JP3679179B2 - Steel pipe with excellent earthquake resistance - Google Patents

Steel pipe with excellent earthquake resistance Download PDF

Info

Publication number
JP3679179B2
JP3679179B2 JP34273395A JP34273395A JP3679179B2 JP 3679179 B2 JP3679179 B2 JP 3679179B2 JP 34273395 A JP34273395 A JP 34273395A JP 34273395 A JP34273395 A JP 34273395A JP 3679179 B2 JP3679179 B2 JP 3679179B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
steel
ratio
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34273395A
Other languages
Japanese (ja)
Other versions
JPH09184015A (en
Inventor
茂 遠藤
守康 長江
正充 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34273395A priority Critical patent/JP3679179B2/en
Publication of JPH09184015A publication Critical patent/JPH09184015A/en
Application granted granted Critical
Publication of JP3679179B2 publication Critical patent/JP3679179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスパイプライン、水道配管などに使用される地震時の耐局部座屈性に優れた耐震鋼管の製造方法に関する。
【0002】
【従来の技術】
UOE鋼管、スパイラル鋼管、継目無鋼管、電縫鋼管、プレスベンド鋼管などの炭素鋼鋼管あるいは低合金鋼鋼管は、大量にかつ安定して製造できるため、その優れた経済性や溶接施工性とあいまって、ガスパイプラインや水道配管など流体の輸送用配管として広く用いられている。
【0003】
しかしながら、大地震が発生した場合、これら鋼管の長手方向には引張および圧縮の大きな力が繰り返し加わり、外径/管厚比がある程度大きな鋼管では、局部座屈を起こし、場合によっては円周方向の亀裂の発生や破断に至ることがある。
【0004】
これまで建築用の鋼管としては、例えば特開平3−173719号、特開平5−65535号、特開平5−117746号、特開平5−117747号、特開平5−156357号、特開平6−49540号、特開平6−49541号、特開平6−128641号、特開平6−264143号、特開平6−264144号の各公報に開示されているように、耐震性能として降伏応力と引張強さの比である降伏比を小さくしたものが提案されているが、これらはいずれも柱の曲げ応力に対する塑性変形吸収能に関するもので、圧縮の軸力に対する局部座屈と局部座屈発生後の引張による脆性亀裂の発生を防ぐための検討はこれまで行われていない。
【0005】
また、ガスなどの流体輸送用ラインパイプでは、延性破壊や脆性破壊など円周方向に力が作用する内圧に対する抵抗力は検討されてきたが、軸方向の外力に対しては敷設時の曲げ変形以外はほとんど考慮されていない。
【0006】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、大地震の際に軸方向に作用する引張・圧縮応力に対して、大径薄肉でも局部座屈を起こしにくく、脆性的な破断が発生し難く、ガスパイプライン、水道配管などに好適な耐震性に優れた鋼管を提供すること目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は、重量%で、C:0.05〜0.25%、Mn:0.5〜2.0%を含み、かつCu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、Nb:0.005〜0.10%、V:0.005〜0.10%、Ti:0.005〜0.10%の1種または2種以上、残部Fe及び不可避的不純物からなり、管厚と外径との比が0.02未満の場合には、ミクロ組織中でパーライト、ベーナイト、マルテンサイトのうち少なくとも1種からなる第2相組織の面積分率が20%以上30%以下で、残部が第1相としてのフェライト組織を有し、管厚と外径との比が0.02以上の場合には、前記第2相組織の面積分率が10%以上25%以下で、残部が第1相としてのフェライト組織を有する鋼管であって、80%以下の降伏比を有し、かつ、試験片長手方向を鋼管の軸方向に一致させて採取した引張試験片を用いて引張試験を行い、得られた公称応力−公称歪曲線において、公称応力−公称歪の勾配が、0%から5%の歪範囲において常に正となることを特徴とする、地震時に軸方向に引張・圧縮応力が作用するラインパイプに用いられる耐圧縮局部座屈性に優れた鋼管を提供する。
