JPH116032A - Earthquake-proof welded steel tube excellent in local buckling resistance, and its production - Google Patents

Earthquake-proof welded steel tube excellent in local buckling resistance, and its production

Info

Publication number
JPH116032A
JPH116032A JP16089297A JP16089297A JPH116032A JP H116032 A JPH116032 A JP H116032A JP 16089297 A JP16089297 A JP 16089297A JP 16089297 A JP16089297 A JP 16089297A JP H116032 A JPH116032 A JP H116032A
Authority
JP
Japan
Prior art keywords
steel pipe
steel
local buckling
earthquake
buckling resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16089297A
Other languages
Japanese (ja)
Inventor
Shigeru Endo
茂 遠藤
Masamitsu Doi
正充 土井
Nobuyuki Ishikawa
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16089297A priority Critical patent/JPH116032A/en
Publication of JPH116032A publication Critical patent/JPH116032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake-proof steel tube hardly causing local buckling at the time of big earthquake. SOLUTION: This steel tube is an earthquake-proof welded steel tube produced by using a hot rolled steel plate as a material and has a chemical composition which contains, by weight, 0.03-0.15% C, 1.0-2.0% Mn, and one or more kinds among 0.05-0.50% Cu, 0.05-0.50% Ni, 0.05-0.50% Cr, 0.05-0.50% Mo, 0.005-0.10% Nb, 0.005-0.10% V, and 0.005-0.080% Ti and in which the value of PCM, represented by equation PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+ Mo/15+V/10+5×B (where the symbol of element stands for the weight percentage of each element), is regulated to 0.10-0.25. Further, the work hardening index at the tensile test in a tube-axis direction is >=0.10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、曲げ応力に対し
て局部座屈を起こしにくい、耐局部座屈性に優れた耐震
性溶接鋼管およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant welded steel pipe which does not easily cause local buckling against bending stress and has excellent local buckling resistance, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】UOE鋼管、スパイラル鋼管、継目無鋼
管、電縫鋼管、プレスベンド鋼管などの炭素鋼鋼管ある
いは低合金鋼鋼管は、大量にかつ安定して製造できるた
め、その優れた経済性や溶接施工性とあいまって、ガス
パイプラインや水道配管など流体の輸送用鋼管あるいは
建築・土木用の柱として、広く用いられている。
2. Description of the Related Art Carbon steel pipes such as UOE steel pipes, spiral steel pipes, seamless steel pipes, electric resistance welded steel pipes, press-bend steel pipes, and low alloy steel pipes can be manufactured in large quantities and in a stable manner. Due to its welding workability, it is widely used as a steel pipe for transporting fluids such as gas pipelines and water pipes, or as a pillar for construction and civil engineering.

【0003】建築用の鋼管においては、耐震性能を考慮
した鋼管がいくつか提案されている。例えば、特開平3
−173719号公報には、鋼板を圧延後Ar3 点以上
の温度から又はAc3 点以上の温度に再加熱後焼入れ、
その後3%以上の加工率で曲げ加工を施して鋼管とし、
その後Ac1 変態点以下で焼戻し処理を行うという技術
が提案されている。これにより、降伏比80%以下が得
られるというもので、実施例として72〜79%の降伏
比が記載されている。
As for steel pipes for construction, several steel pipes have been proposed in consideration of seismic performance. For example, Japanese Unexamined Patent Publication
The -173719 discloses, reheating after quenching the steel sheet from after rolling Ar 3 point or more temperature or Ac of three or more temperature,
After that, it is bent at a processing rate of 3% or more to form a steel pipe,
Thereafter, a technique of performing a tempering treatment at a temperature lower than the Ac 1 transformation point has been proposed. As a result, a yield ratio of 80% or less is obtained, and a yield ratio of 72 to 79% is described as an example.

【0004】特開平5−65535号公報、特開平5−
117746号公報、特開平5−117747号公報に
は、t/D(t:板厚、D:鋼管外径、以下同様)が1
0%以下の比較的厚物の建築用低降伏比鋼管の製造法が
提案されている。この方法では、Ti添加鋼の鋼板を冷
間成形して鋼管を製作し、その後500〜650℃で焼
鈍を行っている。記載された実施例をみると、t/Dは
3〜10%、降伏比は80%未満となっている。
[0004] JP-A-5-65535 and JP-A-5-65535
In Japanese Patent Application Laid-Open No. 117746 and Japanese Patent Application Laid-Open No. 5-117747, t / D (t: plate thickness, D: steel pipe outer diameter, the same applies hereinafter) is 1.
A method for producing a relatively low-yield steel pipe having a low yield ratio of 0% or less for buildings has been proposed. In this method, a steel tube of Ti-added steel is cold-formed to produce a steel pipe, and then annealed at 500 to 650 ° C. Looking at the examples described, t / D is 3-10% and the yield ratio is less than 80%.

【0005】特開平5−156357号公報には、N
b、Ti等を添加しない低炭素鋼による低降伏比の鋼管
の製造法が提案されている。この技術は、低炭素鋼を9
50℃以下の圧下率が50%以上となるよう熱間圧延し
空冷するもので、記載された実施例をみると、降伏比は
76〜78%となっている。
[0005] JP-A-5-156357 discloses N
There has been proposed a method for producing a steel pipe having a low yield ratio by using low carbon steel to which b, Ti, and the like are not added. This technology has reduced the use of low-carbon steel to 9
It is hot-rolled and air-cooled so that the rolling reduction at 50 ° C. or less is 50% or more. According to the described examples, the yield ratio is 76 to 78%.

