JP2002206140A - Steel tube and production method therefor - Google Patents

Steel tube and production method therefor

Info

Publication number
JP2002206140A
JP2002206140A JP2000401886A JP2000401886A JP2002206140A JP 2002206140 A JP2002206140 A JP 2002206140A JP 2000401886 A JP2000401886 A JP 2000401886A JP 2000401886 A JP2000401886 A JP 2000401886A JP 2002206140 A JP2002206140 A JP 2002206140A
Authority
JP
Japan
Prior art keywords
pipe
steel
steel pipe
tube
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401886A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ishikawa
信行 石川
Shigeru Endo
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000401886A priority Critical patent/JP2002206140A/en
Publication of JP2002206140A publication Critical patent/JP2002206140A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel tube which has an excellent buckling resisting performance and a high internal pressure fracture performance, and a production method therefor. SOLUTION: In the steel tube, provided that the yield strength and tensile strength in the circumferential direction of the tube are respectively defined as YSC and TSC, and the yield strength and tensile strength in the axial direction of the tube respectively as YSL and TSL, YSL/YSC<=0.9 and the yield ratio in the axial direction of the tube: YSL/TSL<=85% are satisfied. The steel tube is obtained by subjecting a steel containing, by mass, 0.03 to 0.15% C, 0.01 to 1% Si and 0.5 to 2.0% Mn to hot rolling, thereafter cooling the steel at the cooling starting temperature of (Ar3+40) to (Ar3-80) deg.C at the cooling rate of >=2 deg.C/sec to obtain a steel sheet, and subjecting the steel sheet to cold forming at the tube expansion rate of >=0.4% in the final stage of tube making.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスパイプライン
や水道配管等の流体輸送用配管、貯蔵用埋設管などに好
適な鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe suitable for a fluid transport pipe such as a gas pipeline or a water pipe, a buried pipe for storage, and the like.

【0002】[0002]

【従来の技術】UOE鋼管、電縫鋼管、スパイラル鋼
管、プレスベンド鋼管等の炭素鋼鋼管あるいは低合金鋼
鋼管は大量にかつ安定して製造出来るため、その優れた
経済性や溶接施工性とあいまって、ガスパイプラインや
水道配管等の流体の輸送用配管として広く用いられてい
る。しかしながら、上記用途に用いられる鋼管には、外
径/管厚比が大きいものが多く、大地震が発生した場
合、鋼管の長手方向に引張および圧縮の大きな力が繰返
し加わる結果、局部座屈を起こし、座屈に起因した亀裂
が、破断をもたらす場合もある。
2. Description of the Related Art Carbon steel pipes such as UOE steel pipes, electric resistance welded steel pipes, spiral steel pipes, and press-bend steel pipes and low alloy steel pipes can be manufactured in large quantities and in a stable manner. It is widely used as a pipe for transporting fluids such as gas pipelines and water pipes. However, many steel pipes used for the above applications have a large outer diameter / pipe thickness ratio, and when a large earthquake occurs, large tensile and compressive forces are repeatedly applied in the longitudinal direction of the steel pipe, resulting in local buckling. Raising and cracking due to buckling may result in fracture.

【0003】このような圧縮の軸力による局部座屈への
対策に対して、従来、例えば、特開平3−173719
号公報、特開平5−65535号公報、特開平5−11
7746号公報、特開平5−117747号公報、特開
平5−156357号公報、特開平6−49540号公
報、特開平6−49541号公報、特開平6−2641
43号公報、特開平6−264144号公報等には、耐
震鋼管として、降伏応力と引張強さの比である降伏比を
下げ、塑性変形によるエネルギー吸収を利用した低降伏
比鋼管が提案されているが、上記耐震鋼管は耐座屈性能
が劣っていた。
Conventionally, measures against local buckling due to the axial force of compression have been proposed in, for example, Japanese Patent Application Laid-Open No. 3-173719.
JP, JP-A-5-65535, JP-A-5-11
7746, JP-A-5-117747, JP-A-5-156357, JP-A-6-49540, JP-A-6-49541, JP-A-6-2641
No. 43, JP-A-6-264144 and the like propose a low yield ratio steel pipe as an earthquake-resistant steel pipe, which lowers the yield ratio, which is the ratio of yield stress to tensile strength, and utilizes energy absorption by plastic deformation. However, the above-mentioned earthquake-resistant steel pipe was inferior in buckling resistance.

