related Art With the advent of the information technology era, the demand for flat displays has increased, and among them, a thin-film EL panel has a long service life, and is attracting particular attention as an FA display.

【0003】最近では、図7(a)に示すように単一の
発光層を有する薄膜EL素子7から発光した白色発光を
カラーフィルター9が形成されたシールガラス8側から
取り出し、カラーフィルター9の赤フィルター、緑フィ
ルター、青フィルターに対応した表示色を得る構造のカ
ラー薄膜ELパネルの開発が盛んであり、実開平3−9
2398号公報や特開平5−94879号公報にも開示
されている。しかし、この構造の薄膜ELパネルでは薄
膜EL素子の白色発光をカラーフィルターで分光するた
め輝度が低下するという問題点がある。
Recently, as shown in FIG. 7A, white light emitted from a thin-film EL element 7 having a single light-emitting layer is taken out from a seal glass 8 side on which a color filter 9 is formed, and The development of color thin-film EL panels having a structure to obtain display colors corresponding to red, green and blue filters has been actively conducted.
No. 2398 and JP-A-5-94879. However, the thin-film EL panel having this structure has a problem that the luminance is reduced because white light emission of the thin-film EL element is separated by a color filter.

【0004】また、図7(a)に示すように、薄膜EL
素子7の画素から発した光のうちシールガラス8に垂直
に近い深い角度で入射した光は、正面にそのまま出射し
薄膜ELパネルの1画素の発光として利用されるが、比
較的浅い角度で入射した光は、シールガラス8と外気と
の光学屈折率の差により両者の境界で全反射され外部に
出射することなく何度も反射を繰り返しながら伝播しシ
ールガラス8の端面から出射するため薄膜ELパネルの
画素発光に利用されない。つまり、薄膜EL素子7の発
光のうち正面方向に深い角度で入射した光だけが有効に
取り出される。
[0004] Further, as shown in FIG.
Of the light emitted from the pixels of the element 7, the light incident on the seal glass 8 at a deep angle close to the vertical is emitted directly to the front and used as light emission of one pixel of the thin film EL panel, but is incident at a relatively shallow angle. The reflected light is totally reflected at the boundary between the seal glass 8 and the outside air due to a difference in the optical refractive index between the seal glass 8 and the outside air, propagates while being repeatedly reflected without being emitted to the outside, and is emitted from the end face of the seal glass 8. Not used for panel pixel emission. That is, of the light emitted from the thin-film EL element 7, only the light incident at a deep angle in the front direction is effectively extracted.

【0005】構造によっても異なるが従来の薄膜ELパ
ネルにおいて表示に利用される光の取り出し効率は薄膜
EL素子7の総発光量の約1割の光であり、表示に利用
されない残りの9割の光のうち数割でも正面方向に取り
出せれば飛躍的に輝度が向上することになる。
Although it differs depending on the structure, the light extraction efficiency used for display in the conventional thin film EL panel is about 10% of the total light emission of the thin film EL element 7, and the remaining 90% not used for display. If several percent of the light can be extracted in the front direction, the brightness will be dramatically improved.

【0006】輝度を向上させる方法としては、薄膜EL
素子7の発光効率の向上と発光した光の取出し効率の向
上の2つの方法があり、前者の開発は盛んに行われてい
るが、後者については開発が盛んではなく良い方法が求
められており、それを実現する方法として図8(a)に
示すようにシールガラス8上部の観察面側に凹凸を設け
たマイクロレンズフィルム17を各画素に設ける方法が
ある。また、図9(a)に示すように基板埋設型のマイ
クロレンズ18を薄膜EL素子7及びカラーフィルター
9側のシールガラス8内に設けることで、画素とマイク
ロレンズの距離を縮めることができるので輝度向上が図
れ、ぼやけのないシャープな表示像を得ることができ、
例えば特開昭61−59388号公報にも開示されてい
る。
[0006] As a method of improving the brightness, a thin film EL is used.
There are two methods, improvement of the luminous efficiency of the element 7 and improvement of the efficiency of taking out the emitted light. The former has been actively developed, but the latter is not actively developed and a good method is required. As a method for realizing this, there is a method of providing a microlens film 17 having irregularities on the observation surface side above the seal glass 8 for each pixel as shown in FIG. Further, as shown in FIG. 9A, by providing the substrate embedded microlens 18 in the thin-film EL element 7 and the sealing glass 8 on the color filter 9 side, the distance between the pixel and the microlens can be reduced. Brightness can be improved, and a sharp display image without blur can be obtained.
For example, it is disclosed in JP-A-61-59388.

【0007】[0007]

【発明が解決しようとする課題】図8(a)のようにシ
ールガラス8上部の観察面側に凹凸形状のマイクロレン
ズフィルム17を貼り付けることによって輝度向上は実
現できるが、薄膜EL素子の画素領域とマイクロレンズ
がシールガラス8の厚みにより離れているため、ある画
素の正面のレンズに他の画素から発光した光の一部がマ
イクロレンズによって進入角度が変えられ正面に出射さ
れ、1つの画素の出射光に他の画素の漏れ光も同時に観
測されるため、表示像がぼやけ画像にシャープさが無く
なってしまう。
As shown in FIG. 8A, the luminance can be improved by attaching a microlens film 17 having an uneven shape to the observation surface side above the sealing glass 8 as shown in FIG. Since the region and the microlens are separated by the thickness of the seal glass 8, a part of the light emitted from another pixel is emitted to the front lens of a certain pixel by the microlens, the angle of incidence is changed by the microlens, and the light is emitted to the front. The leaked light of other pixels is also observed in the emitted light at the same time, so that the displayed image is blurred and the sharpness is lost in the image.

【0008】またシールガラス8の表面に貼ったマイク
ロレンズフィルム17が比較的柔らかいため表面に引っ
掻き傷が付くなどの問題があった。また図9(a)に示
す基板埋設型のマイクロレンズ18を用いる場合、シー
ルガラス8に特殊なガラスを用いたり作製プロセスが複
雑になったりするため大変高価になりまた大型化が困難
で歩留まりも悪いという問題があった。
Further, the microlens film 17 attached to the surface of the sealing glass 8 has a problem that the surface is scratched since the film is relatively soft. Further, when the substrate embedded microlens 18 shown in FIG. 9A is used, a special glass is used for the seal glass 8 or the manufacturing process becomes complicated, so that it becomes very expensive, it is difficult to increase the size, and the yield is high. There was a problem of bad.

【0009】また、図9(a)のようにシールガラス8
内に基板埋設型のマイクロレンズ18を設けた場合、観
察角度の変化による色ずれを防止するため、マイクロレ
ンズ18と薄膜EL素子の画素の間にカラーフィルター
9が設けられ、マイクロレンズ18が出射側に設けられ
る構造となる。このときパネル内に入射した外光はマイ
クロレンズ18で散乱され再びパネル外部へ出射するた
めパネル面が白っぽく見えコントラストが低下する。こ
れは図8(a)でも全く同様のことが起こり、1画素あ
たり複数のレンズを設けた場合には顕著でパネル面が完
全に白く見える。
[0009] Further, as shown in FIG.
When a substrate embedded micro lens 18 is provided therein, a color filter 9 is provided between the micro lens 18 and the pixel of the thin film EL element in order to prevent color shift due to a change in observation angle. It is a structure provided on the side. At this time, the external light that has entered the panel is scattered by the microlenses 18 and is again emitted to the outside of the panel, so that the panel surface looks whitish and the contrast is reduced. This is exactly the same in FIG. 8A, and when a plurality of lenses are provided for one pixel, the panel surface looks completely white.

【0010】本発明は、上記問題点に鑑みてなされたも
のであり、その目的は、マイクロレンズを備えた薄膜E
L素子において、コントラストの低下を防ぐことを目的
とする。
The present invention has been made in view of the above problems, and has as its object to provide a thin film E having a microlens.
An object of the present invention is to prevent a reduction in contrast in an L element.

【0011】[0011]

【課題を解決するための手段】本発明は、薄膜EL素子
が形成されたELパネル基板と透光性のシール基板を前
記薄膜EL素子が内側になるように接着し、前記ELパ
ネル基板と前記シール基板の間隙を満たす絶縁性液体を
備えた薄膜ELパネルにおいて、前記シール基板の前記
ELパネル基板側に前記絶縁性液体と接するように凸型
形状の透光性部材を設け、前記凸型形状の透光性部材の
光学屈折率n1と前記絶縁性液体の光学屈折率n2がn
1>n2に設定された前記凸型形状の透光性部材と前記
絶縁性液体からなるマイクロレンズを備えたことを特徴
とする。
According to the present invention, an EL panel substrate on which a thin-film EL element is formed and a light-transmitting sealing substrate are adhered so that the thin-film EL element is located inside, and the EL panel substrate and the EL panel substrate are bonded to each other. In a thin-film EL panel provided with an insulating liquid that fills a gap between seal substrates, a light-transmissive member having a convex shape is provided on the EL panel substrate side of the seal substrate so as to be in contact with the insulating liquid. The optical refractive index n1 of the light transmitting member and the optical refractive index n2 of the insulating liquid are n.
The liquid crystal display device further includes a microlens made of the insulating liquid and the convex-shaped light-transmitting member set to satisfy 1> n2.

