JP3937998B2 - Manufacturing method of steel pipe with excellent buckling resistance - Google Patents

Manufacturing method of steel pipe with excellent buckling resistance Download PDF

Info

Publication number
JP3937998B2
JP3937998B2 JP2002298121A JP2002298121A JP3937998B2 JP 3937998 B2 JP3937998 B2 JP 3937998B2 JP 2002298121 A JP2002298121 A JP 2002298121A JP 2002298121 A JP2002298121 A JP 2002298121A JP 3937998 B2 JP3937998 B2 JP 3937998B2
Authority
JP
Japan
Prior art keywords
steel
steel pipe
less
manufacturing
buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002298121A
Other languages
Japanese (ja)
Other versions
JP2004131810A (en
Inventor
信行 石川
茂 遠藤
洋平 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002298121A priority Critical patent/JP3937998B2/en
Publication of JP2004131810A publication Critical patent/JP2004131810A/en
Application granted granted Critical
Publication of JP3937998B2 publication Critical patent/JP3937998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスパイプライン、水道管、下水管などに用いられる鋼管の製造方法に関し、特にAPI規格X52グレード以下の鋼管であって、地震などによって受ける圧縮荷重に対し優れた耐座屈性能を示すものの製造方法に関する。
【0002】
【従来の技術】
炭素鋼や低合金鋼を素材とする鋼管は、優れた経済性、溶接施工性を備えるとともに、大量にかつ安定して製造できるため、ガスパイプライン、水道配管などの流体輸送用鋼管にUOE鋼管、スパイラル鋼管、電縫鋼管およびプレスベンド鋼管として幅広く用いられている。
【0003】
これらの鋼管では、大地震が発生した場合の安全性を確保するため、耐震性を付与することが必要で降伏比(降伏応力と引張強さの比)を低くし、塑性変形により地震エネルギーを吸収する低降伏比鋼管が提案されている(例えば、特許文献1〜3参照。)。
【0004】
しかしながら、このような低降伏比鋼管では、外径/管厚比の大きな鋼管の場合において、大地震により鋼管軸方向に引張圧縮応力が繰り返し負荷されて生じる局部座屈に起因した亀裂による破断を必ずしも十分防止することはできなかった。
【0005】
また、ガスなどの流体輸送用ラインパイプでは円周方向に力が作用する内圧による延性破壊や脆性破壊に対する検討はなされてきたもの軸方向外力に関する検討は敷設時の損傷防止のための曲げ応力を対象とする程度であり、軸方向応力による損傷に関しての検討は以下に述べる程度で十分なされていないのが現状である。
【0006】
▲1▼鋼管管軸方向の引張試験による応力ー歪曲線を降伏棚のない平坦な形状とし、鋼管の耐座屈特性を向上させる(例えば、特許文献4参照。)。
【0007】
▲2▼鋼板の熱間圧延後、特定の温度域から加速冷却することにより、鋼管の応力ー歪曲線を制御し、耐座屈特性を向上させる(例えば、特許文献5〜7参照。)。
【0008】
これらの方法による鋼管はいずれも降伏棚のない応力ー歪曲線を有し、軸方向の圧縮に対し、優れた耐座屈性能を示すが、応力ー歪曲線を所望の形状とするため圧延後に加速冷却され、鋼管強度はAPI規格X65以上となり、API規格X52以下の低圧ラインパイプ用鋼管を製造することはできない。
【0009】
【特許文献1】
特開平3−173719号公報
【0010】
【特許文献2】
特開平5−117746号公報
【0011】
【特許文献3】
特開平6−264144号公報
【0012】
【特許文献4】
特開平9−196243号公報
【0013】
【特許文献5】
特開平9−176734号公報
【0014】
【特許文献6】
特開平9−202922号公報
【0015】
【特許文献7】
特開平11−279700号公報
【0016】
【発明が解決しようとする課題】
しかしながら、API規格X52以下の鋼管を用いる低圧ラインパイプにおいても、大規模地震時の安全性向上のため耐座屈特性の向上が要求されるようになり、一方、構造物の安全性確保のため、材料強度の規格において上下限強度を規定する場合が増加している状況も配慮し、強度上限を逸脱する強度上昇をもたらす加速冷却によらずに、API規格X52以下の低強度鋼管において、耐座屈特性を向上させることが望まれている。
【0017】
本発明は、大地震等の軸方向荷重による局部座屈を起こしにくい耐座屈特性に優れたAPI規格X52以下の低強度鋼管の製造方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明者等は、上記目標を達成するため鋼管の耐座屈特性におよぼす鋼板の応力ー歪み曲線、鋼組成の影響ついて鋭意検討を行い、以下の知見を得た。
【0019】
▲1▼熱間圧延後、空冷される鋼板は、空冷の過程で転位上に固溶炭素が固着され、応力ー歪み曲線に明瞭な降伏棚が現れ、且つ降伏伸びが長くなる。