【0004】上記問題を解決する事を目的として特開平
9−196244号公報、特開平10−52713号公
報、特開平11−6032号公報では、管軸方向の引張
試験で得られる応力−歪曲線の加工硬化指数(n値)を
高める事によって耐座屈性能高めた耐震性に優れた鋼管
が開示されている。
For the purpose of solving the above problems, Japanese Patent Application Laid-Open Nos. 9-196244, 10-52713 and 11-6032 disclose a stress-strain curve obtained by a tensile test in the tube axis direction. A steel pipe having excellent buckling resistance and excellent earthquake resistance by increasing the work hardening index (n value) of the steel pipe is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
9−196244号公報、特開平10−52713号公
報、特開平11−6032号公報に記載の技術は、管周
方向の強度に関しては考慮がなされていないため、耐内
圧破壊性能が十分とは言えない。
However, the techniques described in JP-A-9-196244, JP-A-10-52713, and JP-A-11-6032 take into consideration the strength in the circumferential direction of the tube. Therefore, it cannot be said that the internal pressure breaking resistance is sufficient.

【0006】また、近年、ガス等の流体輸送用ラインパ
イプでは、高圧化による輸送効率の向上、施工コスト低
減または貯蔵効率の向上などに対する要望が高まってお
り、その要望に対応してより高い耐内圧破壊性能を持っ
た高強度鋼管の開発が盛んに進められている。しかし、
そのような高強度鋼管は一般的に降伏比が高いだけでな
く、耐座屈特性に関する考慮はほとんどなされていない
ため、埋設時の曲げ応力によって座屈を生じる可能性が
懸念されている。
In recent years, in line pipes for transporting fluids such as gas, there has been an increasing demand for higher transport efficiency due to a higher pressure, a reduction in construction cost or an improvement in storage efficiency, etc. The development of high-strength steel pipes with internal pressure fracture performance is being actively pursued. But,
Such high-strength steel pipes generally have a high yield ratio and little consideration is given to buckling resistance properties. Therefore, there is a concern that buckling may occur due to bending stress during embedding.

【0007】以上述べたように、高い耐座屈性能と優れ
た耐内圧破壊性能を兼ね備えた鋼管は未だ提案されてい
ない。
As described above, a steel pipe having both high buckling resistance and excellent internal pressure fracture resistance has not yet been proposed.

【0008】本発明は、上記問題点に鑑みなされたもの
で、大地震に地盤変動等やパイプラインの敷設時に生じ
る圧縮応力や曲げ応力に対して局部座屈を起こしにく
く、優れた耐座屈性能を有し、かつ高い内圧破壊性能を
兼ね備えた鋼管及びその製造方法を提供することを目的
とする。
The present invention has been made in view of the above-mentioned problems, and it is hard to cause local buckling against a compressive stress or a bending stress generated at the time of laying a pipeline due to ground deformation or the like due to a large earthquake. An object of the present invention is to provide a steel pipe having high performance and high internal pressure fracture performance, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、鋼管の圧縮軸力に対する耐座屈性能
について鋭意検討を行った。その結果、鋼管の軸方向と
周方向の引張特性をそれぞれ制御する事によって、耐座
屈性能及び耐内圧破壊性能が大きく向上するという知見
を得た。すなわち、管周方向の降伏強度を管軸方向より
も高め、さらに管軸方向の降伏比を一定値以下に抑制す
ることによって、鋼管の圧縮軸力に対する耐座屈性能及
び耐内圧破壊性能が大幅に向上することを知見した。
Means for Solving the Problems In order to achieve the above object, the present inventors have intensively studied the buckling resistance of a steel pipe against a compressive axial force. As a result, it was found that by controlling the tensile properties in the axial direction and the circumferential direction of the steel pipe, respectively, the buckling resistance and the internal pressure fracture resistance are greatly improved. In other words, the yield strength in the circumferential direction of the pipe is higher than that in the pipe axis direction, and the yield ratio in the pipe axis direction is suppressed to a certain value or less. Was found to improve.