【0006】特開平6−49540号公報、特開平6−
49541号公報、特開平6−128641号公報に
は、t/Dが10%以下の比較的厚物の建築用低降伏比
鋼管の製造法が提案されている。この方法では、Nb−
Ti添加鋼の鋼板を冷間成形して鋼管を製作し、その後
700〜850℃で焼準を行っている。記載された実施
例をみると、t/Dは4〜10%、降伏比は80%未満
となっている。
JP-A-6-49540 and JP-A-6-49540
Japanese Patent Publication No. 49541 and Japanese Patent Application Laid-Open No. 6-128641 propose a method for producing a relatively thick building low yield ratio steel pipe having a t / D of 10% or less. In this method, Nb-
A steel pipe is manufactured by cold-forming a steel sheet of Ti-added steel, and then normalizing is performed at 700 to 850 ° C. Looking at the examples described, t / D is 4-10% and the yield ratio is less than 80%.

【0007】特開平6−264143号公報、特開平6
−264144号公報には、やはりt/Dが10%以下
の比較的厚物の建築用低降伏比鋼管の製造法が提案され
ている。この方法では、Ti添加鋼の鋼板を冷間成形し
て鋼管を製作し、その後Ac 1 変態点以下で焼戻し処理
を行っている。記載された実施例をみると、t/Dは4
〜10%、降伏比は70〜78%となっている。
JP-A-6-264143, JP-A-6-264143
-264144 also discloses that t / D is 10% or less.
Proposed a method for producing relatively low-yield ratio steel pipes for construction.
ing. In this method, a steel sheet of Ti-added steel is cold-formed.
To make a steel pipe and then Ac 1Tempering below transformation point
It is carried out. Looking at the described example, t / D is 4
-10%, and the yield ratio is 70-78%.

【0008】特開平7−233416号公報には、Ni
−Cr−Mo−Ti添加鋼による建築用低降伏比鋼管の
製造法が提案されている。この方法では、鋼板を冷間成
形して鋼管を製作し、その後650〜750℃で焼準を
行っている。記載された実施例をみると、t/Dは4〜
9%、降伏比は72〜77%となっている。
[0008] JP-A-7-233416 discloses Ni
There has been proposed a method for producing a low yield ratio steel pipe for building using Cr-Mo-Ti added steel. In this method, a steel pipe is cold-formed to produce a steel pipe, and then normalizing is performed at 650 to 750 ° C. Looking at the described example, t / D is 4 to
9%, and the yield ratio is 72-77%.

【0009】特開平7−150247号公報には、N
b、V、Tiの1種以上を添加した鋼板を、冷間成形し
て鋼管を製作し、その後二相域温度範囲に再加熱してい
る。記載された実施例をみると、降伏比は55〜70%
となっている。
Japanese Patent Application Laid-Open No. Hei 7-150247 discloses N
A steel pipe to which one or more of b, V, and Ti are added is cold-formed to produce a steel pipe, and then reheated to a two-phase temperature range. Looking at the examples described, the yield ratio is 55-70%.
It has become.

【0010】特開平7−188748号公報には、二相
域温度加熱時の島状マルテンサイト生成傾向を表すパラ
メータが、所定の範囲内となる鋼板を冷間成形して鋼管
を製作し、その後二相域温度範囲に再加熱している。記
載された実施例をみると、降伏比は49〜66%となっ
ている。
JP-A-7-188748 discloses that a steel pipe is manufactured by cold-forming a steel sheet in which a parameter indicating the tendency of island-like martensite formation at the time of two-phase temperature heating is within a predetermined range. Reheating to two-phase temperature range. Looking at the examples described, the yield ratio is 49-66%.

【0011】これらの技術では、耐震性能として降伏応
力と引張強さの比である降伏比をとり、この比を小さく
するための鋼管製造方法に重点が置かれている。これら
はいずれも、柱の曲げ応力に対する塑性吸収能に関する
もので、降伏比を小さくすることにより、塑性崩壊に至
るまでのエネルギ吸収能を大きくし、建築物の倒壊の防
止をはかっている。
In these technologies, a yield ratio, which is a ratio between yield stress and tensile strength, is taken as the seismic performance, and a method of manufacturing a steel pipe for reducing this ratio is emphasized. These are all related to the plastic absorption capacity against the bending stress of the column. By reducing the yield ratio, the energy absorption capacity up to the plastic collapse is increased, and the collapse of the building is prevented.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、いずれ
の技術(以下、従来技術)についても柱の曲げ応力に対
する塑性変形吸収能に関する技術であり、低降伏比とす
ることに重点がおかれている。記載されている材料試験
値は、YP又はYS、TS、YR(=YS/TS)、あ
るいはこれに加えてvEoであり、これらは通常の引張
試験値(降伏応力、引張強さ)とシャルピー衝撃試験値
(0℃の吸収エネルギ)と考えられる。
However, any of the techniques (hereinafter referred to as prior art) relates to the ability to absorb the plastic deformation against the bending stress of the column, and the emphasis is on reducing the yield ratio. The material test values described are yp or YS, TS, YR (= YS / TS) or vEo, which are normal tensile test values (yield stress, tensile strength) and Charpy impact. It is considered a test value (absorbed energy at 0 ° C.).

【0013】従来技術では、降伏比として70%台(一
部の技術ではそれ以下)を指標としており、このような
低降伏比を得るために、ほとんど総ての技術において鋼
管成型後に熱処理を行っている。そのため、製造コスト
が増加し、比較的安価な耐震性鋼管を供給することが困
難となる。鋼管は中空となっている部分の占める体積が
大きいため、鋼板等の熱処理に比べて熱処理に要する設
備が大型化する。
In the prior art, a yield ratio of the order of 70% (or less in some technologies) is used as an index. In order to obtain such a low yield ratio, heat treatment is performed after forming a steel pipe in almost all technologies. ing. Therefore, the manufacturing cost increases and it becomes difficult to supply a relatively inexpensive earthquake-resistant steel pipe. Since the volume occupied by the hollow portion of the steel pipe is large, the equipment required for the heat treatment becomes larger than the heat treatment of the steel plate or the like.