【0012】また、本発明は、薄膜EL素子が形成され
たELパネル基板と透光性のシール基板を前記薄膜EL
素子が内側になるように接着し、前記ELパネル基板と
前記シール基板の間隙を満たす絶縁性液体を備えた薄膜
ELパネルにおいて、前記シール基板の前記ELパネル
基板側に前記絶縁性液体と接するように凹型形状の透光
性部材を設け、前記凹型形状の透光性部材の光学屈折率
n1と前記絶縁性液体の光学屈折率n2がn1<n2に
設定された前記凹型形状の透光性部材と前記絶縁性液体
からなるマイクロレンズを備えたことを特徴とする。
Further, the present invention provides an EL panel substrate on which a thin-film EL element is formed and a light-transmitting seal substrate.
In a thin-film EL panel provided with an insulating liquid that is adhered so that an element is located inside and fills a gap between the EL panel substrate and the seal substrate, the thin substrate is in contact with the insulating liquid on the EL panel substrate side of the seal substrate. The concave-shaped light-transmitting member is provided, and the optical refractive index n1 of the concave-shaped light-transmitting member and the optical refractive index n2 of the insulating liquid are set to n1 <n2. And a microlens made of the insulating liquid.

【0013】請求項1及び請求項2に係る発明は、図7
(b)のように透光性樹脂からなる凹凸形状10と絶縁
性液体15から構成されるマイクロレンズ16をカラー
フィルター9の薄膜EL素子7側に設けることによっ
て、今までシールガラス8から正面方向へ出射すること
のなかった光を正面方向に取り出すことができ輝度を大
きく改善することができる。
The invention according to claim 1 and claim 2 is shown in FIG.
As shown in (b), a microlens 16 composed of an irregular shape 10 made of a light-transmitting resin and an insulating liquid 15 is provided on the thin film EL element 7 side of the color filter 9, so that a front direction from the sealing glass 8 has been achieved. The light that has not been emitted to the front can be taken out in the front direction, and the luminance can be greatly improved.

【0014】また、図8(b)のようにシールガラス8
の薄膜EL素子7側に透光性樹脂からなる凹凸形状10
と絶縁性液体15の光学屈折率差から構成されるマイク
ロレンズ16を設けた場合、薄膜EL素子の画素とマイ
クロレンズ16の距離を小さくすることができ、ある画
素に対応するマイクロレンズレンズ16に他の画素から
の光が入射することが防がれ、マイクロレンズ16によ
って他の画素の光の出射部分に向かって曲げられた光も
シールガラス8と外気の光学屈折率差によって全反射を
起こすので観察者からは観測できないのでぼやけのない
シャープな画像を得ることができる。
Further, as shown in FIG.
Irregularities 10 made of a translucent resin on the thin film EL element 7 side
When the microlens 16 composed of the optical refractive index difference between the microlens 16 and the insulating liquid 15 is provided, the distance between the pixel of the thin film EL element and the microlens 16 can be reduced, and the microlens 16 corresponding to a certain pixel can be provided. Light from other pixels is prevented from being incident, and light bent toward the light emission portion of the other pixels by the microlens 16 also causes total reflection due to the optical refractive index difference between the seal glass 8 and the outside air. Therefore, the image cannot be observed by the observer, so that a sharp image without blur can be obtained.

【0015】更に、マイクロレンズ16はパネル内部に
設けられており、透光性樹脂からなる凹凸形状10を樹
脂のような比較的柔らかい材質で形成しても表面に引っ
掻き傷が付くことがない。
Further, the microlenses 16 are provided inside the panel, and even if the uneven shape 10 made of a translucent resin is formed of a relatively soft material such as a resin, the surface will not be scratched.

【0016】また、本発明は、前記透光性部材と前記絶
縁性液体からなるマイクロレンズが前記薄膜EL素子の
1画素に対して複数設けられていることを特徴とする。
Further, the present invention is characterized in that a plurality of microlenses made of the translucent member and the insulating liquid are provided for one pixel of the thin film EL element.

【0017】請求項3に係る発明は、1画素に対して小
さなレンズ状凹凸を多数設け高さを低くした構造である
ためマイクロレンズ16の高さが非常に低くおさえられ
その高さによって生ずるELパネル基板とシール基板間
の距離がほとんど無いので、他の画素からのもれ光がそ
のその画素のレンズに入射し、その画素の発光の一部と
して観察されることがないため非常にシャープな画像が
得られる。
According to the third aspect of the present invention, the height of the microlens 16 is very low because of a structure in which a large number of small lens-like irregularities are provided for one pixel, and the height of the microlens 16 is extremely low. Since there is almost no distance between the panel substrate and the seal substrate, light leaking from other pixels enters the lens of the pixel and is not observed as a part of the light emission of the pixel. An image is obtained.

【0018】また、本発明は、前記透光性部材が、半球
状又は多角錐状の凹凸形状であることを特徴とする。
Further, the present invention is characterized in that the translucent member has a hemispherical or polygonal pyramid uneven shape.

【0019】請求項4に係る発明によって、光を有効に
表示側に取り出すことができる。
According to the invention of claim 4, light can be effectively extracted to the display side.

【0020】また、本発明は、前記透光性部材の凹凸形
状を2種類以上の大きさの異なる形状とすることを特徴
とする。
Further, the present invention is characterized in that the irregularities of the translucent member are two or more types having different sizes.

【0021】また、本発明は、前記透光性部材の凹凸形
状を2種類以上の幅の異なる形状とすることを特徴とす
る。
Further, the present invention is characterized in that the concave and convex shape of the translucent member is at least two types having different widths.

【0022】請求項5及び請求項6に係る発明は、1画
素あたり複数個のマイクロレンズを大きさや幅の異なる
凹凸形状や不均一な間隔で並置し設けることにより、マ
イクロレンズを均一な大きさの凹凸形状や均一な間隔に
並置する場合に、光の波長によって反射率や集光効率が
異なって表示に干渉縞や色づきが発生することを防止す
ることができる。
According to the fifth and sixth aspects of the present invention, a plurality of microlenses per pixel are arranged side by side in a concavo-convex shape having different sizes and widths or at irregular intervals so that the microlenses have a uniform size. In the case of juxtaposition in irregular shapes or uniform intervals, it is possible to prevent interference fringes and coloring from occurring on the display due to differences in reflectance and light collection efficiency depending on the wavelength of light.

【0023】また、本発明は、前記透光性部材と前記シ
ール基板の間にカラーフィルターを設けたことを特徴と
する。
Further, the present invention is characterized in that a color filter is provided between the translucent member and the seal substrate.

【0024】請求項7に係る発明は、図9(b)のよう
に透光性樹脂からなる凹凸形状10と絶縁性液体15の
光学屈折率差から構成されるマイクロレンズ16をカラ
ーフィルター9より薄膜EL素子7側に配置つまり観察
者から見た場合マイクロレンズ16がカラーフィルター
9より奥側に設けられることで、入射した外光が散乱さ
れパネル外部に出射するまでに2度もカラーフィルター
9を透過することになりそのほとんどがカラーフィルタ
ー9に吸収されてしまうので出射光はわずかでありコン
トラストの低下が防止できる。
According to a seventh aspect of the present invention, as shown in FIG. 9B, a microlens 16 composed of a concave-convex shape 10 made of a transparent resin and an optical refractive index difference between an insulating liquid 15 and a color filter 9 is used. Since the microlens 16 is provided on the side of the thin film EL element 7, that is, on the back side of the color filter 9 when viewed from an observer, the color filter 9 is provided twice before the incident external light is scattered and emitted to the outside of the panel. , And most of the light is absorbed by the color filter 9, so that the amount of emitted light is small, and a decrease in contrast can be prevented.

【0025】また、本発明は、薄膜EL素子が形成され
たELパネル基板と、透光性のシール基板と、前記EL
パネル基板と前記シール基板の間隙を満たす絶縁性液体
と、前記シール基板の前記ELパネル基板側に前記絶縁
性液体と接するように設けられた凹凸形状の透光性部材
と、前記凹凸形状の透光性部材と前記絶縁性液体からな
るマイクロレンズを備えた薄膜ELパネルの製造方法に
おいて、感光性を有する透光性樹脂を塗布した後にフォ
トリソグラフィーにより所定のパターン形状の透光性樹
脂を形成し、前記凹凸形状の透光性部材を形成すること
を特徴とする。
Further, the present invention provides an EL panel substrate on which a thin-film EL element is formed, a light-transmitting seal substrate,
An insulating liquid that fills a gap between the panel substrate and the seal substrate; a light-transmitting member having an uneven shape provided on the EL panel substrate side of the seal substrate so as to be in contact with the insulating liquid; In a method of manufacturing a thin-film EL panel including a microlens made of an optical member and the insulating liquid, a translucent resin having a predetermined pattern is formed by photolithography after applying a translucent resin having photosensitivity. The light-transmitting member having the uneven shape is formed.