【0010】本発明はかかる知見に基づきなされたもの
で、以下のような構成を有する。
[0010] The present invention has been made based on such knowledge, and has the following configuration.

【0011】[1]管周方向の降伏強度及び引張強度をそ
れぞれYSC及びTSC、管軸方向の降伏強度及び引張強
度をそれぞれYSL及びTSLとしたときに、YSL/Y
C≦0.9、かつ管軸方向の降伏比:YSL/TSL
85%を満たすことを特徴とする鋼管。
[0011] [1] tube circumferential direction of the yield strength and tensile strength, respectively YS C and TS C, in the tube axis direction yield strength and tensile strength when formed into a YS L and TS L respectively, YS L / Y
S C ≦ 0.9 and the yield ratio in the tube axis direction: YS L / TS L
A steel pipe characterized by satisfying 85%.

【0012】[2]前記[1]において、mass%で、
C:0.03〜0.15%、Si:0.01〜1%、M
n:0.5〜2.0%を含有することを特徴とする鋼
管。
[2] In the above [1], mass%
C: 0.03 to 0.15%, Si: 0.01 to 1%, M
n: a steel pipe containing 0.5 to 2.0%.

【0013】[3] 前記[2]において、さらに、mas
s%で、Cu:0.05〜0.5%、Ni:0.05〜
0.5%、Cr:0.05〜0.5%、Mo:0.05
〜0.5%、Nb:0.005〜0.1%、V:0.0
05〜0.1%、及びTi:0.005〜0.1%の群
から選択された1種または2種以上を含有することを特
徴とする鋼管。
[3] In the above [2], mas is further added.
s%, Cu: 0.05-0.5%, Ni: 0.05-
0.5%, Cr: 0.05 to 0.5%, Mo: 0.05
0.5%, Nb: 0.005 to 0.1%, V: 0.0
A steel pipe containing one or two or more selected from the group of 0.05 to 0.1% and Ti: 0.005 to 0.1%.

【0014】[4]mass%で、C:0.03〜0.1
5%、Si:0.01〜1%、Mn:0.5〜2.0%
を含有する鋼を熱間圧延した後、冷却開始温度:(Ar
3+40)〜(Ar3−80)℃、冷却速度:2℃/s
ec以上で冷却して得られた鋼板を、造管最終工程にお
ける拡管率:0.4%以上で冷間成形して造管すること
により、YSL/YSC≦0.9、かつ管軸方向の降伏
比:YSL/TSL≦85%を満足する鋼管を得ることを
特徴とする鋼管の製造方法。ただし、YSC:鋼管の管
周方向の降伏強度、TSC:鋼管の管周方向の引張強
度、YSL:管軸方向の降伏強度、TSL:管軸方向の引
張強度。
[4] In mass%, C: 0.03 to 0.1
5%, Si: 0.01-1%, Mn: 0.5-2.0%
After hot-rolling a steel containing, the cooling start temperature: (Ar
3 + 40) to (Ar3-80) ° C, cooling rate: 2 ° C / s
The steel sheet obtained by cooling at a temperature of at least ec is cold-formed at a pipe expansion ratio of 0.4% or more in the final pipe-forming step to form a pipe, so that YS L / YS C ≦ 0.9 and the pipe axis. A method for producing a steel pipe, comprising obtaining a steel pipe satisfying a yield ratio in the direction: YS L / TS L ≦ 85%. Here, YS C : yield strength in the circumferential direction of the steel pipe, TS C : tensile strength in the circumferential direction of the steel pipe, YS L : yield strength in the axial direction of the pipe, TS L : tensile strength in the axial direction of the pipe.