【0014】これら以外の材料試験値については、いず
れの従来技術においても記載されておらず、鋼管自体の
曲げ試験等も行われていない。これは、従来技術におい
ては、建築用鋼管として、柱の曲げの際の塑性変形吸収
能を高くすることを目的としていたためである。これ
は、鋼板においては、低降伏比とすることにより塑性変
形吸収能を高くすることにより解決できる。
[0014] Other material test values are not described in any prior art, and no bending test or the like of the steel pipe itself is performed. This is because the purpose of the prior art is to increase the plastic deformation absorbing ability at the time of bending a column as a steel pipe for building. This can be solved by increasing the plastic deformation absorbing ability of the steel sheet by setting the yield ratio to be low.

【0015】しかし後述のように、単に低降伏比とする
だけでは鋼管の耐震性が向上しないことがわかった。そ
れは、鋼管の広い部分が塑性変形して、曲げ歪を吸収す
る以前あるいはその最中に、局部的な座屈が起こること
による。従来技術においては、このような柱の横方向か
らの応力による局部座屈、および局部座屈発生後の変形
による脆性亀裂の発生を防ぐことについては、ほとんど
検討されていなかった。
However, as will be described later, it has been found that simply setting a low yield ratio does not improve the earthquake resistance of the steel pipe. This is due to local buckling occurring before or during absorption of bending strain due to plastic deformation of a large portion of the steel pipe. In the prior art, little consideration has been given to preventing local buckling due to such lateral stress of the column and prevention of brittle cracks due to deformation after local buckling occurs.

【0016】その他、ガスなどの流体輸送用のラインパ
イプでは、延性破壊や脆性破壊など円周方向に応力が作
用する場合、即ち内圧に対する抵抗力については検討さ
れてきたが、軸方向の外力については、敷設時の曲げ変
形以外はほとんど考慮されていなかった。
In line pipes for transporting fluids such as gas, when stress is applied in the circumferential direction such as ductile fracture or brittle fracture, that is, resistance to internal pressure has been studied. Was hardly considered except for the bending deformation at the time of laying.

【0017】この発明は、以上の問題点を解決し、大地
震の際に作用する曲げ応力に対して、局部座屈を起こし
にくい耐局部座屈性に優れた耐震性溶接鋼管およびその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides an earthquake-resistant welded steel pipe excellent in local buckling resistance which is less likely to cause local buckling against bending stress acting upon a large earthquake, and a method of manufacturing the same. The purpose is to provide.

【0018】[0018]

【課題を解決するための手段】第1の発明は、熱間圧延
された鋼板を材料とする耐震性溶接鋼管であって、その
化学成分が、重量%で、C:0.03〜0.15%、M
n:1.0〜2.0%を含有し、Cu:0.05〜0.
50%、Ni:0.05〜0.50%、Cr:0.05
〜0.50%、Mo:0.05〜0.50%、Nb:
0.005〜0.10%、V:0.005〜0.10
%、Ti:0.005〜0.080%の内1種以上を含
有し、下記の式で表されるPCMが0.10〜0.25
であり、かつ、管軸方向の引張試験における加工硬化指
数が、0.10以上であることを特徴とする耐局部座屈
性に優れた耐震性溶接鋼管である。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10
+5×B ここで、式中の元素記号は各元素の重量%を示す。
The first invention is an earthquake-resistant welded steel pipe made of a hot-rolled steel sheet, the chemical composition of which is C: 0.03-0. 15%, M
n: 1.0 to 2.0%, Cu: 0.05 to 0.
50%, Ni: 0.05 to 0.50%, Cr: 0.05
-0.50%, Mo: 0.05-0.50%, Nb:
0.005 to 0.10%, V: 0.005 to 0.10
%, Ti: one or more of 0.005 to 0.080%, and the PCM represented by the following formula is 0.10 to 0.25.
And a work hardening index in a tensile test in the pipe axis direction of 0.10 or more, which is an earthquake-resistant welded steel pipe excellent in local buckling resistance. PCM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10
+ 5 × B Here, the symbol of the element in the formula indicates the weight% of each element.

【0019】この発明は、大地震の際に作用する曲げ応
力に対して、鋼管の変形挙動について鋭意検討した結果
なされたものである。検討の過程で、鋼管の変形は、ま
ず全体的な曲げが進行した後、広い部分にわたって座屈
する以前に、局部的な座屈が起こることを見いだした。
The present invention has been made as a result of earnestly studying the deformation behavior of a steel pipe with respect to a bending stress acting upon a large earthquake. During the course of the study, it was discovered that the deformation of the steel pipes resulted in local buckling after the overall bending had progressed and before buckling over a wide area.

【0020】このように鋼管に局部座屈が発生すると、
その部分に曲げ応力が集中するため、急速変形となり脆
性亀裂が発生して破壊に至る。耐震性の向上のために
は、局部座屈を起こしにくい鋼管とする必要がある。し
かし、このような局部座屈に対しては、従来技術のよう
に単に低降伏比とすることでは解決できないことがわか
り、さらに検討を続けた。
When local buckling occurs in the steel pipe as described above,
Since the bending stress concentrates on that portion, it is rapidly deformed and a brittle crack is generated, leading to destruction. In order to improve seismic resistance, it is necessary to use a steel pipe that does not easily cause local buckling. However, it was found that such a local buckling could not be solved by simply setting a low yield ratio as in the prior art, and further studies were continued.