【0026】請求項8に係る発明はマイクロレンズ16
を安価な材質である透光性樹脂からなる凹凸形状10と
絶縁性液体15で構成し、透光性樹脂からなる凹凸形状
10を大量生産向きの方法であるフォトリソグラフイー
よって作製できるので大型化が可能で歩留まりが良く安
価に作製できる。
The invention according to claim 8 is the micro lens 16
Is made up of the irregular shape 10 made of inexpensive translucent resin and the insulating liquid 15, and the irregular shape 10 made of translucent resin can be manufactured by photolithography, which is a method suitable for mass production, so that the size is increased. It can be manufactured at a good yield and at low cost.

【0027】また、本発明は、薄膜EL素子が形成され
たELパネル基板と、透光性のシール基板と、前記EL
パネル基板と前記シール基板の間隙を満たす絶縁性液体
と、前記シール基板の前記ELパネル基板側に前記絶縁
性液体と接するように設けられた凹凸形状の透光性部材
と、前記凹凸形状の透光性部材と前記絶縁性液体からな
るマイクロレンズを備えた薄膜ELパネルの製造方法に
おいて、透光性樹脂を塗布した後、スタンパーでプレス
し押し型をつけることにより、前記凹凸形状の透光性部
材を形成することを特徴とする。
Further, the present invention provides an EL panel substrate on which a thin-film EL element is formed, a light-transmitting seal substrate,
An insulating liquid that fills a gap between the panel substrate and the seal substrate; a light-transmitting member having an uneven shape provided on the EL panel substrate side of the seal substrate so as to be in contact with the insulating liquid; In the method for manufacturing a thin-film EL panel provided with a microlens made of an optical member and the insulating liquid, a translucent resin is applied, and then pressed with a stamper and a stamping die is used to form the translucent surface of the irregular shape. It is characterized by forming a member.

【0028】請求項9に係る発明はマイクロレンズ16
を安価な材質である透光性樹脂からなる凹凸形状10と
絶縁性液体15で構成し、透光性樹脂からなる凹凸形状
10を大量生産向きの方法であるスタンパーによる刻印
によって作製できるので大型化が可能で歩留まりが良く
安価に作製できる。
According to a ninth aspect of the present invention, the microlens 16
Is made of inexpensive light-transmissive resin, which is an inexpensive material, and an insulating liquid 15, and the light-transmissive resin unevenness 10 can be manufactured by stamping with a stamper, which is a method suitable for mass production, so that the size is increased. It can be manufactured at a good yield and at low cost.

【0029】[0029]

【発明の実施の形態】図1に本発明の実施形態である薄
膜ELパネルの断面図を示す。
FIG. 1 is a sectional view of a thin film EL panel according to an embodiment of the present invention.

【0030】薄膜ELパネルの薄膜EL素子7は以下の
様に形成される。ガラス基板1上にMo膜を200nm
の厚みで形成し、前記Mo膜をウェットエッチングする
ことによりストライプ状電極パターンの第一電極層2を
形成し、その上部にSi34とSiO2の積層構造の第
一絶縁層3を200nmの厚みで形成し、SrS:Ce
とZnS:Mnの積層構造の白色発光層4を1000n
mの厚みで形成し、SiO2とSi34の積層構造の第
二絶縁層5を200nmの厚みで形成し、ITO膜を2
00nmの厚みで形成し、前記ITO膜をウェットエッ
チングすることによりストライプ状電極パターンの第二
電極層6を第一電極層2と直交するように形成する。
The thin-film EL element 7 of the thin-film EL panel is formed as follows. 200 nm Mo film on glass substrate 1
The Mo film is wet-etched to form a first electrode layer 2 having a striped electrode pattern, and a first insulating layer 3 having a stacked structure of Si 3 N 4 and SiO 2 is formed thereon to a thickness of 200 nm. SrS: Ce
White light emitting layer 4 having a laminated structure of
m, a second insulating layer 5 having a laminated structure of SiO 2 and Si 3 N 4 having a thickness of 200 nm, and an ITO film
The second electrode layer 6 having a stripe electrode pattern is formed so as to be orthogonal to the first electrode layer 2 by wet etching the ITO film.

【0031】第一絶縁層3と第二絶縁層5にはTa25
やAl23等を、第一電極層2にはTa、W等の金属電
極を、第二電極層6にはAlを添加したZnO、Gaを
添加したZnO等の透明電極を用いてもよい。
The first insulating layer 3 and the second insulating layer 5 are made of Ta 2 O 5
The or Al 2 O 3, or the like, the first electrode layer 2 Ta, a metal electrode such as W, ZnO in the second electrode layer 6 with the addition of Al, even using a transparent electrode such as ZnO with the addition of Ga Good.

【0032】SrS:CeとZnS:Mnからなる白色
発光層4は、SrSにCeを0.1at%添加し、加圧
形成した後Arガス中1100℃で1時間焼結させたS
rS:Ceペレットと、ZnSにMnを0.35at%
添加し、加圧形成した後Arガス中900℃で1時間焼
結させたZnS:Mnペレットとを電子ビーム蒸着法に
よりそれぞれ基板温度500℃、200℃で膜厚700
nm、300nmの計1000nmの厚さに積層成膜さ
れる。
The white light-emitting layer 4 composed of SrS: Ce and ZnS: Mn was formed by adding 0.1 at% of Ce to SrS, forming the mixture under pressure, and then sintering at 1100 ° C. for 1 hour in Ar gas.
rS: Ce pellets, 0.35 at% of Mn in ZnS
And ZnS: Mn pellets sintered at 900 ° C. for 1 hour in an Ar gas and formed under pressure at a substrate temperature of 500 ° C. and a film thickness of 200 ° C. at a temperature of 200 ° C., respectively.
and a total thickness of 1000 nm of 300 nm.

【0033】薄膜EL素子7において、第一電極層2と
第二電極層6の間に200V程度の両極性パルス電圧を
印加すると、SrS:Ce発光層から青色光がZnS:
Mn発光層から黄色光が生じ結果として白色光として発
光し、薄膜ELパネルのシールガラス8側つまりガラス
基板1と反対側へ光を出射するいわゆる反転構造型の薄
膜ELパネルとなる。一方、シールガラス8にはそれぞ
れの画素に対応するようにパターニングされた赤フィル
ター9a、緑フィルター9b、青フィルター9cからな
るカラーフィルター9が回転塗布法あるいは印刷法によ
り形成され、薄膜EL素子7からの白色発光を赤、緑、
青にそれぞれ分光する。
In the thin-film EL element 7, when a bipolar pulse voltage of about 200 V is applied between the first electrode layer 2 and the second electrode layer 6, blue light is emitted from the SrS: Ce light emitting layer to ZnS:
Yellow light is generated from the Mn light emitting layer, and as a result, the light is emitted as white light, and a thin film EL panel of a so-called inverted structure type that emits light to the sealing glass 8 side of the thin film EL panel, that is, the side opposite to the glass substrate 1 is obtained. On the other hand, a color filter 9 including a red filter 9a, a green filter 9b, and a blue filter 9c patterned to correspond to each pixel is formed on the seal glass 8 by a spin coating method or a printing method. Red, green,
Disperse each in blue.

【0034】マイクロレンズの形成方法を以下に説明す
る。図2(a)に示すようにカラーフィルター9が形成
されたシールガラス8の上に、感光性を有する透明な光
学屈折率1.52のネガ型アクリル系オーバーコート材
アを回転塗布法あるいは印刷法により均一に塗布した
後、図2(b)に示すようにフォトリソグラフイー法に
よりフォトマスク19に描かれたパターンを紫外線で感
光させた後現像することにより図2(c)に示すように
オーバーコート材アを半径4μm、高さ3μmの円柱状
のパターンとし、150℃で加熱し硬化させた後、更に
図2(d)に示すように低粘度に調整した同材料のオー
バーコート材イを回転塗布法あるいは印刷法により均一
に塗布する。
A method for forming a micro lens will be described below. As shown in FIG. 2A, a transparent negative photosensitive acrylic overcoat material 1.52 having a refractive index of 1.52 is spin-coated or printed on a seal glass 8 on which a color filter 9 is formed. 2B, the pattern drawn on the photomask 19 by photolithography as shown in FIG. 2B is exposed to ultraviolet rays and then developed, as shown in FIG. 2C. The overcoat material was formed into a columnar pattern having a radius of 4 μm and a height of 3 μm, heated and cured at 150 ° C., and further adjusted to a low viscosity as shown in FIG. 2 (d). Is uniformly applied by a spin coating method or a printing method.