【0008】
【発明の実施の形態】
本願発明の理解を助けるために、まず、本発明に関連する当業者の技術常識を説明する。耐座屈性は、鋼管の加工硬化指数(n値;真応力(σ A )−真歪(e)の関係をσ A =Ce で表わした場合のnで表わされる)と相関があり、加工硬化指数(n値)が高い鋼管は、限界座屈歪が高い(耐座屈性がある)ことが知られている。また、加工硬化指数(n値)と降伏比には明らかな相関が見られ、加工硬化指数(n値)が高いほど低降伏比であることが知られている。すなわち、加工硬化指数が大きいほど応力−歪曲線の傾きが大きくなるので、加工硬化指数の大きな材料は変形による強度上昇が大きい材料といえる。そして、加工硬化指数の大きな材料ほど硬化後の強度上昇が大きいため、引張り強度と降伏強度の比で表わされる降伏比が小さくなる。他方、鋼管の座屈の発生は材質や形状の不均質さに起因して鋼管の最も弱い部分に変形が集中することで起る。このため、鋼管材料の加工硬化特性(=降伏比)は鋼管の座屈挙動と密接な関係があり、耐座屈性の優れた鋼管を得るために降伏比の低い材料(=加工硬化指数が大きい材料)を用いる必要がある。
次に、応力−歪曲線の形状は、均一変形により降伏が生じる場合(降伏点が明りょうでない)と、不均一変形により降伏が生じる場合(降伏点が明りょうに現れる)との2種類がある。そして、鋼管の座屈の発生は材質や形状の不均質さに起因していることから、不均一変形により降伏が生じる場合は座屈特性が低い。これに対し、均一変形により降伏が生じる場合は座屈特性に優れている。
本発明者らは、鋼管の軸方向に作用する圧縮力に対する耐座屈性を評価するために、材質と形状が種々異なる鋼管について、図1に示す試験機と試験体を用いて実管圧縮試験ならびに各種材質調査試験を行い、鋼管の材質的な特性と局部座屈発生挙動との相関を調査した。その結果、局部座屈の発生有無は、鋼管の軸方向の引張特性と以下のような相関があることを見出した。すなわち、試験片長手方向を鋼管の軸方向に一致させて採取した引張試験片を用いて引張試験を行い、得られた公称応力−公称歪曲線において、降伏点からオンロード歪量が5%までのいずれの歪量においても、公称応力/公称歪の勾配が正となる鋼管は、勾配が0または負となる鋼管に比較して局部座屈を起こす限界の外径/管厚比が著しく大きく、局部座屈を起こしにくい。
【0009】
次に、圧縮応力によって塑性変形した後、引張応力を受けた際の脆性的な亀裂の発生や破断の有無と鋼管の材質の相関を調査した。その結果、圧縮応力により塑性変形した鋼管においても、試験片長手方向を鋼管の軸方向に一致させて採取した試験片の引張試験において、一様伸びが5%以上であれば脆性的な亀裂や破断は発生しないことを見出した。さらに、引張試験における降伏強さの引張強さに対する割合、降伏比の小さいものほど、破断に対する抵抗の大きいことも見出した。
【0010】
このような結果に基づいて、上述のような特徴を有する公称応力−公称歪曲線と鋼管の形状やミクロ組織との関係について調査した結果、鋼管の管厚tと外径Dとの比t/Dが0.02未満の鋼管では、パーライト、ベーナイト、マルテンサイトのうち少なくとも1種からなる第2相組織の面積分率が20%以上80%以下、またt/Dが0.02以上の鋼管では第2相組織の面積分率が10%以上80%以下になると、上述のような公称応力−公称歪曲線を得ることができることを見出した。
【0011】
このような知見に基づき、本発明では、t/Dが0.02未満の場合には、ミクロ組織中でパーライト、ベーナイト、マルテンサイトの少なくとも1種からなる第2相組織の面積分率が20%以上80%以下であり、t/Dが0.02以上の場合には、前記第2相組織の面積分率が10%以上80%以下であり、残部が第1相としてのフェライトである耐震性に優れた鋼管を提供する。
以上要約すれば、本発明は、所定の化学組成を有する鋼材について、その第 2 相分率と、鋼管に成形する際のt/Dとを所定範囲に規定することにより、80%以下の降伏比を有し、かつ、応力−歪曲線を均一変形により降伏させることができる(公称応力−公称歪の勾配が、0%から5%の歪範囲において常に正となる)との定性的な知見に基づいて、その範囲を定量化したもので、管厚と外径との比(t/D)が0.02未満の場合には第2相組織の面積分率を20%以上30%以下とし、管厚と外径との比(t/D)が0.02以上の場合には前記第2相組織の面積分率を10%以上25%以下とし、このことにより、80%以下の降伏比を有し、かつ、応力−歪曲線を均一変形により降伏するものとし、もって、地震時に軸方向に引張・圧縮応力が作用するラインパイプに用いられる耐圧縮局部座屈性に優れた鋼管を提供するようにしたものである。