【0020】
▲2▼このような応力ー歪み曲線を示す鋼板を冷間成形し、鋼管とした場合、鋼管の管軸方向で得られる応力ー歪曲線には降伏棚が観察されるため耐座屈性能が劣る。また、冷間成形により降伏棚が消失したとしても、加工硬化能に劣り、管軸方向の圧縮荷重に対し局部座屈が生じやすい。
【0021】
▲3▼圧延温度が低くなりすぎると圧延時の加工歪が残存し、鋼板の加工硬化能が低下するため、鋼管の加工硬化能も低く耐座屈性能に劣る。
【0022】
▲4▼よって、優れた耐座屈性能の鋼管を得るためには、鋼板の応力ー歪曲線を降伏伸びが小さく、且つ加工硬化能の高いものとすればよい。
【0023】
▲5▼そして、熱間圧延後空冷ままの状態で、上記のような降伏伸びが小さく、且つ、加工硬化性能に優れた鋼板は、鋼組成をC量を適切に調整したMo添加系とし、熱間圧延の圧延終了温度を適切なものとすることで得られる。
【0024】
▲6▼さらに、このような鋼板を用いた鋼管は耐座屈性能に優れるが、冷間加工により鋼管とする際において、適切に拡管を行うと、耐座屈性能は更に飛躍的に向上する。
【0025】
図1に熱間圧延後、空冷によって得られる鋼板(a)とその鋼板を用いて冷間成形によって製造した鋼管の管軸方向(b)の応力ー歪曲線の模式図を示す。
【0026】
図1(a)においてAは降伏伸びが長い場合、Bは降伏伸びは小さいが加工硬化能が低い場合を示し、これらの応力ー歪曲線を有する鋼板を用いて鋼管を製造すると、鋼管の管軸方向の応力ー歪曲線はAのように降伏伸びが残存するか、Bのように降伏棚が消失しても加工硬化能が依然として低く、鋼管としての耐座屈性能に劣る。
【0027】
これに対し、応力ー歪曲線がCのように、降伏伸びが小さく、且つ加工硬化能が高い鋼板を用いて、適切な条件で冷間成形によって鋼管とした場合、鋼管の管軸方向の応力ー歪曲線はCのように降伏棚が消失し、且つ加工硬化能が高いものとなり、耐座屈性能が極めて高い鋼管が得られる。
【0028】
本発明は以上の知見をもとに更に検討を加えてなされたものであり、すなわち、本発明は、 1.以下の工程を備えたことを特徴とする冷間加工による耐座屈性能に優れた鋼管の製造方法。
(a)質量%で、C:0.05〜0.12%、Si:0.01〜0.50%、Mn:0.5〜2.0%、Mo:0.05〜0.50%、Al:0.01〜0.08%、残部Fe及び不可避的不純物からなる鋼片を準備する工程
(b)圧延終了温度:(Ar3−10)〜(Ar3+80)℃で熱間圧延後、空冷し、鋼板とする工程。
(c)前記鋼板を冷間成形により鋼管とする工程。
(d)拡管率:0.5〜1.5%の拡管を行う造管最終工程。
【0029】
2.鋼片の成分組成に更に、Cu:0.5%以下、Ni:0.5%、Cr:0.5%以下、Nb:0.05%以下、V:0.1%以下、Ti:0.05%以下の一種又は二種以上を含有することを特徴とする1記載の冷間加工による耐座屈性能に優れた鋼管の製造方法。
【0030】
3.鋼片の成分組成に更に、Nb:0.05%以下、V:0.1%以下、Ti:0.05%以下の一種又は二種以上を含有することを特徴とする1または2記載の冷間加工による耐座屈性能に優れた鋼管の製造方法。
【0031】
4.熱間圧延後、空冷ままの鋼板の応力ー歪曲線の降伏伸びが2.0%以下であることを特徴とする1乃至3のいずれか1つに記載の冷間加工による耐座屈性能に優れた鋼管の製造方法。
【0032】
【発明の実施の形態】
本発明では、成分組成、製造条件について規定する。
1.成分組成

Cは、鋼の強度、靭性を確保し、0.05〜0.5%のMoとの複合添加により耐座屈性能を向上させるため、添加する。0.05%未満では強度が不足し、一方、0.12%を超えると靭性、溶接性が低下し、熱間圧延後、空冷ままの鋼板の降伏伸びが大きくなり耐座屈性能に悪影響を及ぼすため、0.05〜0.12%とする。
【0033】
Si
Siは、脱酸、および鋼板中のフェライト強度を低下させ、加工硬化能を向上させるため添加する。0.01%未満ではそのような硬化が得られず、一方、0.5%を超えるとHAZ靭性、溶接性を損なうため、0.01〜0.5%とする。
【0034】
Mn
Mnは、強度靭性を確保するため添加する。0.5%未満では強度が得られず、一方、2.0%を超えると靭性が低下するため、0.5〜2.0%とする。
【0035】
Mo
Moは本発明では重要な元素で、強度を確保し、0.05〜0.12%のC量との複合添加により、熱間圧延後、空冷ままの鋼板の応力ー歪曲線における降伏棚を小さくする効果が得られるため添加する。0.05%未満ではそのような効果が得られず、一方、0.5%を超えるとミクロ組織がアシュキュラーフェライト組織となり、強度が過剰となり、溶接性が損なわれるようになるため、0.05〜0.5%とする。
【0036】
Al
Alは、脱酸のため、添加する。0.01%未満ではそのような効果が得られず、0.08%を超えると清浄度が低下し、靭性を劣化させるため、0.01〜0.08%とする。
【0037】
本発明は以上が基本成分組成であるが、更に、強度靭性やHAZ靭性を向上させるため、Cu,Ni,Cr,Nb,V,Tiの一種または二種以上を含有することができる。
【0038】
Cu
Cuは、靭性の改善と強度の上昇に有効で、Moと同様に熱間圧延後、空冷ままの鋼板の降伏伸びを小さくするが、過剰に添加されると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0039】
Ni
Niは、靭性の改善と強度の上昇に有効で、Mo,Cuなどと同様に熱間圧延後、空冷ままの鋼板の降伏伸びを小さくするが、過剰に添加すると溶接性を劣化させ、製品コストを上昇させるため、添加する場合は0.5%を上限とする。
【0040】
Cr
Crは、靭性の改善と強度の上昇に有効で、過剰に添加されると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0041】
Nb