【0015】[5]mass%で、C:0.03〜0.1
5%、Si:0.01〜1%、Mn:0.5〜2.0%
を含み、かつ、Cu:0.05〜0.5%、Ni:
0.05〜0.5%、Cr:0.05〜0.5%、M
o:0.05〜0.5%、Nb:0.005〜0.1
%、V:0.005〜0.1%、Ti:0.005〜
0.1% の1種または2種以上を含有する鋼を熱間圧
延した後、冷却開始温度:(Ar3+ 40)〜(Ar3
−80)℃、冷却速度:2℃/sec以上で冷却して得
られた鋼板を、造管最終工程における拡管率:0.4%
以上で冷間成形して造管することにより、YSL/YSC
≦0.9、かつ管軸方向の降伏比:YSL/TSL≦85
%を満足する鋼管を得ることを特徴とする鋼管の製造方
法。ただし、YS C:鋼管の管周方向の降伏強度、T
C:鋼管の管周方向の引張強度、YSL:管軸方向の降
伏強度、TSL:管軸方向の引張強度。
[5] Mass%, C: 0.03 to 0.1
5%, Si: 0.01-1%, Mn: 0.5-2.0%
 And Cu: 0.05-0.5%, Ni:
0.05-0.5%, Cr: 0.05-0.5%, M
o: 0.05-0.5%, Nb: 0.005-0.1
%, V: 0.005 to 0.1%, Ti: 0.005 to
Hot-pressing steel containing 0.1% or more of one or more
After extending, the cooling start temperature: (Ar3 + 40) to (Ar3 + 40)
-80) ° C, cooling rate: obtained by cooling at 2 ° C / sec or more
The expanded steel sheet in the final process of pipe making: 0.4%
By cold forming and pipe forming, YSL/ YSC
≦ 0.9 and the yield ratio in the tube axis direction: YSL/ TSL≦ 85
% Of steel pipes characterized by obtaining steel pipes satisfying%
Law. However, YS C: Yield strength of steel pipe in circumferential direction, T
SC: Tensile strength of steel pipe in the circumferential direction, YSL: Downward in the pipe axis direction
Yield strength, TSL: Tensile strength in the pipe axis direction.

【0016】なお、本明細書において、鋼の成分を示す
%はすべてmass%である。
In this specification, all the percentages indicating the components of steel are mass%.

【0017】[0017]

【発明の実施の形態】本発明は管周方向と管軸方向にお
ける機械的特性の異方性を得ること、すなわち、管周方
向の降伏強度を管軸方向よりも高め、さらに管軸方向の
降伏比を一定値以下に抑制することによって、鋼管の圧
縮軸力に対する耐座屈性能及び耐内圧破壊性能を大幅に
向上させることを骨子とする。以下に本発明に至った経
緯とその限定理由の詳細を述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides anisotropy of mechanical properties in the pipe circumferential direction and the pipe axial direction, that is, increases the yield strength in the pipe circumferential direction as compared with the pipe axial direction, The essence of the invention is to significantly improve the buckling resistance against compression axial force and the internal pressure fracture resistance of the steel pipe by suppressing the yield ratio to a certain value or less. Hereinafter, details of the circumstances leading to the present invention and the reasons for the limitation will be described.

【0018】鋼管の局部座屈(塑性座屈)は外力を受け
たときの管軸方向の塑性歪分布が局所的に集中すること
によって生じる。この時管軸方向に圧縮変形が進行する
と同時に、管周方向では引張変形を生じている。ここ
で、管周方向において高い降伏強度を有していれば、管
周方向の引張変形が制限され、これによって管軸方向の
圧縮変形の局所的な集中も抑制する事ができる。そし
て、管軸方向の低降伏比化によって塑性化領域の軸方向
の伝播が容易になり、局所的な歪の集中がさらに抑制さ
れるため、これらの相乗効果によって耐座屈性能が大幅
に向上する。
Local buckling (plastic buckling) of a steel pipe is caused by local concentration of plastic strain distribution in the pipe axis direction when an external force is applied. At this time, at the same time as the compressive deformation progresses in the tube axis direction, tensile deformation occurs in the tube circumferential direction. Here, if the pipe has a high yield strength in the circumferential direction of the pipe, the tensile deformation in the circumferential direction of the pipe is restricted, and thereby local concentration of compressive deformation in the axial direction of the pipe can be suppressed. The lower yield ratio in the tube axis direction facilitates the axial propagation of the plasticized region and further suppresses the local concentration of strain. I do.