【0035】オーバーコート材イを70℃の温度で加熱
してやると粘度が更に下がり表面張力によって角部分が
丸くなり、オーバーコート材アとオーバーコート材イで
構成される半球状の凸レンズ形状となる。そのまま70
℃で加熱すると硬化してくるので硬化したら150℃で
更に焼き固め凹凸の形成が終了する。
When the overcoat material A is heated at a temperature of 70 ° C., the viscosity further decreases, and the corners become round due to surface tension, resulting in a hemispherical convex lens shape composed of the overcoat material A and the overcoat material A. 70 as it is
When it is cured at 150 ° C., it hardens, and when it is cured, it is further baked at 150 ° C. to complete the formation of the irregularities.

【0036】これにより半径10μm、高さ5μmの高
屈折率透光性樹脂からなる凸型形状10aを形成するこ
とができる。
Thus, a convex shape 10a made of a high-refractive-index translucent resin having a radius of 10 μm and a height of 5 μm can be formed.

【0037】次に、図1に示すようにスペーサー13に
よって30μmの間隙を保ちながら、薄膜EL素子7が
形成されたガラス基板1とシールガラス8とをエポキシ
系シール樹脂14によって貼り合わせる。このようにし
て作製された薄膜ELパネルに光学屈折率1.30の弗
素化合物絶縁油からなる低屈折率絶縁性液体15aをオ
イル注入口11より注入した後、オイル注入口11にオ
イル封止板12を接着し封止する。
Next, as shown in FIG. 1, the glass substrate 1 on which the thin-film EL element 7 is formed and the sealing glass 8 are bonded together with an epoxy-based sealing resin 14 while maintaining a gap of 30 μm by the spacer 13. A low-refractive-index insulating liquid 15a made of a fluorine compound insulating oil having an optical refractive index of 1.30 is injected from the oil inlet 11 into the thin-film EL panel thus manufactured, and the oil sealing plate is inserted into the oil inlet 11. 12 is adhered and sealed.

【0038】この低屈折率絶縁性液体15aの注入は、
まず真空容器に薄膜ELパネルと低屈折率絶縁性液体を
満たした容器を入れ、真空容器を真空に引きガラス基板
1とシールガラス8の間隙の空気を抜き、その状態でオ
イル注入口11を低屈折率絶縁性液体に浸けて、真空容
器内を大気圧に戻すと低屈折率絶縁性液体の液面に大気
圧がかかりガラス基板1とシールガラス8の間隙の真空
状態になっているところに低屈折率絶縁油が注入される
という方法で行われる。
The injection of the low-refractive-index insulating liquid 15a is as follows.
First, a thin-film EL panel and a container filled with a low-refractive-index insulating liquid are placed in a vacuum container, and the vacuum container is evacuated to evacuate the air in the gap between the glass substrate 1 and the seal glass 8. When the substrate is immersed in the refractive index insulating liquid and the inside of the vacuum vessel is returned to the atmospheric pressure, the liquid surface of the low refractive index insulating liquid is subjected to the atmospheric pressure, and the space between the glass substrate 1 and the seal glass 8 is in a vacuum state. It is performed by a method in which a low refractive index insulating oil is injected.

【0039】このようにして作製された薄膜ELパネル
は、凸レンズ形状の高屈折率透光性樹脂からなる屈折率
1.52の凸型形状10aと、屈折率1.3の低屈折率
絶縁性液体15aとの屈折率差0.22によって構成さ
れる1画素あたり多数のマイクロレンズ16をパネル内
部に内蔵しており輝度向上とシャープな画像を得ること
ができる。上述の製造方法によって、安価で大量生産向
きな製造方法によるELパネルの作製が実現できる。
The thin-film EL panel manufactured in this manner has a convex shape 10a having a refractive index of 1.52 made of a high refractive index translucent resin having a convex lens shape and a low refractive index insulating material having a refractive index of 1.3. A large number of microlenses 16 are built in the panel per pixel constituted by a refractive index difference of 0.22 with the liquid 15a, so that brightness enhancement and sharp images can be obtained. According to the above-described manufacturing method, EL panels can be manufactured by an inexpensive manufacturing method suitable for mass production.

【0040】凸型形状10aの他の製造方法について以
下に説明する。図3に示すように、カラーフィルター9
を形成済みのシールガラス8に透明なオーバーコート材
を回転塗布法あるいは印刷法により均一に塗布し70℃
で加熱、仮硬化した後に予め所望のパターンを刻み込ん
だスタンパー20で樹脂塗布面に圧力をかけて押し型を
付けた後150℃で再び加熱し完全に硬化させることに
よって透光性樹脂からなる凸型形状10aを作ることが
できる。
Another method of manufacturing the convex shape 10a will be described below. As shown in FIG.
A transparent overcoat material is evenly applied to the seal glass 8 on which has been formed by a spin coating method or a printing method.
After being heated and temporarily cured, a stamper 20 in which a desired pattern is cut in advance is applied to the resin application surface to apply a pressing die, and then heated again at 150 ° C. to be completely cured, thereby forming a projection made of a translucent resin. A mold shape 10a can be made.

【0041】この場合オーバーコート材は透明であれば
良く感光性は必要とされない。特に図3に示すようにロ
ーラー型のスタンパー20とローラー21からなる刻印
機でそれらの間隙にオーバーコート材を塗布したシール
ガラス8を通すことによって凹凸形状を作る方法を用い
ると非常に生産性が良く大型のパネルが作製可能とな
る。
In this case, the overcoat material need only be transparent and does not require photosensitivity. Particularly, as shown in FIG. 3, the productivity is extremely high when a method of forming an uneven shape by passing a seal glass 8 coated with an overcoat material in a gap between them by a stamping machine including a roller type stamper 20 and a roller 21 as shown in FIG. A large panel can be manufactured well.

【0042】マイクロレンズ16を構成する透光性樹脂
の凹凸形状も様々な形状が考えられ、凸型と凹型、点状
と線状に大きく分けられる。透光性樹脂が凸型の場合に
は、図4(a)に示す半球状凸レンズ型形状、図4
(b)に示す多角錘状凸プリズム型形状、図4(c)に
示す柱状凸レンズ型形状等の凸型形状が考えられる。
Various shapes can be considered for the unevenness of the light-transmitting resin constituting the microlens 16, and can be broadly classified into a convex shape and a concave shape, and a dot shape and a linear shape. When the translucent resin is convex, a hemispherical convex lens shape shown in FIG.
Convex shapes such as a polygonal pyramidal convex prism shape shown in FIG. 4B and a columnar convex lens shape shown in FIG.

【0043】透光性樹脂を凸型のレンズ形状とする場合
は、透光性樹脂からなる凸型形状10aの光学屈折率n
1と絶縁性液体15aの光学屈折率n2が、n1>n2
の関係を満たすように設定する必要があり、n1とn2
の差が大きければ大きいほどマイクロレンズによって光
を表示に利用することができる。
When the translucent resin is formed into a convex lens shape, the optical refractive index n of the convex shape 10a made of the translucent resin is used.
1 and the optical refractive index n2 of the insulating liquid 15a is n1> n2
Must be set so as to satisfy the relationship of n1 and n2
The larger the difference is, the more light can be used for display by the microlenses.

【0044】例えば、透光性樹脂からなる凸型形状10
aには光学屈折率の高いアクリル系透光性樹脂を用い、
低屈折率絶縁性液体15aには光学屈折率の低い弗素化
合物絶縁油を用いる。表1に、透光性樹脂の凸型形状を
設けた本実施形態と図7(a)に示す従来構造の薄膜E
Lパネルの面輝度比を示す。
For example, a convex shape 10 made of a translucent resin
For a, use an acrylic translucent resin with a high optical refractive index,
As the low refractive index insulating liquid 15a, a fluorine compound insulating oil having a low optical refractive index is used. Table 1 shows the present embodiment in which the convex shape of the translucent resin is provided and the thin film E having the conventional structure shown in FIG.
5 shows the surface luminance ratio of the L panel.

【0045】[0045]

【表1】 [Table 1]

【0046】本実施形態の凸型形状が設けられた透光性
樹脂には光学屈折率1.52のアクリル系透光性樹脂を
用い、本実施形態及び従来構造の絶縁性液体には光学屈
折率1.30の弗素化合物絶縁油を用いている。また、
多角錘状凸プリズムには四角錐を用いている。
An acrylic translucent resin having an optical refractive index of 1.52 is used for the translucent resin having the convex shape according to the present embodiment, and an optical refraction is used for the insulating liquid of the present embodiment and the conventional structure. A fluorine compound insulating oil having a rate of 1.30 is used. Also,
A quadrangular pyramid is used for the polygonal convex prism.