【0021】その過程で、鋼管の横方向(軸に垂直な方
向)から働く曲げ応力に対する耐座屈性を評価するため
に、各種の材質試験とともに実管曲げ試験を行い、鋼管
の製造方法や材質的な特性と局部座屈の発生挙動との相
関を調査した。図1は、実管曲げ試験における試験体と
試験装置の配置を模式的に示す図である。この試験は、
試験装置の4個の曲げ治具11、12により、試験体9
(鋼管)に対して曲げ応力を加える4点曲げ方式の実管
曲げ試験である。
In the process, in order to evaluate the buckling resistance of the steel pipe against bending stress acting from the lateral direction (perpendicular to the axis), an actual pipe bending test is performed together with various material tests, and a method of manufacturing the steel pipe and The correlation between material properties and local buckling behavior was investigated. FIG. 1 is a diagram schematically showing the arrangement of a test body and a test apparatus in an actual pipe bending test. This exam is
The test piece 9 is formed by the four bending jigs 11 and 12 of the test apparatus.
This is an actual pipe bending test of a four-point bending method in which bending stress is applied to (steel pipe).

【0022】曲げ試験の初期においては、試験体9(鋼
管)は曲げ治具12、12の間の部分が全体的に曲がっ
ていく。ところが、さらに曲げ変形を加えると、試験体
9の曲げ治具11、11の間の領域1で局部的に変形が
進行し、局部座屈が発生する。その後は、この局部座屈
の発生した領域1以外の領域2はほとんど変形せず、領
域1にのみ変形が集中する。
In the initial stage of the bending test, the portion between the bending jigs 12 of the test body 9 (steel pipe) is bent as a whole. However, when further bending deformation is applied, the deformation locally progresses in the region 1 between the bending jigs 11 of the test body 9 and local buckling occurs. After that, the area 2 other than the area 1 where the local buckling has occurred hardly deforms, and the deformation concentrates only on the area 1.

【0023】そこで、局部座屈の発生した時点の曲げ角
度(片方)θで、曲げ試験の評価を行った。曲げ変形の
角度がこの曲げ角度θ未満であれば、座屈が生じないの
で破壊に至ることはない。従って、地震の際の横方向の
外力に対する抵抗力を、この曲げ角度(片方)θで評価
することができる。
Therefore, the bending test was evaluated at the bending angle (one side) θ at the time when local buckling occurred. If the angle of the bending deformation is less than the bending angle θ, no buckling occurs and no breakage occurs. Therefore, the resistance to the lateral external force at the time of the earthquake can be evaluated by the bending angle (one side) θ.

【0024】この曲げ角度θに影響を及ぼす要因につい
て、製造方法その他種々検討する中で、一部の化学成分
の鋼を用いた鋼管について、曲げ角度θを大きくするこ
とができることを見いだし、良好な耐座屈性能を示すこ
とに成功した。また、これらの鋼管についての機械試験
結果との関係を検討すると、引張試験における降伏点付
近の挙動と密接な関係があることがわかった。
In examining the factors affecting the bending angle θ in various ways such as the manufacturing method, it has been found that the bending angle θ can be increased with respect to a steel pipe using a steel having some chemical components. The buckling resistance was successfully demonstrated. In addition, when examining the relationship between these steel pipes and the results of the mechanical test, it was found that there was a close relationship with the behavior near the yield point in the tensile test.

【0025】その中でも、鋼管から軸方向に平行な引張
試験片を採取して、引張試験を行った際の加工硬化指数
が、局部座屈発生の主要因であることがわかった。それ
は、加工硬化指数が大きい鋼管は、局部座屈が発生する
曲げ角度θも大きいということである。特に、加工硬化
指数が0.10以上になると、局部座屈の発生する曲げ
角度(片方)θが3°以上に達しており、良好な耐座屈
性能を示すということである。以上よりこの発明では、
加工硬化指数を0.10以上とする。
Among them, it was found that the work hardening index when a tensile test specimen was taken from a steel pipe in a direction parallel to the axial direction and a tensile test was performed was a main factor of the occurrence of local buckling. That is, a steel pipe having a large work hardening index has a large bending angle θ at which local buckling occurs. In particular, when the work hardening index is 0.10 or more, the bending angle (one side) θ at which local buckling occurs has reached 3 ° or more, indicating that good buckling resistance is exhibited. As described above, in the present invention,
The work hardening index is set to 0.10 or more.

【0026】次に、その他の材料特性も含め鋼の化学組
成について検討した。その結果、C、Mnの含有量を適
切に制御するとともに、Cu、Ni、Cr、Mo、N
b、V、Tiの内1種以上を含有する必要があることが
わかった。さらに、下記の式(1)で表される値PCM
についても適切な範囲があることがわかった。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B (1) ここで、式中の元素記号は各成分元素の重量%を表す。
Next, the chemical composition of steel including other material properties was examined. As a result, while appropriately controlling the contents of C and Mn, Cu, Ni, Cr, Mo, N
It was found that it was necessary to contain at least one of b, V, and Ti. Further, a value PCM represented by the following equation (1)
It was also found that there was an appropriate range for. PCM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (1) Here, the element symbols in the formulas are each component element % By weight.

【0027】以下、化学成分の限定理由およびPCM
(式1)について説明する。 C: 構造物としての十分な強度を得るためには、最低
0.03%必要である。一方、C量が0.15%を超え
ると、溶接割れの可能性が増大する。従って、C量を
0.03〜0.15%に規定する。
The reasons for limiting the chemical components and the PCM
(Equation 1) will be described. C: In order to obtain sufficient strength as a structure, at least 0.03% is required. On the other hand, if the C content exceeds 0.15%, the possibility of welding cracks increases. Therefore, the amount of C is regulated to 0.03 to 0.15%.