【0019】そして、この様な管周方向と管軸方向にお
ける機械的特性の異方性を得るためには、特定の成分を
有する鋼を用いて熱間圧延を行い、鋼の成分によって決
まる変態温度近傍またはそれ以下の温度から加速冷却を
行って、金属組織をベイナイトまたはマルテンサイトを
含んだ組織とする事によって得る事が可能である。さら
に冷間成形により鋼管とした後に特定の拡管率以上で拡
管を施す事によって、それによるバウシンガー効果で管
軸方向の強度を低下させ、最適な管軸方向及び管周方向
の強度特性バランスを得る事が可能となる。
In order to obtain such anisotropy of mechanical properties in the pipe circumferential direction and the pipe axial direction, hot rolling is performed using steel having a specific component, and the transformation determined by the steel component is performed. The metal structure can be obtained by performing accelerated cooling from a temperature near or below the temperature to make the metal structure a structure containing bainite or martensite. Furthermore, after forming the steel pipe by cold forming, the pipe is expanded at a specific expansion rate or more, thereby reducing the strength in the pipe axis direction due to the Bauschinger effect, and balancing the optimum strength characteristics in the pipe axis direction and pipe circumferential direction. Can be obtained.

【0020】一方、鋼管の内圧に対しては管軸方向の強
度を高める事が重要である。上述のように管軸方向に対
して管周方向の降伏強度を高める事によって耐座屈性能
と耐内圧破壊性能を同時に向上する事が可能となるが、
さらに、鋼の成分と鋼板の製造方法を特定する事によっ
て、高いシャルピー吸収エネルギー値を付与する事がで
き、不安定破壊に対しても高い抵抗力を有する鋼管を得
る事が可能となる。
On the other hand, it is important to increase the strength in the pipe axis direction against the internal pressure of the steel pipe. As described above, by increasing the yield strength in the pipe circumferential direction with respect to the pipe axis direction, it is possible to simultaneously improve buckling resistance and internal pressure fracture resistance,
Further, by specifying the composition of the steel and the method of manufacturing the steel sheet, a high Charpy absorbed energy value can be provided, and a steel pipe having a high resistance to unstable fracture can be obtained.

【0021】以上より、本発明の鋼管は、YSL/YSC
≦0.9、かつ管軸方向の降伏比:YSL/TSL≦85
%を満たすことが必要であり、これらが本発明において
最も重要な要件である。以下、これについて詳細に説明
する。ここで、YSL、YSC、TSL及びTSCは以下の
ように定義する。
As described above, the steel pipe of the present invention has a YS L / YS C
≦ 0.9 and the yield ratio in the tube axis direction: YS L / TS L ≦ 85
%, Which are the most important requirements in the present invention. Hereinafter, this will be described in detail. Here, YS L, YS C, TS L and TS C are defined as follows.

【0022】 YSL:管軸方向の降伏強度、 YSC:管周方向の降伏強度 TSL:管軸方向の引張強度、 TSC:管周方向の引張強度 本発明において、管軸方向の降伏強度と管周方向の降伏
強度の比率を示すYS L/YSCは0.9以下とする。本
発明の特徴は管周方向の塑性変形を抑制する事で管軸方
向に塑性域の伝播を容易にし、局所的な変形を抑制する
事にあり、YS L/YSCが0.9を超える場合は、その
効果が十分得られないために管軸方向の局所的な圧縮変
形の集中を生じ易くなり座屈ひずみが低下する。
YSL: Yield strength in pipe axis direction, YSC: Yield strength in pipe circumferential direction TSL: Tensile strength in the pipe axis direction, TSC: Tensile strength in pipe circumferential direction In the present invention, yield strength in pipe axis direction and yield strength in pipe circumferential direction
YS indicating the ratio of intensity L/ YSCIs set to 0.9 or less. Book
The feature of the invention is that by suppressing plastic deformation in the circumferential direction of the pipe,
Facilitates the propagation of the plastic zone in the direction and suppresses local deformation
It's in the matter, YS L/ YSCIs greater than 0.9,
Local compression change in the tube axis direction due to insufficient effect
Concentration of shapes tends to occur, and buckling strain is reduced.