【0012】
ここで、t/Dが0.02未満の場合に、第2相組織の面積分率が20%未満、t/Dが0.02以上の場合に、第2相組織の面積分率が10%未満であれば、応力歪曲線の傾きが正にならない場合が存在し、一方80%を超えると充分な一様延びと80%以下の降伏比を得ることができなくなる。したがって、第2相組織の面積分率が20%以上80%以下であり、t/Dが0.02以上の場合には、前記第2相組織の面積分率が10%以上80%以下とする。
【0013】
なお、本発明では鋼管の製造方法は問わず、UOE鋼管、スパイラル鋼管、継目無鋼管、電縫鋼管、プレスベンド鋼管などいずれのものであっても、上記所定の特性を満足するものであればよい。
【0014】
また、鋼の化学組成は特に限定されないが、以下の組成のものが好ましい。
【0015】
すなわち、重量%で、C:0.05〜0.25%、Mn:0.5〜2.0%を含み、かつ必要に応じてCu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、Nb:0.005〜0.10%、V:0.005〜0.10%、Ti:0.005〜0.10%の1種または2種以上を含有するものが好ましい。このような成分範囲の鋼が好ましいのは以下の理由による。
【0016】
C:0.05〜0.25%この範囲外の炭素量の鋼は、溶接した場合の溶接割れの可能性が増大し、鋼管成形後、溶接できなくなる。したがって、C量は0.05〜0.25%の範囲が好ましい。
【0017】
Mn:0.5〜2.0%Mnは構造用鋼として充分な強度と靭性を得るために有効な元素であるが、0.5%未満ではその効果が小さく、また2.0%を超えると母材と溶接部の靭性の劣化および溶接性の劣化を招く。したがって、Mn量は0.5〜2.0%の範囲が好ましい。
【0018】
Cu:0.05〜0.50%Ni:0.05〜0.50%Cr:0.05〜0.50%Mo:0.05〜0.50%Cu,Ni,Cr,Moは強度の上昇に有効な元素であるが、それぞれ0.05%未満ではその効果が有効に発揮されず、0.50%を超えると鋼板の母材溶接部の靭性や溶接性を劣化させる。したがって、これらの量はそれぞれ0.05〜0.50%の範囲が好ましい。
【0019】
Nb:0.005〜0.10%Nbは、鋼板の靭性と強度の向上に有効な元素であるが、その量が0.005%未満ではその効果を有効に発揮することができず、0.10%を超えると溶接部の靭性を劣化させる。したがって、Nb量は0.005〜0.10%の範囲が好ましい。
【0020】
V:0.005〜0.10%Vは、鋼板の強度の上昇に有効な元素であるが、その量が0.005%未満ではその効果を有効に発揮させることができず、0.10%を超えると溶接部の靭性を劣化させる。したがって、V量は0.005〜0.10%の範囲が好ましい。
【0021】
Ti:0.005〜0.10%Tiは、鋼板の靭性の向上と鋳造時のスラブ損傷防止に有効な元素であるが、その量が0.005%未満ではその効果を有効に発揮させることができず、0.10%を超えると溶接部の靭性を劣化させる。したがって、Ti量は0.005〜0.10%の範囲が好ましい。
【0022】
また、製造条件については上記組織が得られるものであれば特に限定されないが、例えば上述の組成の鋼板に対して、圧延条件を制御したり、または造管中や造管後の鋼管に熱処理や加工処理を加えることにより、例えば、圧延終了後、その鋼の化学組成により決定されるAr3 温度〜Ar3 −80℃の範囲から加速冷却を開始し、400℃以上で加速冷却を停止することにより上記組織を得ることができる。
【0023】
【実施例】
以下、本発明の具体的な実施例について説明する。
【0024】
表1に示した化学組成を有する鋼(Aは参考鋼種、B,C,Dは本発明鋼種)を熱間圧延して鋼板とした後、成形し、端部を溶接してUOE鋼管を得た。鋼管A−1、A−2、A−3、A−4、A−5、C−1は圧延後の加速冷却開始温度を700〜760℃まで変化させて第2相組織の面積分率を変化させた。鋼管B−1、B−2、D−1、D−2は、鋼管成形溶接後に800℃から850℃に加熱後、10℃/秒の冷却速度で冷却している。表2に、このようにして製造された鋼管の形状およびパーライト、ベイナイト、マルテンサイトのうち少なくとも1種の第2相組織の面積分率、オンロード歪5%までの勾配、一様伸び、降伏比を示す。なお、表2の勾配の欄中、+は上記領域で勾配が常に正であることを示し、Xはこの領域で勾配が負あるいはゼロであることを示している。
【0025】
【表1】