Nbは、スラブ加熱、圧延の際の粒成長を抑制し、微細組織とすることにより靭性を向上させ、また圧延後の冷却において微細炭化物を析出し強度を向上させる。0.05%を超えると溶接熱影響部の靭性を劣化させるようになるため、添加する場合は0.05%以下とする。
【0042】

Vは、熱間圧延後の冷却過程で微細炭化物として析出し、強度を向上させる。0.1%を超えると溶接熱影響部の靭性を劣化させるようになるため、添加する場合は0.1%以下とする。
【0043】
Ti
Tiは、TiNによりスラブ加熱時の粒成長を抑制し、微細組織とすることにより靭性を向上させ、溶接熱影響部の靭性も向上させる。0.05%を超えると溶接熱影響部の靭性を劣化させるため、添加する場合は0.05%以下とする。
【0044】
2.製造条件
熱間圧延の圧延終了温度
鋼管の応力ー歪み曲線を所望するものとするため、鋼板の圧延終了温度は極めて重要な製造条件であり、フェライト変態開始温度(Ar3温度)近傍となるように規定する。
【0045】
圧延終了温度がAr3−10℃未満では、圧延中に生成したフェライトに大きな加工歪みが加わり、鋼板の加工硬化能が劣化するため、鋼管の加工硬化能も同様に低くなり、耐座屈性能が劣化する。
【0046】
一方、Ar3+80℃を超えると、冷却過程で生成するフェライトが粗大となり、鋼板の降伏伸びが著しく増大し、冷間成形による鋼管であっても、鋼管の応力ー歪み曲線に降伏棚が残存し、耐座屈性能が低下するため、圧延終了温度は(Ar3−10)〜(Ar3+80)℃とする。
【0047】
尚、本発明でフェライト変態開始温度(Ar3温度)は、Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo(但し、各元素は質量%とする)により求めた。
【0048】
また、熱間圧延時のスラブ加熱温度は、靭性と圧延効率の観点から、950〜1200℃が好ましい。
【0049】
熱間圧延後の冷却
熱間圧延後の冷却は空冷とする。空冷した場合、鋼管強度はAPI規格X52の引張強度575MPa以内であるが、水冷では多量にベイナイト組織を含む鋼となり、鋼管の強度がAPI規格X52の引張強度575MPaを超えるため、熱間圧延後の冷却は空冷とする。
【0050】
鋼管成形工程
本発明では、上記鋼板を冷間成形により、鋼管とする。冷間成形とすることにより、歪みが導入され、鋼管の応力ー歪み曲線の降伏伸びが減少する。
【0051】
冷間により鋼管が成形されればUOE法、ベンディングロール法、その他いずれの方法でも良く、具体的な鋼管製造方法は特定しない。但し、造管最終工程で拡管率0.5〜1.5%の拡管を行うことを規定する。
【0052】
拡管により、鋼管管軸方向に圧縮され、バウシンガー効果により降伏強度が低下し、更に降伏伸びが消失するため、鋼管の加工硬化性が向上し耐座屈性能が著しく向上する。
【0053】
拡管率が0.5%以下ではその作用効果が得られず、一方、1.5%を超えると管周方向において、拡管による加工硬化で降伏強度が上昇し、降伏比が高くなり、また、シーム溶接部が割れやすくなるため、0.5〜1.5%とする。
【0054】
尚、上述した条件により熱間圧延後、空冷ままの鋼板を冷間成形で鋼管とした場合、耐座屈性能に優れた鋼管が得られるが、特に応力ー歪み曲線における降伏伸びを2.0%以下とした鋼板が好ましい。
【0055】
応力ー歪曲線における降伏伸びが2.0%以下の場合、造管による冷間加工と造管最終工程での拡管によって降伏伸びが容易に消失するため、鋼管の耐座屈性能が向上する。降伏伸びは、JISG0202で、上降伏点から加工硬化開始点までの歪み量とされている。
【0056】
【実施例】
表1に示す成分組成の鋼を、種々の条件の熱間圧延により、板厚10.5mmの供試鋼板とした。熱間圧延は、スラブ加熱温度1100℃、未再結晶温度域で65%の圧延をし、圧延終了温度を変化させ、圧延終了後は、室温まで空冷した。
【0057】
得られた鋼板について、圧延方向と直角に全厚試験片を採取し、応力ー歪み曲線から、降伏伸びを求めた。
【0058】
次に、これらの鋼板を種々の拡管率により外径610mmのUOE鋼管とした。鋼管の管軸方向から採取した全厚引張試験により、降伏強度、引張強度、および降伏比を求め、鋼管の引張特性とした。
【0059】
軸圧縮試験は、鋼管長1,800mmの鋼管の両端に耐圧板を取りつけ、大型圧縮試験装置によって軸方向圧縮を行い、圧縮荷重が最大になる点の歪量を、限界座屈歪みとした。
【0060】
表2に、鋼板製造条件とあわせて鋼管の引張特性、限界座屈歪みを示す。表2中、No.1〜7は本発明例で、鋼板の降伏伸びはいずれも2.0%以下で小さく、拡管率も0.5〜1.5%以内のため、限界座屈歪みは0.72〜1.02と耐座屈性能に優れている。
【0061】
一方、No.8〜13は比較例で、成分組成、製造条件のいずれかが本発明範囲外で耐座屈性能に劣っている。No.8は圧延終了温度が低く加工硬化性能に劣り、鋼板の降伏伸びが小さいにも拘わらず耐座屈性能に劣る。
【0062】
No.9は圧延終了温度が高く、鋼板の降伏伸びが大きく、耐座屈特性に劣る。No.10は、圧延終了温度は本発明範囲内であるが、造管時の拡管率が低く、限界座屈歪みに劣る。
【0063】
No.11は、Mo量が少なく、No.13はC量が多すぎるため、いずれも鋼板の降伏伸びが大きく、耐座屈特性に劣る。No.12は、Mo量が本発明範囲で多く、降伏強度がAPIーX52グレード(PSL2規格)の上限値(531MPa)を超えている。
【0064】
【表1】

Figure 0003937998
【0065】
【表2】
Figure 0003937998
【0066】
【発明の効果】
本発明によれば、耐座屈性能に優れ、大地震の際の安全性に優れたAPIX52グレード以下の鋼管が得られ、産業上極めて有用である。
【図面の簡単な説明】