【0023】本発明において、管軸方向の降伏比:YS
L/TSLは85%以下とする。管軸方向の降伏比:YS
L/TSLを低下させる事によって管軸方向の塑性化領域
の軸方向への伝播を促進し、管軸方向の局所的な圧縮変
形の集中を防ぐことで、耐座屈性能が改善される。しか
し、管軸方向の降伏比:YSL/TSLが85%を超える
と、その効果が十分に得られないために管軸方向の局所
的な歪の集中を招きやすくなり座屈歪が低下する。
In the present invention, the yield ratio in the tube axis direction: YS
L / TS L shall be 85% or less. Yield ratio in tube axis direction: YS
Promote the propagation in the axial direction of the plasticized region in the tube axis direction by reducing the L / TS L, by preventing local concentration of compressive deformation of the tube axis direction, is improved buckling resistance ability . However, if the yield ratio in the tube axis direction: YS L / TS L exceeds 85%, the effect cannot be obtained sufficiently, so that local strain is likely to be concentrated in the tube axis direction, and buckling strain is reduced. I do.

【0024】また、管軸方向と管周方向の引張強度に関
してはその比率(TSL/TSC)が0.9≦TSL/T
C≦1.1を満足する事が望ましい。圧縮または曲げ
荷重が作用する場合の鋼管の座屈開始歪は高々数%であ
るが、座屈開始歪を超えるような大きな変形を受けた場
合、管軸方向と管周方向とで引張強度の差が大きいと、
塑性流動の異方性が加速されある特定の方向でき裂を発
生しやすくなり、地盤振動によって逆方向の荷重を受け
たときに脆性破壊を生じる危険性がある。管軸方向の引
張強度と管周方向の引張強度の比率が0.9≦TSL
TSC≦1.1であれば上記問題を解消することができ
る。
The ratio (TS L / TS C ) of the tensile strength in the pipe axis direction and the pipe circumferential direction is 0.9 ≦ TS L / T
It is desirable to satisfy S C ≦ 1.1. When a compressive or bending load is applied, the buckling initiation strain of a steel pipe is at most several percent, but if it undergoes a large deformation that exceeds the buckling initiation strain, the tensile strength in the pipe axis direction and in the pipe circumferential direction decreases. If the difference is large,
The anisotropy of the plastic flow is accelerated, cracks are easily generated in a specific direction, and there is a danger of brittle fracture when receiving a load in the opposite direction due to ground vibration. The ratio of the tensile strength in the pipe axis direction to the tensile strength in the pipe circumferential direction is 0.9 ≦ TS L /
If TS C ≦ 1.1, the above problem can be solved.

【0025】なお、管周方向の引張試験は、一般的に鋼
管から切り出した曲率を有する全厚試験片を、プレス矯
正によって平板としたものを使用するが、矯正によって
塑性変形を受けるため、管周方向の正確な材料特性を求
める事はできない。そのため、本発明で用いる管周方向
の引張特性は、矯正を受けていない鋼管から切り出した
丸棒試験片によって評価するものとする。また、管軸方
向に関しては通常矯正を行わないので、全厚試験片、丸
棒試験片のどちらを用いても良いものとする。
In the tensile test in the circumferential direction of the pipe, generally, a full-thickness test piece having a curvature cut out of a steel pipe is made into a flat plate by press straightening. Accurate circumferential material properties cannot be determined. Therefore, the tensile properties in the circumferential direction of the pipe used in the present invention are to be evaluated by using a round bar specimen cut out from an uncorrected steel pipe. In addition, since correction is not normally performed in the tube axis direction, either a full thickness test piece or a round bar test piece may be used.