Figure 0003679179
【0026】
【表2】
Figure 0003679179
【0027】
表2に示すように、形状に応じた第2相の面積分率が本発明の範囲を満足する鋼管A−1、A−2、A−4、B−1、C−1、D−1はいずれも応力歪曲線の上記領域での勾配が正となり、5%以上の一様伸びと80%以下の降伏比を有していた。
【0028】
一方、t/Dが0.02未満で第2相組織の面積分率が20%未満の鋼管A−3、B−2、D−2では勾配が一部でゼロとなり、さらにD−2では降伏比も80%を超えていた。また、面積分率が80%を超えている鋼管A−5では充分な一様伸びが得らなかった。
【0029】
【発明の効果】
以上説明したように、本発明によれば、大地震の際に軸方向に作用する引張・圧縮応力に対して、大径薄肉でも局部座屈を起こしにくく、脆性的な破断が発生し難い耐震性に優れた鋼管を得ることができる。したがって、本発明の鋼管を用いることにより、大地震が発生した際に、ガスパイプラインや水道配管の破損と内部流体の流出を防止することができる。
【図面の簡単な説明】
【図1】 実管圧縮試験に用いた試験機および試験体を説明するための図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an earthquake-resistant steel pipe having excellent local buckling resistance at the time of an earthquake, which is used for gas pipelines, water pipes and the like.
[0002]
[Prior art]
Carbon steel pipes such as UOE steel pipes, spiral steel pipes, seamless steel pipes, ERW steel pipes, press-bend steel pipes, and low-alloy steel pipes can be manufactured in large quantities and stably, which is combined with their excellent economic efficiency and weldability. Therefore, it is widely used as a transportation pipe for fluids such as gas pipelines and water pipes.
[0003]
However, when a large earthquake occurs, large tensile and compressive forces are repeatedly applied in the longitudinal direction of these steel pipes, and local buckling occurs in steel pipes with a large outer diameter / pipe thickness ratio. May lead to cracking or fracture.
[0004]
Conventional steel pipes for construction include, for example, JP-A-3-173719, JP-A-5-65535, JP-A-5-117746, JP-A-5-117747, JP-A-5-156357, JP-A-6-49540. No. 6, JP-A-6-49541, JP-A-6-128641, JP-A-6-264143, and JP-A-6-264144, the yield stress and the tensile strength are The yield ratio, which is a small ratio, has been proposed, but these all relate to the ability to absorb plastic deformation against the bending stress of the column, and are due to local buckling against the axial force of compression and tension after the occurrence of local buckling. There have been no studies to prevent the occurrence of brittle cracks.
[0005]
In addition, in line pipes for transporting fluids such as gas, resistance to internal pressure, which acts in the circumferential direction such as ductile fracture and brittle fracture, has been studied, but bending deformation during laying against axial external forces Except for, it is hardly considered.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and with respect to tensile / compressive stress acting in the axial direction in the event of a large earthquake, local buckling is unlikely to occur even with a large diameter and thin wall, and brittle fracture occurs. It is difficult to provide a steel pipe excellent in earthquake resistance suitable for gas pipelines, water pipes and the like.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention includes, by weight, C: 0.05 to 0.25%, Mn: 0.5 to 2.0%, and Cu: 0.05 to 0.50. %, Ni: 0.05 to 0.50%, Cr: 0.05 to 0.50%, Mo: 0.05 to 0.50%, Nb: 0.005 to 0.10%, V: 0.00. 005~0.10%, Ti: 0.005~0.10% of one or more, Ri Do the balance Fe and unavoidable impurities, when the ratio of the tube thickness and the outer diameter is less than 0.02 The area fraction of the second phase structure consisting of at least one of pearlite, bainite, martensite in the microstructure is 20% or more and 30% or less, and the remainder has a ferrite structure as the first phase, tube thickness and when the ratio between the outer diameter of 0.02 or more, in the second phase structure area fraction of 25% at least 10% less, residual There a steel pipe having a ferrite structure as a first phase, comprising 80% or less of yield ratio, and tensile using a tensile test pieces taken in the specimen longitudinal direction is aligned with the axial direction of the steel pipe test In the obtained nominal stress-nominal strain curve, the gradient of nominal stress-nominal strain is always positive in the strain range of 0% to 5%. Provided is a steel pipe excellent in compression buckling resistance used for a line pipe subjected to stress.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to facilitate understanding of the present invention, first, common technical knowledge of those skilled in the art related to the present invention will be described. Buckling resistance is work hardening coefficient of the steel tube (n value; true stress (sigma A) - is represented by n in the case of representing the relationship between true strain (e) in sigma A = Ce n) that there is a correlation, It is known that a steel pipe having a high work hardening index (n value) has a high critical buckling strain (has buckling resistance). Further, there is a clear correlation between the work hardening index (n value) and the yield ratio, and it is known that the higher the work hardening index (n value), the lower the yield ratio. That is, since the slope of the stress-strain curve increases as the work hardening index increases, it can be said that a material with a large work hardening index has a large increase in strength due to deformation. Since the material having a higher work hardening index has a higher strength increase after hardening, the yield ratio represented by the ratio between the tensile strength and the yield strength becomes smaller. On the other hand, the occurrence of buckling of the steel pipe is caused by the deformation concentrated on the weakest part of the steel pipe due to the heterogeneity of the material and shape. For this reason, the work hardening characteristics (= yield ratio) of steel pipe materials are closely related to the buckling behavior of steel pipe materials. In order to obtain steel pipes with excellent buckling resistance, materials with low yield ratio (= work hardening index Large material) must be used.