【図1】応力ー歪線図を示し、(a)は鋼板、(b)は(a)に示す鋼板を用いた鋼管について求めたものを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a steel pipe used for gas pipelines, water pipes, sewage pipes, and the like, and in particular, steel pipes having API standard X52 grade or less and exhibiting excellent buckling resistance against compressive loads caused by earthquakes and the like. The present invention relates to a manufacturing method of things.
[0002]
[Prior art]
Steel pipes made of carbon steel or low alloy steel have excellent economic efficiency and weldability, and can be manufactured in large quantities and stably. Therefore, UOE steel pipes are used for fluid transport steel pipes such as gas pipelines and water pipes. Widely used as spiral steel pipes, ERW steel pipes and press bend steel pipes.
[0003]
These steel pipes must be seismic-resistant to ensure safety in the event of a large earthquake, lower the yield ratio (ratio of yield stress and tensile strength), and reduce the earthquake energy by plastic deformation. Absorbing low yield ratio steel pipes have been proposed (see, for example, Patent Documents 1 to 3).
[0004]
However, in such a low yield ratio steel pipe, in the case of a steel pipe having a large outer diameter / thickness ratio, the fracture due to cracking due to local buckling caused by repeated tensile and compressive stress in the axial direction of the steel pipe due to a large earthquake. It was not always possible to prevent it sufficiently.
[0005]
In addition, gas pipes for transporting fluids such as gas have been studied for ductile fracture and brittle fracture due to internal pressure acting in the circumferential direction, but studies on axial external force are based on bending stress to prevent damage during laying. At present, the degree of damage is not sufficiently studied as described below.
[0006]
(1) The stress-strain curve obtained by a tensile test in the axial direction of the steel pipe is made flat with no yield shelf, and the buckling resistance of the steel pipe is improved (for example, see Patent Document 4).
[0007]
{Circle around (2)} After hot rolling of the steel sheet, by accelerated cooling from a specific temperature range, the stress-strain curve of the steel pipe is controlled to improve the buckling resistance (see, for example, Patent Documents 5 to 7).
[0008]
All steel pipes produced by these methods have a stress-strain curve without yield shelves and exhibit excellent buckling resistance against axial compression, but after rolling to make the stress-strain curve a desired shape. The steel pipe strength is accelerated to API standard X65 or higher, and a steel pipe for low pressure line pipe of API standard X52 or lower cannot be manufactured.