【0028】Mn: 構造用鋼としての十分な強度と靱
性を得るためには、1.0%以上の添加が必要である。
しかし、Mn量が2.0%を超えると、母材と溶接部の
靱性の劣化をまねく。従って、Mn量を0.5〜2.0
%に規定する。
Mn: In order to obtain sufficient strength and toughness as a structural steel, it is necessary to add 1.0% or more.
However, when the amount of Mn exceeds 2.0%, the toughness of the base material and the welded part is deteriorated. Therefore, the amount of Mn is 0.5 to 2.0
%.

【0029】Cu、Ni、Cr、Mo: これらは強度
の上昇に有効な元素であるが、それぞれ0.05%未満
では効果が見られない。しかし、0.50%を超えると
母材と溶接部の靱性を劣化させる。従って、Cu、N
i、Cr、Moを添加する場合は、添加量を0.05〜
0.50%とする。
Cu, Ni, Cr, Mo: These are effective elements for increasing the strength, but no effect is obtained when each is less than 0.05%. However, if it exceeds 0.50%, the toughness of the base material and the welded portion is deteriorated. Therefore, Cu, N
When adding i, Cr, and Mo, the amount of addition is 0.05 to
0.50%.

【0030】Nb: 鋼管の靱性と強度の向上に有効な
元素であるが、0.005%未満では効果が見られな
い。また、0.10%を超えると溶接性と溶接部の靱性
を劣化させる。従って、Nbを添加する場合は、添加量
を0.005〜0.10%とする。
Nb: An element effective for improving the toughness and strength of a steel pipe, but no effect is observed when the content is less than 0.005%. On the other hand, if it exceeds 0.10%, the weldability and the toughness of the welded portion are deteriorated. Therefore, when adding Nb, the addition amount is set to 0.005 to 0.10%.

【0031】V: Nbと同様、鋼管の靱性と強度の向
上に有効な元素であるが、0.005%未満では効果が
見られない。また、0.10%を超えると溶接性と溶接
部の靱性を劣化させる。従って、Vを添加する場合は、
添加量を0.005〜0.10%とする。
V: Like Nb, it is an element effective in improving the toughness and strength of a steel pipe, but no effect is seen below 0.005%. On the other hand, if it exceeds 0.10%, the weldability and the toughness of the welded portion are deteriorated. Therefore, when V is added,
The added amount is 0.005 to 0.10%.

【0032】Ti: 鋼管の靱性の向上とともに、鋳造
時のスラブの傷防止に有効な元素であるが、0.005
%未満では効果が見られない。また、0.08%を超え
ると溶接性と溶接部の靱性を劣化させる。従って、Ti
を添加する場合は、添加量を0.005〜0.08%と
する。
Ti: an element effective for improving the toughness of the steel pipe and for preventing the slab from being damaged during casting.
%, No effect is seen. On the other hand, when the content exceeds 0.08%, the weldability and the toughness of the welded portion are deteriorated. Therefore, Ti
Is added, the amount is 0.005 to 0.08%.

【0033】PCM: この値は、構造物として十分な
強度を得るためと良好な耐局部座屈性を得るために所定
の値とする必要があり、0.10が必要最低限の値であ
る。一方、0.25を超えると溶接性が劣化し、また、
耐局部座屈性も低下する。従って、PCMの値を0.1
0〜25とする。
PCM: This value must be a predetermined value in order to obtain sufficient strength as a structure and to obtain good local buckling resistance, and 0.10 is the minimum required value. . On the other hand, if it exceeds 0.25, the weldability deteriorates, and
Local buckling resistance also decreases. Therefore, the value of PCM is set to 0.1
0 to 25.

【0034】その他の元素は、発明の目的を損なわない
限り含有されていてもよい。また、通常の製鋼作業にお
ける脱酸元素等、製造上の必要に応じて上記以外の元素
が含まれていてよいことは言うまでもない。また、スク
ラップ等の原料から持ち込まれる元素も、普通鋼の範囲
内であれば不可避的不純物である。
Other elements may be contained as long as the object of the invention is not impaired. It goes without saying that elements other than those described above may be contained as necessary in production, such as deoxidizing elements in ordinary steelmaking operations. In addition, elements brought in from raw materials such as scrap are also inevitable impurities within the range of ordinary steel.

【0035】第2の発明は、第1の発明の化学成分の鋼
を熱間圧延し、圧延終了後600℃以下まで5℃/se
c以上の冷却速度で冷却して鋼板を製造し、この鋼板を
冷間成形して鋼管を製造することにより、管軸方向の引
張試験における加工硬化指数を0.10以上とすること
を特徴とする耐局部座屈性に優れた耐震性溶接鋼管の製
造方法である。
According to a second aspect of the present invention, the steel having the chemical composition according to the first aspect of the present invention is hot-rolled, and after the completion of the rolling, the temperature is reduced to 600 ° C. or less by 5 ° C./sec.
The steel sheet is manufactured by cooling at a cooling rate of c or more, and the steel sheet is cold-formed to produce a steel pipe, whereby the work hardening index in the tensile test in the pipe axis direction is set to 0.10 or more. This is a method for producing an earthquake-resistant welded steel pipe having excellent local buckling resistance.

【0036】この発明は、圧延後の冷却条件を規定して
いる。冷却速度が5℃/sec未満であると、0.10
以上の加工硬化指数が得られず、良好な耐局部座屈性が
得られない。冷却停止温度が600℃を超えると、やは
り0.10以上の加工硬化指数と良好な耐局部座屈性が
得られない。従って、圧延後の冷却条件を600℃以下
まで5℃/sec以上とする。
The present invention specifies the cooling conditions after rolling. If the cooling rate is less than 5 ° C./sec, 0.10
The above work hardening index cannot be obtained, and good local buckling resistance cannot be obtained. When the cooling stop temperature exceeds 600 ° C., a work hardening index of 0.10 or more and good local buckling resistance cannot be obtained. Therefore, the cooling condition after rolling is set to 5 ° C./sec or more up to 600 ° C. or less.