Next, there are two types of stress-strain curves: the case where yield occurs due to uniform deformation (the yield point is not clear) and the case where yield occurs due to non-uniform deformation (the yield point appears clearly). is there. And since the occurrence of buckling of the steel pipe is due to the inhomogeneity of the material and shape, the buckling characteristics are low when yielding occurs due to non-uniform deformation. On the other hand, when yielding occurs due to uniform deformation, the buckling characteristics are excellent.
In order to evaluate the buckling resistance against the compressive force acting in the axial direction of the steel pipe, the present inventors used a test machine and a test body shown in FIG. Tests and various material investigation tests were conducted to investigate the correlation between the material characteristics of steel pipes and the behavior of local buckling. As a result, it was found that the presence or absence of local buckling has the following correlation with the tensile properties in the axial direction of the steel pipe. That is, a tensile test was performed using a tensile test piece collected with the test piece longitudinal direction coinciding with the axial direction of the steel pipe, and in the obtained nominal stress-nominal strain curve, the on-load strain amount was 5% from the yield point. For any of these strains, the steel pipe with a positive nominal stress / nominal strain gradient has a significantly larger limit of outer diameter / pipe thickness that causes local buckling than a steel pipe with a zero or negative gradient. Less likely to cause local buckling.
[0009]
Next, after plastic deformation due to compressive stress, the correlation between the occurrence of brittle cracks and fractures when subjected to tensile stress and the material of the steel pipe was investigated. As a result, even in a steel pipe plastically deformed due to compressive stress, in a tensile test of a specimen taken by aligning the longitudinal direction of the specimen with the axial direction of the steel pipe, if the uniform elongation is 5% or more, a brittle crack or It was found that no breakage occurred. Furthermore, the ratio of the yield strength to the tensile strength in the tensile test, and the smaller the yield ratio, the greater the resistance to fracture.
[0010]
As a result of investigating the relationship between the nominal stress-nominal strain curve having the above-described characteristics and the shape and microstructure of the steel pipe based on such results, the ratio t / For steel pipes with D less than 0.02, the area fraction of the second phase structure composed of at least one of pearlite, bainite, and martensite is 20% to 80%, and the t / D is 0.02 or more. Then, when the area fraction of the 2nd phase structure became 10% or more and 80% or less, it discovered that the above nominal stress-nominal strain curves could be obtained.
[0011]
Based on such knowledge, in the present invention, when t / D is less than 0.02, the area fraction of the second phase structure composed of at least one of pearlite, bainite, and martensite in the microstructure is 20. % Or more and 80% or less, and when t / D is 0.02 or more, the area fraction of the second phase structure is 10% or more and 80% or less, and the balance is ferrite as the first phase. To provide steel pipes with excellent earthquake resistance.
Summarizing the above, the present invention provides a steel material having a predetermined chemical composition. By defining the second phase fraction and t / D when forming into a steel pipe within a predetermined range, a yield of 80% or less is obtained. Qualitative knowledge that the stress-strain curve can yield by uniform deformation (the nominal stress-nominal strain gradient is always positive in the 0% to 5% strain range) Based on the above, the range is quantified. When the ratio of the tube thickness to the outer diameter (t / D) is less than 0.02, the area fraction of the second phase structure is 20% or more and 30% or less. When the ratio (t / D) between the tube thickness and the outer diameter is 0.02 or more, the area fraction of the second phase structure is 10% or more and 25% or less. It has a yield ratio, and yields a stress-strain curve with uniform deformation. -It is intended to provide a steel pipe excellent in compression buckling resistance used for a line pipe on which compressive stress acts.
[0012]
Here, when t / D is less than 0.02, the area fraction of the second phase structure is less than 20%, and when t / D is 0.02 or more, the area fraction of the second phase structure is 10 If it is less than%, there is a case where the slope of the stress-strain curve does not become positive. On the other hand, if it exceeds 80%, sufficient uniform elongation and a yield ratio of 80% or less cannot be obtained. Therefore, when the area fraction of the second phase structure is 20% or more and 80% or less and t / D is 0.02 or more, the area fraction of the second phase structure is 10% or more and 80% or less. To do.
[0013]
In the present invention, the manufacturing method of the steel pipe is not limited, and any of UOE steel pipe, spiral steel pipe, seamless steel pipe, ERW steel pipe, press bend steel pipe, and the like can be used as long as it satisfies the predetermined characteristics. Good.
[0014]
The chemical composition of steel is not particularly limited, but the following composition is preferable.