[0009]
[Patent Document 1]
JP-A-3-173719
[Patent Document 2]
Japanese Patent Laid-Open No. 5-117746
[Patent Document 3]
JP-A-6-264144
[Patent Document 4]
Japanese Patent Laid-Open No. 9-196243 [0013]
[Patent Document 5]
JP-A-9-176734 [0014]
[Patent Document 6]
Japanese Patent Laid-Open No. 9-202922
[Patent Document 7]
JP-A-11-279700 [0016]
[Problems to be solved by the invention]
However, even in low-pressure line pipes using steel pipes of API standard X52 or lower, improvement in buckling resistance is required to improve safety during large-scale earthquakes, while ensuring the safety of structures. Considering the situation where the upper and lower limit strengths are increasing in the material strength standard, the low strength steel pipe of API standard X52 or less is resistant to accelerated cooling, which does not cause accelerated cooling that causes the strength to exceed the upper limit of strength. It is desired to improve the buckling characteristics.
[0017]
An object of this invention is to provide the manufacturing method of the low strength steel pipe below API standard X52 excellent in the buckling resistance property which is hard to raise | generate local buckling by axial loads, such as a big earthquake.
[0018]
[Means for Solving the Problems]
In order to achieve the above-mentioned goal, the present inventors diligently examined the influence of the stress-strain curve of the steel sheet and the steel composition on the buckling resistance of the steel pipe, and obtained the following knowledge.
[0019]
(1) After hot rolling, a steel sheet that is air-cooled has solid solution carbon fixed on the dislocations during the air-cooling process, a clear yield shelf appears in the stress-strain curve, and the yield elongation becomes longer.
[0020]
(2) When a steel sheet showing such a stress-strain curve is cold-formed to form a steel pipe, the yield-shelf is observed in the stress-strain curve obtained in the tube axis direction of the steel pipe. Inferior. Moreover, even if the yield shelf disappears due to cold forming, the work hardening ability is inferior, and local buckling tends to occur with respect to the compressive load in the tube axis direction.
[0021]
(3) If the rolling temperature is too low, processing strain at the time of rolling remains and the work hardening ability of the steel sheet decreases, so the work hardening ability of the steel pipe is low and the buckling resistance performance is poor.
[0022]
(4) Therefore, in order to obtain a steel tube with excellent buckling resistance, the stress-strain curve of the steel sheet should be low in yield elongation and high in work hardening ability.
[0023]
(5) And, in the state of air cooling after hot rolling, a steel sheet having a small yield elongation as described above and excellent in work hardening performance is a Mo addition system in which the steel composition is appropriately adjusted, It is obtained by making the rolling end temperature of hot rolling appropriate.
[0024]
(6) Furthermore, the steel pipe using such a steel plate is excellent in buckling resistance, but when it is made into a steel pipe by cold working, the buckling resistance is further improved dramatically if the pipe is appropriately expanded. .
[0025]
FIG. 1 shows a schematic diagram of a stress-strain curve in the tube axis direction (b) of a steel plate (a) obtained by air cooling after hot rolling and a steel pipe manufactured by cold forming using the steel plate.
[0026]
In FIG. 1A, A shows a case where the yield elongation is long, B shows a case where the yield elongation is small but the work hardening ability is low, and when a steel pipe having a stress-strain curve is produced, In the stress-strain curve in the axial direction, even if the yield elongation remains as in A or the yield shelf disappears as in B, the work hardening ability is still low and the buckling resistance performance as a steel pipe is inferior.
[0027]
On the other hand, when a steel pipe is formed by cold forming under appropriate conditions using a steel plate having a low yield elongation and high work hardening ability, such as C, the stress-strain curve, the stress in the tube axis direction of the steel pipe The strain curve disappears from the yield shelf as in C, and the work hardening ability is high, and a steel pipe with extremely high buckling resistance can be obtained.
[0028]
The present invention has been made by further study based on the above knowledge. The manufacturing method of the steel pipe excellent in the buckling-proof performance by the cold working characterized by including the following processes.
(A) In mass%, C: 0.05 to 0.12%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, Mo: 0.05 to 0.50% , Al: 0.01 to 0.08%, a step of preparing a steel slab comprising the balance Fe and inevitable impurities (b) Rolling end temperature: (Ar3-10) to (Ar3 + 80) After hot rolling at a temperature of 0 ° C., air cooling And making a steel plate.
(C) The process of making the said steel plate into a steel pipe by cold forming.
(D) Tube expansion rate: The final tube forming step for expanding the tube by 0.5 to 1.5%.
[0029]
2. In addition to the composition of the steel slab, Cu: 0.5% or less, Ni: 0.5%, Cr: 0.5% or less, Nb: 0.05% or less, V: 0.1% or less, Ti: 0 The manufacturing method of the steel pipe excellent in the buckling-proof performance by cold work of 1 characterized by containing 0.05% or less of 1 type, or 2 or more types.
[0030]
3. The component composition of the steel slab further comprises one or more of Nb: 0.05% or less, V: 0.1% or less, Ti: 0.05% or less, or 1 or 2 A method of manufacturing steel pipes with excellent buckling resistance by cold working.
[0031]
4). After the hot rolling, the yield elongation of the stress-strain curve of the steel sheet in the air-cooled state is 2.0% or less, and the buckling resistance performance by cold working according to any one of 1 to 3, Excellent steel pipe manufacturing method.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the component composition and production conditions are defined.