【0047】薄膜EL素子の印加電圧は発光開始電圧1
60V+駆動電圧40Vの200Vとし、周波数60H
zの両極性パルス電圧で駆動し赤、青、緑の全てを点灯
した場合において、面輝度と、従来構造を1.0とした
ときの本実施形態の凸型形状の面輝度改善率を示したの
が表1である。
The voltage applied to the thin film EL element is a light emission starting voltage of 1
60V + drive voltage 40V, 200V, frequency 60H
In the case where all of red, blue, and green are driven by driving with z bipolar pulse voltage, the surface luminance and the surface luminance improvement ratio of the convex shape of the present embodiment when the conventional structure is set to 1.0 are shown. Table 1 shows the results.

【0048】透光性樹脂が柱状凸レンズ形状の場合はレ
ンズの柱状構造に垂直な方向にしか集光効果を発揮しな
いので輝度向上はそれほど大きくないが、透光性樹脂を
多角錘状凸プリズムあるいは半球状凸レンズ形状にする
と更に集光効率が改善され大きく輝度向上がなされた。
When the translucent resin has a columnar convex lens shape, the light condensing effect is exerted only in the direction perpendicular to the columnar structure of the lens, so that the brightness is not significantly improved. By making the shape of a hemispherical convex lens, the light collection efficiency was further improved, and the luminance was greatly improved.

【0049】次に、透光性樹脂が凹型の場合は、図5に
示すように薄膜ELパネルに凹型形状10bを用いる。
図5は図1の凸型形状10aの変わりに、凹型形状10
bを適用している。
Next, when the translucent resin is concave, a concave shape 10b is used for the thin film EL panel as shown in FIG.
FIG. 5 shows a concave shape 10 instead of the convex shape 10a of FIG.
b is applied.

【0050】また、透光性樹脂が凹型の場合は、図6
(a)に示す半球状凹レンズ型、図6(b)に示す多角
錘状凹プリズム型、図6(c)に示す柱状凹レンズ型の
凹型形状等を用いることができる。
In the case where the translucent resin is concave, FIG.
A concave shape such as a hemispherical concave lens type shown in (a), a polygonal pyramidal concave prism type shown in FIG. 6B, and a columnar concave lens type shown in FIG. 6C can be used.

【0051】低屈折率透光性樹脂からなる凸型形状10
bには光学屈折率の低い例えば弗素化合物系樹脂を用
い、高屈折率絶縁性液体15bには光学屈折率の高いシ
リコン化合物絶縁油を用いて、低屈折率透光性樹脂から
なる凸型形状10bの光学屈折率n1と高屈折率絶縁性
液体15b光学屈折率n2がn1<n2の関係が成り立
つように設定し、n1とn2の差は大きければ大きいほ
ど良い。透光性樹脂の凹型形状10bを設けた本発明の
実施例と図7(a)に示す従来構造の薄膜ELパネルの
面輝度比を表2に示す。
Convex shape 10 made of low refractive index translucent resin
For example, a high refractive index insulating liquid 15b is formed of a low refractive index translucent resin using a silicon compound insulating oil having a high optical refractive index as the high refractive index insulating liquid 15b. The optical refractive index n1 of 10b and the high refractive index insulating liquid 15b are set so that the relationship of n1 <n2 is satisfied, and the larger the difference between n1 and n2, the better. Table 2 shows the surface luminance ratio between the embodiment of the present invention in which the concave shape 10b of the translucent resin is provided and the thin film EL panel having the conventional structure shown in FIG. 7A.

【0052】[0052]

【表2】 [Table 2]

【0053】本実施形態の凹型形状10bを設けた透光
性樹脂には光学屈折率1.34の弗素化合物系樹脂を用
い、本実施形態及び従来構造の絶縁性液体には光学屈折
率1.53のシリコン化合物絶縁油を用いている。また
多角錘状凹プリズムには四角錐を選んだ。
A fluororesin having an optical refractive index of 1.34 is used as the translucent resin having the concave shape 10b of the present embodiment, and an optical refractive index of 1.34 is used for the insulating liquid of the present embodiment and the conventional structure. 53 silicon compound insulating oils are used. A quadrangular pyramid was selected for the polygonal concave prism.

【0054】印加電圧は発光開始電圧160V+駆動電
圧40Vの200Vとし、周波数60Hzの両極性パル
ス電圧で駆動し赤、青、緑全てを点灯したときの面輝度
を比較したのが表2である。
Table 2 shows a comparison of the surface luminance when all the red, blue, and green lights were driven by a bipolar pulse voltage having a frequency of 60 Hz, and the applied voltage was 200 V, which is a light emission start voltage 160 V + a drive voltage 40 V.

【0055】柱状凹レンズ形状の場合はレンズの柱状構
造に垂直な方向にしか集光効果を発揮しないので輝度向
上はそれほど大きくない。これを多角錘状凹プリズムあ
るいは半球状凹レンズ形状にすると更に集光効率が改善
され大きく輝度向上がなされた。
In the case of the columnar concave lens shape, since the light condensing effect is exerted only in the direction perpendicular to the columnar structure of the lens, the brightness improvement is not so large. When this was formed into a polygonal pyramidal concave prism or a hemispherical concave lens shape, the light-collecting efficiency was further improved and the luminance was greatly improved.

【0056】[0056]

【発明の効果】本発明によると、透光性樹脂からなる凹
凸形状10と絶縁性液体15から構成されるマイクロレ
ンズ16をカラーフィルター9の薄膜EL素子7側に設
けることによって、今までシールガラス8から正面方向
へ出射することのなかった光を正面方向に取り出すこと
ができ輝度を大きく改善することができる。
According to the present invention, by providing the microlenses 16 composed of the uneven shape 10 made of a translucent resin and the insulating liquid 15 on the thin film EL element 7 side of the color filter 9, the sealing glass has heretofore been obtained. Light that did not exit from the front side 8 from the front side can be taken out in the front side direction, and the luminance can be greatly improved.

【0057】また、シールガラス8の薄膜EL素子7側
に透光性樹脂からなる凹凸形状10と絶縁性液体15の
光学屈折率差から構成されるマイクロレンズ16を設け
た場合、薄膜EL素子の画素とマイクロレンズ16の距
離が小さくすることができ、ある画素に対応するマイク
ロレンズレンズ16に他の画素からの光が入射すること
が防がれ、マイクロレンズ16によって他の画素の光の
出射部分に向かって曲げられた光もシールガラス8と外
気の光学屈折率差によって全反射を起こすので観察者か
らは観測できないのでぼやけのないシャープな画像を得
ることができる。
When a microlens 16 composed of a concave / convex shape 10 made of a light-transmitting resin and an optical refractive index difference of an insulating liquid 15 is provided on the seal glass 8 on the side of the thin film EL element 7, The distance between the pixel and the microlens 16 can be reduced, so that light from another pixel is prevented from entering the microlens lens 16 corresponding to a certain pixel, and the light from another pixel is emitted by the microlens 16. Since the light bent toward the portion also causes total reflection due to the optical refractive index difference between the seal glass 8 and the outside air, the light cannot be observed by an observer, so that a sharp image without blur can be obtained.

【0058】更に、マイクロレンズ16はパネル内部に
設けられており、透光性樹脂からなる凹凸形状10を樹
脂のような比較的柔らかい材質で形成しても表面に引っ
掻き傷が付くことがない。
Further, the microlenses 16 are provided inside the panel, and even if the uneven shape 10 made of a translucent resin is formed of a relatively soft material such as a resin, the surface will not be scratched.

【0059】また、本発明は、1画素に対して小さなレ
ンズ状凹凸を多数設け高さを低くした構造であるためマ
イクロレンズ16の高さが非常に低くおさえられその高
さによって生ずる画素とレンズ間の距離がほとんど無い
ので非常にシャープな画像が得られる。また、本発明
は、光を有効に表示側に取り出すことができる。また、
本発明は、1画素あたり複数個のマイクロレンズを大き
さや幅の異なる凹凸形状や不均一な間隔で並置し設ける
ことにより、マイクロレンズを均一な大きさの凹凸形状
や均一な間隔に並置する場合に、光の波長によって反射
率や集光効率が異なって表示に干渉縞や色づきが発生す
ることを防止することができる。
Further, since the present invention has a structure in which a number of small lens-shaped irregularities are provided for one pixel and the height is reduced, the height of the microlens 16 is extremely low, and the pixel and lens generated by the height are reduced. Since there is almost no distance between them, a very sharp image can be obtained. Further, according to the present invention, light can be effectively extracted to the display side. Also,
The present invention relates to a case in which a plurality of microlenses are arranged side by side with irregularities having different sizes and widths or uneven intervals at one pixel so that the microlenses are juxtaposed with irregularities having a uniform size and uniform intervals. In addition, it is possible to prevent the occurrence of interference fringes and coloring on the display due to differences in reflectance and light collection efficiency depending on the wavelength of light.