[0015]
That is, by weight, C: 0.05 to 0.25%, Mn: 0.5 to 2.0%, and if necessary, Cu: 0.05 to 0.50%, Ni: 0.0. 05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0.50%, Nb: 0.005-0.10%, V: 0.005-0.10% , Ti: One containing 0.005 to 0.10% or two or more is preferable. The reason why the steel having such a component range is preferable is as follows.
[0016]
C: 0.05 to 0.25% Steel having a carbon content outside this range has an increased possibility of weld cracking when welded, and cannot be welded after forming a steel pipe. Therefore, the C content is preferably in the range of 0.05 to 0.25%.
[0017]
Mn: 0.5 to 2.0% Mn is an element effective for obtaining sufficient strength and toughness as a structural steel, but if it is less than 0.5%, the effect is small, and it exceeds 2.0%. In addition, the toughness of the base metal and the welded part and the weldability are deteriorated. Therefore, the amount of Mn is preferably in the range of 0.5 to 2.0%.
[0018]
Cu: 0.05 to 0.50% Ni: 0.05 to 0.50% Cr: 0.05 to 0.50% Mo: 0.05 to 0.50% Cu, Ni, Cr, and Mo are strong. Although it is an element effective for increasing, if less than 0.05%, the effect is not exhibited effectively, and if it exceeds 0.50%, the toughness and weldability of the base metal weld of the steel plate are deteriorated. Accordingly, these amounts are each preferably in the range of 0.05 to 0.50%.
[0019]
Nb: 0.005 to 0.10% Nb is an element effective for improving the toughness and strength of the steel sheet. However, if the amount is less than 0.005%, the effect cannot be exhibited effectively. If it exceeds 10%, the toughness of the weld is deteriorated. Therefore, the Nb content is preferably in the range of 0.005 to 0.10%.
[0020]
V: 0.005 to 0.10% V is an element effective for increasing the strength of the steel sheet. However, if the amount is less than 0.005%, the effect cannot be exhibited effectively. If it exceeds 50%, the toughness of the welded portion deteriorates. Therefore, the V amount is preferably in the range of 0.005 to 0.10%.
[0021]
Ti: 0.005 to 0.10% Ti is an element effective for improving the toughness of a steel sheet and preventing slab damage during casting. However, when its amount is less than 0.005%, the effect should be exhibited effectively. However, if it exceeds 0.10%, the toughness of the welded portion is deteriorated. Therefore, the Ti amount is preferably in the range of 0.005 to 0.10%.
[0022]
Further, the production conditions are not particularly limited as long as the above structure can be obtained. For example, for steel sheets having the above-described composition, the rolling conditions are controlled, or the steel pipes during or after pipe forming are heat treated. By applying the processing treatment, for example, after the end of rolling, the accelerated cooling is started from the range of Ar3 temperature to Ar3-80 ° C determined by the chemical composition of the steel, and the accelerated cooling is stopped at 400 ° C or higher. You can get an organization.
[0023]
【Example】
Hereinafter, specific examples of the present invention will be described.
[0024]
A steel having the chemical composition shown in Table 1 (A is a reference steel type, B, C, and D are steel types of the present invention) is hot-rolled to form a steel plate, then formed and welded at the ends to obtain a UOE steel pipe. It was. Steel pipes A-1, A-2, A-3, A-4, A-5, and C-1 change the area ratio of the second phase structure by changing the accelerated cooling start temperature after rolling to 700 to 760 ° C. Changed. The steel pipes B-1, B-2, D-1, and D-2 are cooled at a cooling rate of 10 ° C./second after being heated from 800 ° C. to 850 ° C. after steel pipe forming welding. Table 2 shows the shape of the steel pipe thus manufactured and the area fraction of at least one second phase structure of pearlite, bainite, and martensite, gradient up to 5% on-load strain, uniform elongation, yield. Indicates the ratio. In the gradient column of Table 2, + indicates that the gradient is always positive in the above region, and X indicates that the gradient is negative or zero in this region.
[0025]
[Table 1]
Figure 0003679179
[0026]
[Table 2]
Figure 0003679179
[0027]
As shown in Table 2, the steel pipes A-1, A-2, A-4, B-1, C-1, D-1 whose area fraction of the second phase according to the shape satisfies the scope of the present invention. Each had a positive slope in the above region of the stress-strain curve, and had a uniform elongation of 5% or more and a yield ratio of 80% or less.
[0028]
On the other hand, in steel pipes A-3, B-2, and D-2 where the t / D is less than 0.02 and the area fraction of the second phase structure is less than 20%, the gradient is partially reduced to zero, and further in D-2 The yield ratio also exceeded 80%. Moreover, sufficient uniform elongation was not obtained in steel pipe A-5 whose area fraction exceeded 80%.
[0029]
【The invention's effect】
As described above, according to the present invention, with respect to tensile / compressive stress acting in the axial direction in the event of a large earthquake, even if it has a large diameter and thin wall, local buckling is unlikely to occur, and brittle fracture is unlikely to occur. A steel pipe with excellent properties can be obtained. Therefore, by using the steel pipe of the present invention, it is possible to prevent the gas pipeline and the water pipe from being damaged and the internal fluid from flowing out when a large earthquake occurs.
[Brief description of the drawings]
FIG. 1 is a view for explaining a testing machine and a test body used in an actual pipe compression test.