1. Ingredient composition C
C is added in order to secure the strength and toughness of the steel and to improve the buckling resistance performance by the combined addition with 0.05 to 0.5% of Mo. If it is less than 0.05%, the strength is insufficient. On the other hand, if it exceeds 0.12%, the toughness and weldability are deteriorated, and after hot rolling, the yield elongation of the air-cooled steel sheet becomes large, which adversely affects the buckling resistance. Therefore, the content is made 0.05 to 0.12%.
[0033]
Si
Si is added to deoxidize and reduce the strength of ferrite in the steel sheet and improve work hardening ability. If it is less than 0.01%, such curing cannot be obtained. On the other hand, if it exceeds 0.5%, the HAZ toughness and weldability are impaired.
[0034]
Mn
Mn is added to ensure strength toughness. If it is less than 0.5%, strength cannot be obtained. On the other hand, if it exceeds 2.0%, the toughness decreases, so 0.5 to 2.0%.
[0035]
Mo
Mo is an important element in the present invention, ensuring strength, and adding a C content of 0.05 to 0.12% to provide a yield shelf in the stress-strain curve of a steel sheet that has been air-cooled after hot rolling. Add to reduce the effect. If it is less than 0.05%, such an effect cannot be obtained. On the other hand, if it exceeds 0.5%, the microstructure becomes an ash ferrite structure, the strength becomes excessive, and the weldability is impaired. 05 to 0.5%.
[0036]
Al
Al is added for deoxidation. If it is less than 0.01%, such an effect cannot be obtained. If it exceeds 0.08%, the cleanliness is lowered and the toughness is deteriorated, so 0.01 to 0.08%.
[0037]
In the present invention, the basic component composition has been described above, but in order to further improve strength toughness and HAZ toughness, one or more of Cu, Ni, Cr, Nb, V, and Ti can be contained.
[0038]
Cu
Cu is effective in improving toughness and increasing strength, and after hot rolling, reduces the yield elongation of an air-cooled steel sheet in the same manner as Mo. However, if added in excess, weldability deteriorates, so it is added. In this case, the upper limit is 0.5%.
[0039]
Ni
Ni is effective in improving toughness and increasing strength. Like Mo and Cu, Ni reduces the yield elongation of steel sheets in the air-cooled state after hot rolling, but if added in excess, the weldability deteriorates and the product cost increases. When adding, the upper limit is 0.5%.
[0040]
Cr
Cr is effective for improving toughness and increasing strength, and if added excessively, weldability deteriorates. Therefore, when added, the upper limit is 0.5%.
[0041]
Nb
Nb suppresses grain growth during slab heating and rolling, improves the toughness by forming a fine structure, and precipitates fine carbides in cooling after rolling to improve the strength. If it exceeds 0.05%, the toughness of the weld heat-affected zone will be deteriorated.
[0042]
V
V precipitates as fine carbides in the cooling process after hot rolling, and improves the strength. If it exceeds 0.1%, the toughness of the weld heat-affected zone will be deteriorated.
[0043]
Ti
Ti suppresses grain growth at the time of slab heating with TiN, improves the toughness by forming a fine structure, and also improves the toughness of the weld heat affected zone. If it exceeds 0.05%, the toughness of the weld heat-affected zone is deteriorated.
[0044]
2. Production conditions Hot rolling rolling end temperature In order to obtain the desired stress-strain curve of the steel pipe, the rolling end temperature of the steel sheet is a very important manufacturing condition, so that it is close to the ferrite transformation start temperature (Ar3 temperature). Stipulate.
[0045]
When the rolling end temperature is less than Ar3-10 ° C., a large work strain is added to the ferrite generated during rolling, and the work hardening ability of the steel sheet deteriorates. Therefore, the work hardening ability of the steel pipe is similarly lowered, and the buckling resistance is improved. to degrade.
[0046]
On the other hand, when Ar3 + 80 ° C is exceeded, the ferrite produced in the cooling process becomes coarse, the yield elongation of the steel sheet increases remarkably, and even in a steel pipe by cold forming, a yield shelf remains in the stress-strain curve of the steel pipe, Since the buckling resistance is lowered, the rolling end temperature is (Ar3-10) to (Ar3 + 80) ° C.
[0047]
In the present invention, the ferrite transformation start temperature (Ar3 temperature) was determined from Ar3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (where each element is in mass%).
[0048]
In addition, the slab heating temperature during hot rolling is preferably 950 to 1200 ° C. from the viewpoint of toughness and rolling efficiency.
[0049]
Cooling after hot rolling Cooling after hot rolling is air cooling. In the case of air cooling, the steel pipe strength is within 575 MPa of API standard X52 tensile strength, but in water cooling, the steel has a large amount of bainite structure, and the strength of the steel pipe exceeds the tensile strength of 575 MPa of API standard X52. Cooling is air cooling.
[0050]
Steel Pipe Forming Process In the present invention, the steel sheet is made into a steel pipe by cold forming. By cold forming, strain is introduced and the yield elongation of the stress-strain curve of the steel pipe is reduced.
[0051]
If the steel pipe is formed by cold, any method such as UOE method, bending roll method and the like may be used, and a specific method for manufacturing the steel pipe is not specified. However, it is specified that the pipe expansion rate is 0.5 to 1.5% in the final pipe forming process.