【0060】また、本発明は、透光性樹脂からなる凹凸
形状10と絶縁性液体15の光学屈折率差から構成され
るマイクロレンズ16をカラーフィルター9より薄膜E
L素子7側に配置つまり観察者から見た場合マイクロレ
ンズ16がカラーフィルター9より奥側に設けられるこ
とで、入射した外光が散乱されパネル外部に出射するま
でに2度もカラーフィルター9を透過することになりそ
のほとんどがカラーフィルター9に吸収されてしまうの
で出射光はわずかでありコントラストの低下が防止でき
る。
Further, according to the present invention, a microlens 16 composed of a concave-convex shape 10 made of a light-transmitting resin and an optical refractive index difference between an insulating liquid 15 and a color filter 9 is used as a thin film E.
The micro lens 16 is disposed on the L element 7 side, that is, when viewed from an observer, and the micro lens 16 is provided on the back side of the color filter 9. Since the light is transmitted and almost all of the light is absorbed by the color filter 9, the amount of emitted light is small and a decrease in contrast can be prevented.

【0061】また、本発明は、マイクロレンズ16を安
価な材質である透光性樹脂からなる凹凸形状10と絶縁
性液体15で構成し、透光性樹脂からなる凹凸形状10
を大量生産向きの方法であるフォトリソグラフイーよっ
て作製できるので大型化が可能で歩留まりが良く安価に
作製できる。また、本発明は、マイクロレンズ16を安
価な材質である透光性樹脂からなる凹凸形状10と絶縁
性液体15で構成し、透光性樹脂からなる凹凸形状10
を大量生産向きの方法であるスタンパーによる刻印によ
って作製できるので大型化が可能で歩留まりが良く安価
に作製できる。
In the present invention, the microlens 16 is composed of the irregular shape 10 made of an inexpensive light-transmitting resin and the insulating liquid 15, and the microlens 16 is made of a light-transmitting resin.
Can be manufactured by photolithography, which is a method suitable for mass production, so that the size can be increased, the yield can be improved, and the manufacturing can be performed at low cost. In addition, the present invention provides a microlens 16 composed of a concave-convex shape 10 made of an inexpensive light-transmissive resin and an insulating liquid 15, and a microlens 16 made of a light-transmissive resin.
Can be manufactured by engraving with a stamper, which is a method suitable for mass production, so that the size can be increased, the yield can be improved, and the manufacturing can be performed at low cost.

【0062】また、本発明は、マイクロレンズを安価な
材質である透光性樹脂からなる凹凸と絶縁性液体で構成
するため、透光性樹脂からなる凹凸を大量生産向きの方
法であるフォトリソグラフイーやスタンパーによる刻印
などの手法によって作製できるので大型化が可能で歩留
まりが良く安価に作製できる方法を提供できる。
Further, in the present invention, since the microlenses are made of an inexpensive material made of a light-transmitting resin and an insulating liquid, the photolithography is a method suitable for mass production of the light-transmitting resin. Since it can be manufactured by a method such as engraving with a stamper or a stamper, it is possible to provide a method that can be made large in size, has good yield, and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマイクロレンズを構成する凸型形状を
備えた薄膜ELパネルを示す断面図である。
FIG. 1 is a cross-sectional view showing a thin-film EL panel having a convex shape constituting a microlens of the present invention.

【図2】本発明の凸型形状の製造方法を示す断面図であ
る。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a convex shape according to the present invention.

【図3】本発明の凸型形状の製造方法を示す断面図であ
る。
FIG. 3 is a cross-sectional view illustrating a method for manufacturing a convex shape according to the present invention.

【図4】本発明の凸型形状の他の例の例を示す斜視図で
ある。
FIG. 4 is a perspective view showing another example of the convex shape of the present invention.

【図5】本発明のマイクロレンズを構成する凹型形状を
備えた薄膜ELパネルを示す断面図である。
FIG. 5 is a cross-sectional view showing a thin-film EL panel having a concave shape constituting a microlens of the present invention.

【図6】本発明の凹型形状の他の例の例を示す斜視図で
ある。
FIG. 6 is a perspective view showing another example of the concave shape of the present invention.

【図7】従来技術と本発明の表示を比較するための薄膜
ELパネルの断面図である。
FIG. 7 is a cross-sectional view of a thin-film EL panel for comparing the display of the present invention with that of the prior art.

【図8】従来技術と本発明の表示を比較するための薄膜
ELパネルの断面図である。
FIG. 8 is a cross-sectional view of a thin-film EL panel for comparing the display of the present invention with that of the prior art.

【図9】従来技術と本発明の表示を比較するための薄膜
ELパネルの断面図である。
FIG. 9 is a cross-sectional view of a thin-film EL panel for comparing the display of the present invention with that of the prior art.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 第一電極層 3 第一絶縁層 4 発光層 5 第二絶縁層 6 第二電極層 7 薄膜EL素子 8 シールガラス 9 カラーフィルター 9a 赤フィルター 9b 緑フィルター 9c 青フィルター 10 透光性樹脂からなる凹凸形状 10a 凸型形状 10b 凹型形状 11 オイル注入口 12 オイル封止板 13 スペーサー 14 封止樹脂 15 絶縁性液体 15a 低屈折率絶縁性液体 15b 高屈折率絶縁性液体 15c 絶縁性液体 16 マイクロレンズ 17 マイクロレンズフィルム 18 マイクロレンズ 19 フォトマスク 20 スタンパー 21 ローラー DESCRIPTION OF SYMBOLS 1 Glass substrate 2 First electrode layer 3 First insulating layer 4 Light emitting layer 5 Second insulating layer 6 Second electrode layer 7 Thin film EL element 8 Seal glass 9 Color filter 9a Red filter 9b Green filter 9c Blue filter 10 Translucent resin 10a Convex shape 10a Convex shape 10b Concave shape 11 Oil injection port 12 Oil sealing plate 13 Spacer 14 Sealing resin 15 Insulating liquid 15a Low-refractive-index insulating liquid 15b High-refractive-index insulating liquid 15c Insulating liquid 16 micro Lens 17 Microlens film 18 Microlens 19 Photomask 20 Stamper 21 Roller