【0037】[0037]

【発明の実施の形態】この発明では、鋼管の材料につい
ては、発明の化学成分であれば製造方法は特に問わな
い。また、Si、Al等の脱酸元素は、必要に応じて含
まれていてよい。その他、P、S、N、O等の不純物
は、少ない方がよい。また、介在物の制御のためのCa
やREM等の元素は、特にこの発明の目的を損なうもの
ではないことから含まれていてもよい。その他、場合に
よっては、Bを0.001%を超えない範囲で含んでい
てもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the method of producing a steel pipe is not particularly limited as long as it is a chemical component of the present invention. Further, deoxidizing elements such as Si and Al may be included as necessary. In addition, it is better that impurities such as P, S, N, and O are small. In addition, Ca for controlling inclusions
Elements such as and REM may be included because they do not particularly impair the purpose of the present invention. In other cases, B may be contained in a range not exceeding 0.001%.

【0038】鋼板の圧延条件等の製造条件は、製造方法
や設備に合った条件とすればよい。加熱温度としては、
例えば、1050〜1250℃とすればよい。圧延終了
後の冷却方法は、0.10以上の加工硬化指数が得られ
れば特に問わないが、加速冷却を行うことが必要であ
る。冷却条件は、600℃以下まで5℃/sec以上と
するのが好ましい。
The production conditions such as the rolling conditions of the steel sheet may be conditions suitable for the production method and equipment. As the heating temperature,
For example, the temperature may be 1050 to 1250 ° C. The method of cooling after the completion of rolling is not particularly limited as long as a work hardening index of 0.10 or more can be obtained, but it is necessary to perform accelerated cooling. The cooling condition is preferably 5 ° C./sec or more up to 600 ° C. or less.

【0039】鋼管を製造する製管工程では、熱間圧延で
得られた鋼板を、UOE、ベンディングロール、プレス
ベンドなどの冷間成形法により鋼管の形状に加工する。
その他、鋼管の成形方法は、冷間加工である限り制限は
ない。その後、突合せ部を溶接して鋼管を製造する。溶
接についても、この発明の成分範囲の材料であれば、通
常の溶接方法および条件で特に問題なく溶接可能であ
る。
In the pipe making step of manufacturing a steel pipe, a steel sheet obtained by hot rolling is processed into a shape of a steel pipe by a cold forming method such as UOE, bending roll, press bending and the like.
In addition, the method of forming the steel pipe is not limited as long as it is a cold work. Thereafter, the butted portions are welded to produce a steel pipe. As for welding, if it is a material within the component range of the present invention, it can be welded by ordinary welding methods and conditions without any particular problem.

【0040】[0040]

【実施例】種々の化学成分からなる鋼から熱間圧延によ
り鋼板を製造し、冷間成形により管厚10〜30mm、
管外径600mmの溶接鋼管を製造した。これらの鋼管
について、前述の実管試験と引張試験を行った。
EXAMPLE A steel plate was manufactured by hot rolling from steels having various chemical components, and the tube thickness was 10 to 30 mm by cold forming.
A welded steel pipe having a pipe outer diameter of 600 mm was manufactured. These steel pipes were subjected to the above-described actual pipe test and tensile test.

【0041】表1に、鋼管の化学成分と式(1)の値P
CM、および実管試験と引張試験の結果を示す。化学成
分については、鋼種A(A1、A2)〜Kは発明の範囲
内、鋼種L〜Qは発明の範囲外である。これらの鋼を材
料とする鋼管A1,B1,C〜K(表中の鋼種と同じ記
号で表す)は発明の鋼管、鋼管A2,B2,L〜Qは比
較用の鋼管である。
Table 1 shows the chemical composition of the steel pipe and the value P of the equation (1).
The results of CM, actual pipe test and tensile test are shown. Regarding chemical components, steel types A (A1, A2) to K are within the scope of the invention, and steel types L to Q are outside the scope of the invention. Steel pipes A1, B1, CK (represented by the same symbols as steel types in the table) made of these steels are steel pipes of the invention, and steel pipes A2, B2, L to Q are steel pipes for comparison.

【0042】試験結果については、耐局部座屈性(表で
は、耐座屈性)は、実管曲げ試験において、局部座屈の
発生した時点の曲げ角度(片方)θが、3%以上となっ
た場合を○印、それ未満の場合をX印で示してある。
Regarding the test results, the local buckling resistance (buckling resistance in the table) is such that the bending angle (one side) θ at the time when local buckling occurs in an actual pipe bending test is 3% or more. The case where the condition is satisfied is indicated by a circle, and the case where the condition is not reached is indicated by an X mark.

【0043】溶接性については、鋼管成形後の縦シーム
溶接部について、溶接割れの有無を調べた。強度は、J
ISZ2241に規定された引張試験に準じて行った。
これらの試験結果は、溶接割れがなく引張強さが50 k
g/mm2 以上の場合を○印、それ以下の場合をX印で、表
1の溶接性/強度の欄に示した。加工硬化指数(表では
n値)は応力−歪曲線より通常の方法で求めた。
Regarding the weldability, the presence or absence of weld cracks was examined for the vertical seam weld after forming the steel pipe. The strength is J
The test was performed according to the tensile test specified in ISZ2241.
These test results show that there is no weld crack and the tensile strength is 50 k.
In the case of g / mm 2 or more, ○ is shown, and in the case of g / mm 2 or less, X is shown in the column of weldability / strength in Table 1. The work hardening index (n value in the table) was determined from the stress-strain curve by an ordinary method.