[0052]
By expanding the pipe, the steel pipe is compressed in the axial direction, the yield strength is lowered by the Bauschinger effect, and the yield elongation disappears, so that the work hardening of the steel pipe is improved and the buckling resistance is remarkably improved.
[0053]
When the tube expansion ratio is 0.5% or less, the effect cannot be obtained. On the other hand, when the tube expansion ratio exceeds 1.5%, the yield strength increases due to work hardening by tube expansion in the pipe circumferential direction, and the yield ratio increases. Since the seam weld is easily broken, the content is set to 0.5 to 1.5%.
[0054]
In addition, when hot-rolled steel sheet is made into a steel pipe by cold forming after hot rolling under the above-described conditions, a steel pipe excellent in buckling resistance can be obtained, but the yield elongation in the stress-strain curve is particularly 2.0. % Or less is preferred.
[0055]
When the yield elongation in the stress-strain curve is 2.0% or less, the yield elongation easily disappears by cold working by pipe forming and pipe expansion in the final pipe forming process, so that the buckling resistance performance of the steel pipe is improved. The yield elongation is JISG0202, which is the amount of strain from the upper yield point to the work hardening start point.
[0056]
【Example】
Steel having the component composition shown in Table 1 was subjected to hot rolling under various conditions to obtain a test steel plate having a thickness of 10.5 mm. In the hot rolling, 65% rolling was performed at a slab heating temperature of 1100 ° C. and a non-recrystallization temperature range, the rolling end temperature was changed, and after the end of rolling, air cooling was performed to room temperature.
[0057]
About the obtained steel plate, the full thickness test piece was extract | collected at right angles to the rolling direction, and the yield elongation was calculated | required from the stress-strain curve.
[0058]
Next, these steel sheets were made into UOE steel pipes having an outer diameter of 610 mm with various tube expansion rates. Yield strength, tensile strength, and yield ratio were determined by a full thickness tensile test taken from the direction of the pipe axis of the steel pipe, and were used as the tensile characteristics of the steel pipe.
[0059]
In the axial compression test, pressure-resistant plates were attached to both ends of a steel pipe having a length of 1,800 mm, axial compression was performed with a large compression test apparatus, and the amount of strain at the point where the compression load was maximized was defined as critical buckling strain.
[0060]
Table 2 shows the tensile properties and the critical buckling strain of the steel pipe together with the steel sheet production conditions. In Table 2, No. Nos. 1 to 7 are examples of the present invention. The yield elongation of the steel sheets is small at 2.0% or less and the tube expansion rate is within 0.5 to 1.5%, so that the critical buckling strain is 0.72 to 1. 02 and excellent buckling resistance.
[0061]
On the other hand, no. Nos. 8 to 13 are comparative examples, and either the component composition or the production conditions are out of the scope of the present invention, and the buckling resistance performance is inferior. No. No. 8 has a low rolling end temperature and is inferior in work hardening performance, and is inferior in buckling resistance even though the yield elongation of the steel sheet is small.
[0062]
No. No. 9 has a high rolling end temperature, a large yield elongation of the steel sheet, and is inferior in buckling resistance. No. No. 10, the rolling end temperature is within the range of the present invention, but the tube expansion rate at the time of pipe making is low and the critical buckling strain is inferior.
[0063]
No. No. 11 has a small amount of Mo. Since No. 13 has too much C content, the yield elongation of the steel sheet is large and the buckling resistance is inferior. No. No. 12, the amount of Mo is large in the range of the present invention, and the yield strength exceeds the upper limit (531 MPa) of API-X52 grade (PSL2 standard).
[0064]
[Table 1]
Figure 0003937998
[0065]
[Table 2]
Figure 0003937998
[0066]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the steel pipe below the APIX52 grade excellent in buckling-proof performance and excellent in the safety | security at the time of a big earthquake is obtained, and it is very useful industrially.
[Brief description of the drawings]
FIG. 1 shows a stress-strain diagram, wherein (a) shows a steel plate, and (b) shows a steel pipe using the steel plate shown in (a).

Claims (4)

以下の工程を備えたことを特徴とする冷間加工による耐座屈性能に優れた鋼管の製造方法。
1.質量%で、C:0.05〜0.12%、Si:0.01〜0.50%、Mn:0.5〜2.0%、Mo:0.05〜0.50%、Al:0.01〜0.08%、残部Fe及び不可避的不純物からなる鋼片を準備する工程
2.圧延終了温度:(Ar3−10)〜(Ar3+80)℃で熱間圧延後、空冷し、鋼板とする工程。
3.前記鋼板を冷間成形により鋼管とする工程。
4.拡管率:0.5〜1.5%の拡管を行う造管最終工程。
The manufacturing method of the steel pipe excellent in the buckling-proof performance by the cold working characterized by including the following processes.
1. In mass%, C: 0.05 to 0.12%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, Mo: 0.05 to 0.50%, Al: 1. Preparing a steel slab comprising 0.01 to 0.08%, the balance Fe and inevitable impurities Rolling end temperature: Step of hot-rolling at (Ar3-10) to (Ar3 + 80) ° C. and then air-cooling to form a steel plate.