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 薄膜EL素子が形成されたELパネル基
板と透光性のシール基板を前記薄膜EL素子が内側にな
るように接着し、前記ELパネル基板と前記シール基板
の間隙を満たす絶縁性液体を備えた薄膜ELパネルにお
いて、 前記シール基板の前記ELパネル基板側に前記絶縁性液
体と接するように凸型形状の透光性部材を設け、 前記凸型形状の透光性部材の光学屈折率n1と前記絶縁
性液体の光学屈折率n2がn1>n2に設定された前記
凸型形状の透光性部材と前記絶縁性液体からなるマイク
ロレンズを備えたことを特徴とする薄膜ELパネル。
An EL panel substrate on which a thin-film EL element is formed and a light-transmitting sealing substrate are adhered so that the thin-film EL element is on the inside, and an insulating material that fills a gap between the EL panel substrate and the sealing substrate. In the thin-film EL panel provided with a liquid, a convex-shaped translucent member is provided on the EL panel substrate side of the seal substrate so as to be in contact with the insulating liquid, and the optical refraction of the convex-shaped translucent member is provided. A thin-film EL panel comprising: a convex-shaped translucent member having a ratio n1 and an optical refractive index n2 of the insulating liquid set to n1>n2; and a microlens made of the insulating liquid.
【請求項2】 薄膜EL素子が形成されたELパネル基
板と透光性のシール基板を前記薄膜EL素子が内側にな
るように接着し、前記ELパネル基板と前記シール基板
の間隙を満たす絶縁性液体を備えた薄膜ELパネルにお
いて、 前記シール基板の前記ELパネル基板側に前記絶縁性液
体と接するように凹型形状の透光性部材を設け、 前記凹型形状の透光性部材の光学屈折率n1と前記絶縁
性液体の光学屈折率n2がn1<n2に設定された前記
凹型形状の透光性部材と前記絶縁性液体からなるマイク
ロレンズを備えたことを特徴とする薄膜ELパネル。
2. An EL panel substrate on which a thin-film EL element is formed and a light-transmitting seal substrate are bonded so that the thin-film EL element is on the inner side, and an insulating material that fills a gap between the EL panel substrate and the seal substrate. In the thin-film EL panel provided with a liquid, a concave-shaped translucent member is provided on the EL panel substrate side of the seal substrate so as to be in contact with the insulating liquid, and the optical refractive index n1 of the concave-shaped translucent member is provided. A thin-film EL panel comprising: a concave-shaped light-transmitting member having an optical refractive index n2 of the insulating liquid set to n1 <n2; and a microlens made of the insulating liquid.
【請求項3】 前記透光性部材と前記絶縁性液体からな
るマイクロレンズが前記薄膜EL素子の1画素に対して
複数設けられていることを特徴とする請求項1と請求項
2に記載の薄膜ELパネル。
3. The thin film EL element according to claim 1, wherein a plurality of microlenses made of the translucent member and the insulating liquid are provided for one pixel of the thin film EL element. Thin film EL panel.
【請求項4】 前記透光性部材が、半球状又は多角錐状
の凹凸形状であることを特徴とする請求項1乃至請求項
3に記載の薄膜ELパネル。
4. The thin-film EL panel according to claim 1, wherein the light-transmissive member has a hemispherical or polygonal pyramid-shaped unevenness.
【請求項5】 前記透光性部材の凹凸形状を2種類以上
の大きさの異なる形状とすることを特徴とする請求項1
乃至請求項4に記載の薄膜ELパネル。
5. The light-transmissive member according to claim 1, wherein the concave and convex shapes are two or more types having different sizes.
The thin-film EL panel according to claim 4.
【請求項6】 前記透光性部材の凹凸形状を2種類以上
の幅の異なる形状とすることを特徴とする請求項1乃至
請求項5に記載の薄膜ELパネル。
6. The thin-film EL panel according to claim 1, wherein the light-transmissive member has two or more different shapes having different widths.
【請求項7】 前記透光性部材と前記シール基板の間に
カラーフィルターを設けたことを特徴とする請求項1乃
至請求項6に記載の薄膜ELパネル。
7. The thin-film EL panel according to claim 1, wherein a color filter is provided between the translucent member and the seal substrate.
【請求項8】 薄膜EL素子が形成されたELパネル基
板と、透光性のシール基板と、前記ELパネル基板と前
記シール基板の間隙を満たす絶縁性液体と、前記シール
基板の前記ELパネル基板側に前記絶縁性液体と接する
ように設けられた凹凸形状の透光性部材と、前記凹凸形
状の透光性部材と前記絶縁性液体からなるマイクロレン
ズを備えた薄膜ELパネルの製造方法において、 感光性を有する透光性樹脂を塗布した後にフォトリソグ
ラフィーにより所定のパターン形状の透光性樹脂を形成
し、前記凹凸形状の透光性部材を形成することを特徴と
する薄膜ELパネルの製造方法。
8. An EL panel substrate on which a thin film EL element is formed, a light-transmitting seal substrate, an insulating liquid filling a gap between the EL panel substrate and the seal substrate, and the EL panel substrate of the seal substrate A method of manufacturing a thin-film EL panel including a light-transmitting member having an uneven shape provided on the side thereof in contact with the insulating liquid, and a microlens formed of the light-transmitting member having the uneven shape and the insulating liquid. A method for manufacturing a thin-film EL panel, comprising: forming a light-transmitting resin having a predetermined pattern by photolithography after applying a light-transmitting resin having photosensitivity; and forming the light-transmitting member having the uneven shape. .
【請求項9】 薄膜EL素子が形成されたELパネル基
板と、透光性のシール基板と、前記ELパネル基板と前
記シール基板の間隙を満たす絶縁性液体と、前記シール
基板の前記ELパネル基板側に前記絶縁性液体と接する
ように設けられた凹凸形状の透光性部材と、前記凹凸形
状の透光性部材と前記絶縁性液体からなるマイクロレン
ズを備えた薄膜ELパネルの製造方法において、 透光性樹脂を塗布した後、スタンパーでプレスし押し型
をつけることにより、前記凹凸形状の透光性部材を形成
することを特徴とする薄膜ELパネルの製造方法。
9. An EL panel substrate on which a thin film EL element is formed, a light-transmitting seal substrate, an insulating liquid filling a gap between the EL panel substrate and the seal substrate, and the EL panel substrate of the seal substrate A method of manufacturing a thin-film EL panel including a light-transmitting member having an uneven shape provided on the side thereof in contact with the insulating liquid, and a microlens formed of the light-transmitting member having the uneven shape and the insulating liquid. A method for manufacturing a thin-film EL panel, comprising: applying a light-transmitting resin, pressing with a stamper, and forming a pressing die to form the light-transmitting member having the uneven shape.
JP9233618A 1997-08-29 1997-08-29 Thin film el panel and manufacture thereof Pending JPH1174072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9233618A JPH1174072A (en) 1997-08-29 1997-08-29 Thin film el panel and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9233618A JPH1174072A (en) 1997-08-29 1997-08-29 Thin film el panel and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1174072A true JPH1174072A (en) 1999-03-16

Family

ID=16957877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9233618A Pending JPH1174072A (en) 1997-08-29 1997-08-29 Thin film el panel and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1174072A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275732A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and display device
WO2001009869A1 (en) * 1999-08-02 2001-02-08 Comoc Corporation Microlens array and display comprising microlens array
JP2001196164A (en) * 1999-10-29 2001-07-19 Semiconductor Energy Lab Co Ltd Self-luminous device
KR20010077989A (en) * 2000-01-27 2001-08-20 사토 히로시 Thin-Film Display System
JP2002008850A (en) * 2000-04-21 2002-01-11 Semiconductor Energy Lab Co Ltd Self-luminous device and electric appliance using the same
JP2002110363A (en) * 2000-09-29 2002-04-12 Hitachi Ltd Organic electroluminescent element and photoelectron element using the same
JP2002260845A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
JP2004349221A (en) * 2003-05-26 2004-12-09 Aitesu:Kk Planar emission device and manufacturing method of translucent body
JP2005038837A (en) * 2003-06-30 2005-02-10 Semiconductor Energy Lab Co Ltd Light emitting device
KR100520340B1 (en) * 2000-10-18 2005-10-11 샤프 가부시키가이샤 Luminous display element
JP2005310749A (en) * 2004-04-19 2005-11-04 Samsung Sdi Co Ltd Flat display device
KR100548686B1 (en) * 2001-11-06 2006-02-02 세이코 엡슨 가부시키가이샤 Electro-optical device, film-like member, laminated film, film with low refractive index, multi-layer laminated film, electronic equipment
JP2006100257A (en) * 2004-09-06 2006-04-13 Fuji Photo Film Co Ltd Organic electroluminescent element
EP1768463A1 (en) * 2004-05-17 2007-03-28 Zeon Corporation Electroluminescence element, lighting equipment, and display device
JP2007207656A (en) * 2006-02-03 2007-08-16 Dainippon Printing Co Ltd Organic el-display
JP2008153243A (en) * 2008-03-14 2008-07-03 Seiko Epson Corp Display device
JP2008177092A (en) * 2007-01-19 2008-07-31 Casio Comput Co Ltd Light-emitting device, and printing device
JP2008186795A (en) * 2007-01-31 2008-08-14 Casio Comput Co Ltd Light emitting device and printing device
WO2008147124A1 (en) * 2007-05-29 2008-12-04 Industry-Academic Cooperation Foundation, Yonsei University Organic electroluminescent device
US7659662B2 (en) 2005-02-28 2010-02-09 Samsung Mobile Display Co., Ltd. Electroluminescence display device with microlens
GB2464111A (en) * 2008-10-02 2010-04-07 Cambridge Display Tech Ltd Organic electroluminescent device with micro-lens array and diffraction grating
JP2010134217A (en) * 2008-12-05 2010-06-17 Sony Corp Color filter, method of manufacturing the same and light emission device
JP2010225584A (en) * 2009-02-24 2010-10-07 Sumitomo Chemical Co Ltd Substrate and organic el device
JP2010278021A (en) * 2010-08-10 2010-12-09 Mitsubishi Rayon Co Ltd El device
JP2011128437A (en) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd Color filter and organic el display device having the same
JP2011222449A (en) * 2010-04-14 2011-11-04 Panasonic Electric Works Co Ltd Light-emitting device
KR101107172B1 (en) * 2009-11-26 2012-01-25 삼성모바일디스플레이주식회사 Organic light emitting diode display
US8110983B2 (en) 1999-10-29 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Self light emitting device
KR20130006728A (en) 2010-03-31 2013-01-18 파나소닉 주식회사 Display panel apparatus and manufacturing method of display panel apparatus
KR20130006727A (en) 2010-03-31 2013-01-18 파나소닉 주식회사 Display panel apparatus and method of manufacturing the same
US8362697B2 (en) * 2009-08-06 2013-01-29 Canon Kabushiki Kaisha Display apparatus
US8686624B2 (en) 2000-04-21 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Self-light emitting device and electrical appliance using the same
JP2014120433A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Top emission type organic el display device
JP2014199322A (en) * 2013-03-29 2014-10-23 大日本印刷株式会社 Color filter substrate for top emission type organic el display device and top emission type organic el display device
US8957584B2 (en) 1999-10-29 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Self light-emitting device
JP2015069700A (en) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ Display device
WO2015059200A1 (en) * 2013-10-24 2015-04-30 Osram Oled Gmbh Organic light-emitting diode and method for producing an organic light-emitting diode
TWI573260B (en) * 2012-06-20 2017-03-01 三星顯示器有限公司 Display device and method of manufacturing the same
WO2021009587A1 (en) * 2019-07-12 2021-01-21 株式会社半導体エネルギー研究所 Functional panel, display device, input and output device, and information processing device
WO2022004652A1 (en) * 2020-06-29 2022-01-06 凸版印刷株式会社 Color filter and display device