Claims (1)

重量%で、C:0.05〜0.25%、Mn:0.5〜2.0%を含み、かつCu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、Nb:0.005〜0.10%、V:0.005〜0.10%、Ti:0.005〜0.10%の1種または2種以上、残部Fe及び不可避的不純物からなり、管厚と外径との比が0.02未満の場合には、ミクロ組織中でパーライト、ベーナイト、マルテンサイトのうち少なくとも1種からなる第2相組織の面積分率が20%以上30%以下で、残部が第1相としてのフェライト組織を有し、管厚と外径との比が0.02以上の場合には、前記第2相組織の面積分率が10%以上25%以下で、残部が第1相としてのフェライト組織を有する鋼管であって、80%以下の降伏比を有し、かつ、試験片長手方向を鋼管の軸方向に一致させて採取した引張試験片を用いて引張試験を行い、得られた公称応力−公称歪曲線において、公称応力−公称歪の勾配が、0%から5%の歪範囲において常に正となることを特徴とする、地震時に軸方向に引張・圧縮応力が作用するラインパイプに用いられる耐圧縮局部座屈性に優れた鋼管。In wt%, C: 0.05 to 0.25%, Mn: 0.5 to 2.0%, and Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50% , Cr: 0.05 to 0.50%, Mo: 0.05 to 0.50%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, Ti: 0.005 0.10% of one or more, Ri Do the balance Fe and unavoidable impurities, when the ratio between the tube thickness and the outer diameter is less than 0.02, pearlite in the microstructure, bainite, martensite The area fraction of the second phase structure consisting of at least one of the sites is 20% or more and 30% or less, and the balance has the ferrite structure as the first phase, and the ratio of the tube thickness to the outer diameter is 0.02. above the case, the second phase structure area fraction of 10% or more and 25% or less, and the balance have a ferritic structure as the first phase That a steel pipe having a 80% or less of yield ratio, and the test piece longitudinal direction is aligned with the axial direction of the steel pipe subjected to a tensile test using a tensile test piece was collected, resulting nominal stress - In nominal strain curves, nominal stress-nominal strain gradient is always positive in the strain range of 0% to 5% , used for line pipes with tensile and compressive stress acting in the axial direction during earthquakes Steel tube with excellent local buckling resistance.
JP34273395A 1995-12-28 1995-12-28 Steel pipe with excellent earthquake resistance Expired - Lifetime JP3679179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34273395A JP3679179B2 (en) 1995-12-28 1995-12-28 Steel pipe with excellent earthquake resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34273395A JP3679179B2 (en) 1995-12-28 1995-12-28 Steel pipe with excellent earthquake resistance