【0044】[0044]

【表1】 [Table 1]

【0045】発明鋼管A1,B1,C〜Kについては、
加工硬化指数が0.10以上となっており、良好な耐局
部座屈性を示している。
With respect to the invention steel pipes A1, B1 and CK,
The work hardening index is 0.10 or more, indicating good local buckling resistance.

【0046】比較鋼管については、鋼管A2とB2は化
学成分は発明の範囲内であるが、製造方法が不適切なた
め、加工硬化指数(n値)が0.10未満となってい
る。その結果、耐局部座屈性(耐座屈性)が不良であ
る。比較鋼管LはC、Cu、およびPCMが上限を超え
ており、耐局部座屈性が不良である。比較鋼管MはMn
とVが上限を超えており、溶接性が不良である。
As for the comparative steel pipes, the chemical compositions of the steel pipes A2 and B2 are within the scope of the present invention, but the work hardening index (n value) is less than 0.10. As a result, the local buckling resistance (buckling resistance) is poor. C, Cu, and PCM of the comparative steel pipe L exceeded the upper limit, and the local buckling resistance was poor. Comparative steel pipe M is Mn
And V exceed the upper limit, and the weldability is poor.

【0047】比較鋼管NはCが下限未満であり、耐局部
座屈性、強度とも不良である。比較鋼管OはPCMが上
限を超えており、耐局部座屈性、溶接性とも不良であ
る。比較鋼管PはPCMが下限未満であり、耐局部座屈
性、強度とも不良である。比較鋼管QはTiが上限を超
えており、溶接性が不良である。
The comparative steel pipe N has a C less than the lower limit, and has poor local buckling resistance and strength. The comparative steel pipe O has a PCM exceeding the upper limit, and has poor local buckling resistance and poor weldability. The comparative steel pipe P has a PCM of less than the lower limit, and has poor local buckling resistance and strength. In the comparative steel pipe Q, Ti exceeds the upper limit, and the weldability is poor.

【0048】ここで、比較鋼管L、O、Pでは、加工硬
化指数は発明範囲の0.10以上となっているが、化学
成分が発明の範囲内にないため、耐局部座屈性が不良で
あり、強度あるいは溶接性も不良となっている。また、
比較鋼管M、Qでは、加工硬化指数は発明範囲の0.1
0以上となっており、耐局部座屈性も良好であるが、化
学成分が発明の範囲内にないため、溶接性が不良となっ
ている。
Here, in the comparative steel pipes L, O, and P, the work hardening index is 0.10 or more of the invention range, but the local buckling resistance is poor because the chemical components are not within the scope of the invention. And the strength or weldability is also poor. Also,
In the comparative steel pipes M and Q, the work hardening index is 0.1 in the range of the invention.
It is 0 or more and the local buckling resistance is good, but the weldability is poor because the chemical component is not within the range of the invention.

【0049】次に、熱間圧延後、種々の冷却条件を適用
して製造した鋼板から製造した鋼管について、同様の試
験を行った。結果を表2に示す。鋼管A−3、A−4、
B−1〜J−1は発明鋼管であり、その他は比較鋼管で
ある。
Next, after hot rolling, similar tests were performed on steel pipes manufactured from steel sheets manufactured under various cooling conditions. Table 2 shows the results. Steel pipes A-3, A-4,
B-1 to J-1 are invention steel pipes, and others are comparative steel pipes.

【0050】[0050]

【表2】 [Table 2]

【0051】発明鋼管A−3〜J−1については、加工
硬化指数が0.10以上となっており、良好な耐局部座
屈性を示している。
The steel pipes A-3 to J-1 of the invention have a work hardening index of 0.10 or more, indicating good local buckling resistance.

【0052】比較鋼管A−1は冷却停止温度が600℃
より高く、比較鋼管A−2は冷却速度が5℃/sより低
いため、いずれも加工硬化指数が発明範囲(0.10以
上)より低く、耐局部座屈性が不良となっている。
The comparative steel pipe A-1 had a cooling stop temperature of 600 ° C.
Since the cooling rate of the comparative steel pipe A-2 is lower than 5 ° C./s, the work hardening index is lower than the invention range (0.10 or more), and the local buckling resistance is poor.

【0053】比較鋼管L−1、L−2、M−1、O−
1、P−1、Q−1は、発明の化学成分の範囲にないた
め、熱間圧延後の加速冷却の適用のいかんにかかわら
ず、耐局部座屈性が不良、あるいは耐局部座屈性は良好
でも溶接性が不良(比較鋼管M−1)となっている。
Comparative steel pipes L-1, L-2, M-1, O-
1, P-1 and Q-1 are not in the range of the chemical components of the invention, and therefore have poor local buckling resistance or local buckling resistance regardless of the application of accelerated cooling after hot rolling. Is good but poor in weldability (Comparative Steel Pipe M-1).

【0054】[0054]

【発明の効果】本発明の鋼管を用いることにより、鋼管
に横方向から作用する外力による局部座屈の発生と、そ
れに起因する脆性的な亀裂や破断の発生を防止できる。
その結果、大地震が発生した際に、ガスパイプラインや
水道管の破損および内部流体の流出、あるいは高速道路
の橋脚柱の破断による倒壊などの災害を防ぐことができ
る。
By using the steel pipe of the present invention, it is possible to prevent the occurrence of local buckling due to an external force acting on the steel pipe from the lateral direction and the occurrence of brittle cracks or breakage due to the local buckling.
As a result, when a large earthquake occurs, it is possible to prevent disasters such as breakage of gas pipelines and water pipes and outflow of internal fluid, or collapse due to breakage of bridge piers on expressways.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実管曲げ試験における試験体と試験装置の配置
を模式的に示す図である。
FIG. 1 is a view schematically showing an arrangement of a test body and a test apparatus in an actual pipe bending test.