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275732A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and display device
WO2001009869A1 (en) * 1999-08-02 2001-02-08 Comoc Corporation Microlens array and display comprising microlens array
JP2001196164A (en) * 1999-10-29 2001-07-19 Semiconductor Energy Lab Co Ltd Self-luminous device
US8110983B2 (en) 1999-10-29 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Self light emitting device
US8957584B2 (en) 1999-10-29 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Self light-emitting device
US9299955B2 (en) 1999-10-29 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Self light-emitting device
KR20010077989A (en) * 2000-01-27 2001-08-20 사토 히로시 Thin-Film Display System
JP2002008850A (en) * 2000-04-21 2002-01-11 Semiconductor Energy Lab Co Ltd Self-luminous device and electric appliance using the same
US8686624B2 (en) 2000-04-21 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Self-light emitting device and electrical appliance using the same
US9923171B2 (en) 2000-04-21 2018-03-20 Semiconductor Energy Laboratory Co., Ltd. Self-light emitting device and electrical appliance using the same
JP2002110363A (en) * 2000-09-29 2002-04-12 Hitachi Ltd Organic electroluminescent element and photoelectron element using the same
KR100520340B1 (en) * 2000-10-18 2005-10-11 샤프 가부시키가이샤 Luminous display element
JP2002260845A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
KR100548686B1 (en) * 2001-11-06 2006-02-02 세이코 엡슨 가부시키가이샤 Electro-optical device, film-like member, laminated film, film with low refractive index, multi-layer laminated film, electronic equipment
JP2004349221A (en) * 2003-05-26 2004-12-09 Aitesu:Kk Planar emission device and manufacturing method of translucent body
JP2005038837A (en) * 2003-06-30 2005-02-10 Semiconductor Energy Lab Co Ltd Light emitting device
JP4522760B2 (en) * 2003-06-30 2010-08-11 株式会社半導体エネルギー研究所 Light emitting device and method for manufacturing light emitting device
JP2005310749A (en) * 2004-04-19 2005-11-04 Samsung Sdi Co Ltd Flat display device
CN103813562A (en) * 2004-04-19 2014-05-21 三星显示有限公司 Flat panel display device
US7733019B2 (en) 2004-04-19 2010-06-08 Samsung Mobile Display Co., Ltd. Flat panel display device with a lens sheet having condensing lenses thereon
EP1768463A1 (en) * 2004-05-17 2007-03-28 Zeon Corporation Electroluminescence element, lighting equipment, and display device
US8841835B2 (en) 2004-05-17 2014-09-23 Zeon Corporation Electroluminescent element, lighting equipment, and display device
US8283850B2 (en) 2004-05-17 2012-10-09 Zeon Corporation Electroluminescent element, lightening equipment, and display device
EP1768463A4 (en) * 2004-05-17 2011-04-13 Zeon Corp Electroluminescent element, lighting equipment, and display device
JP2006100257A (en) * 2004-09-06 2006-04-13 Fuji Photo Film Co Ltd Organic electroluminescent element
US7659662B2 (en) 2005-02-28 2010-02-09 Samsung Mobile Display Co., Ltd. Electroluminescence display device with microlens
JP2007207656A (en) * 2006-02-03 2007-08-16 Dainippon Printing Co Ltd Organic el-display
JP2008177092A (en) * 2007-01-19 2008-07-31 Casio Comput Co Ltd Light-emitting device, and printing device
JP2008186795A (en) * 2007-01-31 2008-08-14 Casio Comput Co Ltd Light emitting device and printing device
WO2008147124A1 (en) * 2007-05-29 2008-12-04 Industry-Academic Cooperation Foundation, Yonsei University Organic electroluminescent device
JP2008153243A (en) * 2008-03-14 2008-07-03 Seiko Epson Corp Display device
GB2464111A (en) * 2008-10-02 2010-04-07 Cambridge Display Tech Ltd Organic electroluminescent device with micro-lens array and diffraction grating
GB2464111B (en) * 2008-10-02 2011-06-15 Cambridge Display Tech Ltd Organic electroluminescent device
US8405292B2 (en) 2008-12-05 2013-03-26 Sony Corporation Color filter, method of manufacturing the same, and light-emitting device
JP2010134217A (en) * 2008-12-05 2010-06-17 Sony Corp Color filter, method of manufacturing the same and light emission device
JP2010225584A (en) * 2009-02-24 2010-10-07 Sumitomo Chemical Co Ltd Substrate and organic el device
US8362697B2 (en) * 2009-08-06 2013-01-29 Canon Kabushiki Kaisha Display apparatus
US8446346B2 (en) 2009-11-26 2013-05-21 Samsung Display Co., Ltd. Organic light emitting diode display
KR101107172B1 (en) * 2009-11-26 2012-01-25 삼성모바일디스플레이주식회사 Organic light emitting diode display
JP2011128437A (en) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd Color filter and organic el display device having the same
US9112183B2 (en) 2010-03-31 2015-08-18 Joled Inc. Display panel apparatus and manufacturing method of display panel apparatus
KR20130006728A (en) 2010-03-31 2013-01-18 파나소닉 주식회사 Display panel apparatus and manufacturing method of display panel apparatus
US8901587B2 (en) 2010-03-31 2014-12-02 Panasonic Corporation Display panel apparatus and manufacturing method of display panel apparatus
KR20130006727A (en) 2010-03-31 2013-01-18 파나소닉 주식회사 Display panel apparatus and method of manufacturing the same
JP2011222449A (en) * 2010-04-14 2011-11-04 Panasonic Electric Works Co Ltd Light-emitting device
JP2010278021A (en) * 2010-08-10 2010-12-09 Mitsubishi Rayon Co Ltd El device
TWI573260B (en) * 2012-06-20 2017-03-01 三星顯示器有限公司 Display device and method of manufacturing the same
JP2014120433A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Top emission type organic el display device
JP2014199322A (en) * 2013-03-29 2014-10-23 大日本印刷株式会社 Color filter substrate for top emission type organic el display device and top emission type organic el display device
JP2015069700A (en) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ Display device
WO2015059200A1 (en) * 2013-10-24 2015-04-30 Osram Oled Gmbh Organic light-emitting diode and method for producing an organic light-emitting diode
WO2021009587A1 (en) * 2019-07-12 2021-01-21 株式会社半導体エネルギー研究所 Functional panel, display device, input and output device, and information processing device
US11844236B2 (en) 2019-07-12 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
WO2022004652A1 (en) * 2020-06-29 2022-01-06 凸版印刷株式会社 Color filter and display device

Similar Documents

Publication Publication Date Title
JPH1174072A (en) Thin film el panel and manufacture thereof
US11244985B2 (en) Color film assembly, display substrate and method for fabricating same, and display apparatus
TWI412832B (en) Color liquid crystal display device assembly
JP4806220B2 (en) Image display device
EP2648240B1 (en) Substrate for organic light-emitting device with enhanced light extraction efficiency, method of manufacturing the same and organic light-emitting device having the same
TWI591405B (en) Photoluminescent display device and method for manufacturing the same
EP1086400B1 (en) Display device and method of manufacturing such a display device
TW201933600A (en) Quantum dot displays and methods for fabricating quantum dot displays
JP2002049326A (en) Plane light source and display element using the same
TWI765491B (en) Display substrate and preparation method thereof, and display device
CN109491136A (en) A kind of filtering structure and preparation method thereof, display device
CN107450218B (en) Photoluminescent display device and method of manufacturing the same
JPH04192290A (en) Membrane electroluminescence (el) device
CN109950291A (en) Organic light emitting display panel and manufacturing method
CN109031507A (en) Light guide plate and its manufacturing method, backlight module and display device
CN111653689B (en) Preparation method of lens array, display device and preparation method of display device
KR20050050049A (en) Integrated microlens array on glass for high output light efficiency of oled
KR20190143243A (en) LED Module and backlight Module having the same and Display Device having the same
CN109521516B (en) Backlight module and manufacturing method thereof
US20140077195A1 (en) Organic light-emitting diode package structure and method of manufacturing concavity on substrate
CN113809116B (en) Display substrate, preparation method thereof and display device
WO2004112435A1 (en) El device, process for manufacturing the same, and liquid crystal display employing el device
CN115036351A (en) Silicon-based OLED micro display screen capable of improving brightness and manufacturing method thereof
KR100559528B1 (en) Display panel with an improved transmittance
JP5184240B2 (en) Display device