Publications (2)

Publication Number Publication Date
JPH09184015A JPH09184015A (en) 1997-07-15
JP3679179B2 true JP3679179B2 (en) 2005-08-03

Family

ID=18356074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34273395A Expired - Lifetime JP3679179B2 (en) 1995-12-28 1995-12-28 Steel pipe with excellent earthquake resistance

Country Status (1)

Country Link
JP (1) JP3679179B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849244B2 (en) * 1997-09-16 2006-11-22 Jfeスチール株式会社 Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method
JP4997805B2 (en) 2005-03-31 2012-08-08 Jfeスチール株式会社 High-strength thick steel plate, method for producing the same, and high-strength steel pipe

Also Published As

Publication number Publication date
JPH09184015A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP6226062B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP3846246B2 (en) Steel pipe manufacturing method
WO2009119570A1 (en) Uoe steel tube for linepipes and process for production thereof
JP3679179B2 (en) Steel pipe with excellent earthquake resistance
JP6064320B2 (en) Low yield ratio high strength steel plate with excellent ductile fracture resistance
JP3937998B2 (en) Manufacturing method of steel pipe with excellent buckling resistance
JP3470632B2 (en) Steel pipe for line pipe excellent in buckling resistance and method of manufacturing the same
JP2002206140A (en) Steel tube and production method therefor
JP2002226945A (en) Steel tube and manufacturing method
JPH09196244A (en) Steel pipe excellent in aseismic characteristic
JPH09196243A (en) Steel pipe excellent in aseismic performance
JP2002194503A (en) Steel tube with superior buckling resistance, and production method and evaluation system for the same
JP3336842B2 (en) Manufacturing method of earthquake-resistant steel pipe
JP3772696B2 (en) Steel sheet for high-strength steel pipe and manufacturing method thereof
JPH09202922A (en) Production of line pipe having high strength and high toughness and excellent in earthquake-proofing
JPH1052713A (en) Steel pipe excellent in resistance to earthquake and manufacture thereof
JPH1180900A (en) Steel tube excellent in earthquake resistance
JPH09176734A (en) Production of earthquake resistant steel tube
JPH116032A (en) Earthquake-proof welded steel tube excellent in local buckling resistance, and its production
JP2000178689A (en) Steel pipe excellent in buckling resistance, and its manufacture
JP2012193447A (en) Steel plate excellent in deformability for ultrahigh strength welded steel pipe, welded steel pipe, and method for manufacturing the same
JPH1180877A (en) Welded steel pipe excellent in earthquake resistance and fire resistance and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

EXPY Cancellation because of completion of term