【符号の説明】[Explanation of symbols]

1 局部座屈の発生した領域 2 局部座屈の発生していない領域 9 試験体(鋼管) 11 曲げ治具(内側) 12 曲げ治具(外側) 1 area where local buckling occurred 2 area where local buckling did not occur 9 specimen (steel pipe) 11 bending jig (inside) 12 bending jig (outside)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延された鋼板を材料とする耐震性
溶接鋼管であって、その化学成分が、重量%で、C:
0.03〜0.15%、Mn:1.0〜2.0%を含有
し、Cu:0.05〜0.50%、Ni:0.05〜
0.50%、Cr:0.05〜0.50%、Mo:0.
05〜0.50%、Nb:0.005〜0.10%、
V:0.005〜0.10%、Ti:0.005〜0.
080%の内1種以上を含有し、下記の式で表されるP
CMが0.10〜0.25であり、かつ、管軸方向の引
張試験における加工硬化指数が、0.10以上であるこ
とを特徴とする耐局部座屈性に優れた耐震性溶接鋼管。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10
+5×B ここで、式中の元素記号は各元素の重量%を示す。
1. An earthquake-resistant welded steel pipe made of a hot-rolled steel sheet, the chemical composition of which is represented by:
0.03-0.15%, Mn: 1.0-2.0%, Cu: 0.05-0.50%, Ni: 0.05-
0.50%, Cr: 0.05 to 0.50%, Mo: 0.
05 to 0.50%, Nb: 0.005 to 0.10%,
V: 0.005 to 0.10%, Ti: 0.005 to 0.
080%, and contains at least one kind of P represented by the following formula.
An earthquake-resistant welded steel pipe having excellent local buckling resistance, wherein CM has a value of 0.10 to 0.25 and a work hardening index in a tensile test in a pipe axis direction of 0.10 or more. PCM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10
+ 5 × B Here, the symbol of the element in the formula indicates the weight% of each element.
【請求項2】 請求項1記載の化学成分の鋼を熱間圧延
し、圧延終了後600℃以下まで5℃/sec以上の冷
却速度で冷却して鋼板を製造し、この鋼板を冷間成形し
て鋼管を製造することにより、管軸方向の引張試験にお
ける加工硬化指数を0.10以上とすることを特徴とす
る耐局部座屈性に優れた耐震性溶接鋼管の製造方法。
2. The steel having the chemical composition according to claim 1 is hot-rolled, and after the rolling is completed, the steel is cooled to 600 ° C. or less at a cooling rate of 5 ° C./sec or more to produce a steel sheet, and the steel sheet is cold-formed. A method for producing an earthquake-resistant welded steel pipe having excellent local buckling resistance, wherein a work hardening index in a tensile test in the pipe axis direction is set to 0.10 or more by producing a steel pipe.
JP16089297A 1997-06-18 1997-06-18 Earthquake-proof welded steel tube excellent in local buckling resistance, and its production Pending JPH116032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16089297A JPH116032A (en) 1997-06-18 1997-06-18 Earthquake-proof welded steel tube excellent in local buckling resistance, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16089297A JPH116032A (en) 1997-06-18 1997-06-18 Earthquake-proof welded steel tube excellent in local buckling resistance, and its production

Publications (1)

Publication Number Publication Date
JPH116032A true JPH116032A (en) 1999-01-12

Family

ID=15724628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16089297A Pending JPH116032A (en) 1997-06-18 1997-06-18 Earthquake-proof welded steel tube excellent in local buckling resistance, and its production

Country Status (1)

Country Link
JP (1) JPH116032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210130219A (en) 2019-03-29 2021-10-29 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe, manufacturing method thereof, and steel pipe pile
KR20210132698A (en) 2019-03-29 2021-11-04 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe, manufacturing method thereof, and steel pipe pile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210130219A (en) 2019-03-29 2021-10-29 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe, manufacturing method thereof, and steel pipe pile
KR20210132698A (en) 2019-03-29 2021-11-04 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe, manufacturing method thereof, and steel pipe pile

Similar Documents

Publication Publication Date Title
JP4833835B2 (en) Steel pipe with small expression of bauschinger effect and manufacturing method thereof
CA2657518C (en) Hot bend pipe and a process for its manufacture
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
WO2010090349A1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
JP5385760B2 (en) Cold-formed square steel pipe with excellent earthquake resistance
JP4853082B2 (en) Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof
JP2010196164A (en) Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
JP2006207028A (en) Method for producing high strength/high toughness thick steel plate excellent in cutting-crack resistance
WO2011042936A1 (en) High-strength steel pipe, steel plate for high-strength steel pipe, and processes for producing these
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5076959B2 (en) Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method
JP2009235516A (en) 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP6648736B2 (en) Cladded steel sheet excellent in base material low-temperature toughness and HAZ toughness and method for producing the same
JP3470632B2 (en) Steel pipe for line pipe excellent in buckling resistance and method of manufacturing the same
JPH116032A (en) Earthquake-proof welded steel tube excellent in local buckling resistance, and its production
JP2002206140A (en) Steel tube and production method therefor
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JPH1112682A (en) Earthquake-proof welded steel tube excellent in local buckling resistance, and its production
JP3772696B2 (en) Steel sheet for high-strength steel pipe and manufacturing method thereof
JPH1180877A (en) Welded steel pipe excellent in earthquake resistance and fire resistance and its production
JP2004131810A (en) Method for manufacturing steel pipe having excellent buckling resistance performance
JP3679179B2 (en) Steel pipe with excellent earthquake resistance
JPH1052713A (en) Steel pipe excellent in resistance to earthquake and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702