3. A step of forming the steel plate into a steel pipe by cold forming.
4). Tube expansion rate: The final tube forming step for expanding the tube by 0.5 to 1.5%.
鋼片の成分組成に更に、Cu:0.5%以下、Ni:0.5%、Cr:0.5%以下の一種又は二種以上を含有することを特徴とする請求項1記載の冷間加工による耐座屈性能に優れた鋼管の製造方法。The component composition of the steel slab further comprises one or more of Cu: 0.5% or less, Ni: 0.5%, Cr: 0.5% or less. A method of manufacturing steel pipes with excellent buckling resistance by hot working. 鋼片の成分組成に更に、Nb:0.05%以下、V:0.1%以下、Ti:0.05%以下の一種又は二種以上を含有することを特徴とする請求項1または2記載の冷間加工による耐座屈性能に優れた鋼管の製造方法。The component composition of the steel slab further comprises one or more of Nb: 0.05% or less, V: 0.1% or less, and Ti: 0.05% or less. The manufacturing method of the steel pipe excellent in the buckling-proof performance by the cold work of description. 熱間圧延後、空冷ままの鋼板の応力ー歪曲線の降伏伸びが2.0%以下であることを特徴とする請求項1ないし3記載のいずれか一つに記載の冷間加工による耐座屈性能に優れた鋼管の製造方法。The yield resistance of the stress-strain curve of the steel sheet as it is air-cooled after hot rolling is 2.0% or less, the seating resistance by cold working according to any one of claims 1 to 3. A method for manufacturing steel pipes with excellent bending performance.
JP2002298121A 2002-10-11 2002-10-11 Manufacturing method of steel pipe with excellent buckling resistance Expired - Lifetime JP3937998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298121A JP3937998B2 (en) 2002-10-11 2002-10-11 Manufacturing method of steel pipe with excellent buckling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298121A JP3937998B2 (en) 2002-10-11 2002-10-11 Manufacturing method of steel pipe with excellent buckling resistance

Publications (2)

Publication Number Publication Date
JP2004131810A JP2004131810A (en) 2004-04-30
JP3937998B2 true JP3937998B2 (en) 2007-06-27

Family

ID=32287639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298121A Expired - Lifetime JP3937998B2 (en) 2002-10-11 2002-10-11 Manufacturing method of steel pipe with excellent buckling resistance

Country Status (1)

Country Link
JP (1) JP3937998B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720344B2 (en) * 2005-07-29 2011-07-13 Jfeスチール株式会社 Steel pipe, pipeline using the steel pipe
CN101133312B (en) * 2005-12-15 2013-07-17 杰富意钢铁株式会社 Steel pipe partial buckling performance evaluation method, steel pipe design method, steel pipe manufacturing method and steel pipe
CN105925899B (en) * 2016-07-13 2017-11-14 达力普石油专用管有限公司 A kind of quenched and tempered state X52 hydrogen sulfide corrosion resistant seamless line pipes and preparation method thereof
CN106282799A (en) * 2016-09-05 2017-01-04 攀钢集团攀枝花钢铁研究院有限公司 Think gauge X52 pipe line steel and production method thereof
CN108754307B (en) * 2018-05-24 2020-06-09 山东钢铁集团日照有限公司 Method for producing economical cold-rolled DP780 steel with different yield strength grades
CN115558862A (en) * 2022-10-18 2023-01-03 包头钢铁(集团)有限责任公司 L360NX52N steel pipe with wall thickness of 11-16 mm and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004131810A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP5783229B2 (en) Hot-rolled steel sheet and manufacturing method thereof
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
JP5348383B2 (en) High toughness welded steel pipe with excellent crushing strength and manufacturing method thereof
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
JP6123713B2 (en) Thick-walled hot-rolled steel strip and method for producing the same
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP2008274355A (en) Method for manufacturing hot-rolled steel plate superior in surface quality, fracture toughness and sour corrosion resistance
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
JP3937998B2 (en) Manufacturing method of steel pipe with excellent buckling resistance
JP5381234B2 (en) Manufacturing method of line pipe with high compressive strength
JP3846246B2 (en) Steel pipe manufacturing method
JP5640792B2 (en) High toughness UOE steel pipe excellent in crushing strength and manufacturing method thereof
US20120247605A1 (en) Molybdenum-Free, High-Strength, Low-Alloy X80 Steel Plates Formed by Temperature-Controlled Rolling Without Accelerated Cooling
CN116043107A (en) Nb 450 MPa-level building structure anti-seismic weather-resistant steel plate and preparation method thereof
JP2002206140A (en) Steel tube and production method therefor
JP3470632B2 (en) Steel pipe for line pipe excellent in buckling resistance and method of manufacturing the same
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP3780956B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP2002226945A (en) Steel tube and manufacturing method
JP3679179B2 (en) Steel pipe with excellent earthquake resistance
JP2009084599A (en) Method for manufacturing steel sheet and steel pipe for ultrahigh-strength line pipe superior in deformability and low-temperature toughness
JP3336842B2 (en) Manufacturing method of earthquake-resistant steel pipe
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Ref document number: 3937998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term