【0026】次に、鋼板の鋼成分について限定理由を説
明する。
Next, the reasons for limiting the steel composition of the steel sheet will be described.

【0027】Cは鋼板強度の確保及びベイナイト生成の
促進のために必要な元素である。0.03%未満では強
度が不足しベイナイト変態が生成し難くなる。また、
0.15%を超えて添加すると、85%以下の管軸方向
の降伏比:YSL/TSLが得られないだけでなく、溶接
性が低下し、シャルピー吸収エネルギーが低下する。よ
って、本発明において、Cは0.03〜0.15%とす
るのが好ましい。
C is an element necessary for ensuring the strength of the steel sheet and promoting the formation of bainite. If it is less than 0.03%, the strength is insufficient and bainite transformation hardly occurs. Also,
If it is added in excess of 0.15%, not only the yield ratio in the tube axis direction: YS L / TS L of 85% or less is not obtained, but also the weldability is reduced and the Charpy absorbed energy is reduced. Therefore, in the present invention, C is preferably set to 0.03 to 0.15%.

【0028】Si は製鋼工程における脱酸剤として、
そして強度を高めるため添加する。0.01%未満では
その効果が十分でない。一方、1%を超えて添加すると
溶接部の靭性が劣化する。よって、本発明において、S
iは0.01〜1%とするのが好ましい。
Si is used as a deoxidizing agent in the steel making process.
And it is added to increase the strength. If it is less than 0.01%, the effect is not sufficient. On the other hand, if added in excess of 1%, the toughness of the weld is degraded. Therefore, in the present invention, S
i is preferably set to 0.01 to 1%.

【0029】Mn は強度を高めるために添加する。
0.5%未満では強度が不足し、2.0%を超えて添加
すると母材と溶接部の靭性、及び溶接性が劣化する。よ
って、本発明において、Mnは0.5〜2.0%とする
のが好ましい。
Mn is added to increase the strength.
If it is less than 0.5%, the strength will be insufficient, and if it exceeds 2.0%, the toughness and weldability of the base material and the weld will deteriorate. Therefore, in the present invention, Mn is preferably set to 0.5 to 2.0%.

【0030】Cu ,Ni ,Cr ,Moは焼入れ性向
上に有効な元素であり、したがって鋼の強度を高める場
合、これらの1種または2種以上添加することができ
る。各鋼成分とも0.05%未満では効果がなく、0.
5%を超えると溶接性が劣化する。よって、本発明にお
いて、Cu ,Ni ,Cr ,Moの群から選択された
1種または2種以上を含有する場合、各鋼成分を0.0
5〜0.5%で添加することが好ましい。
Cu, Ni, Cr and Mo are effective elements for improving the hardenability. Therefore, when increasing the strength of steel, one or more of these can be added. If each steel component is less than 0.05%, there is no effect.
If it exceeds 5%, the weldability deteriorates. Therefore, in the present invention, when one or more kinds selected from the group consisting of Cu, Ni, Cr, and Mo are contained, each steel component is set to 0.0
It is preferable to add 5 to 0.5%.

【0031】Nb ,V ,Tiは析出強化に有効な元素
であり、したがって鋼の靭性および強度を高める場合、
これらの1種または2種以上添加することができる。各
鋼成分とも0.005%未満では効果がなく、0.1%
を超えると溶接部の靭性が劣化する。よって、本発明に
おいて、Nb ,V ,Tiの群から選択された1種また
は2種以上を含有する場合、各鋼成分を0.005〜
0.1%で添加することが好ましい。
Nb, V, and Ti are effective elements for precipitation strengthening, and therefore, when increasing the toughness and strength of steel,
One or more of these can be added. Less than 0.005% for each steel component has no effect, 0.1%
If it exceeds, the toughness of the welded portion will deteriorate. Therefore, in the present invention, when one or two or more selected from the group of Nb, V, and Ti are contained, each steel component is 0.005 to 0.005.
It is preferable to add at 0.1%.

【0032】また、脱酸元素として添加されるAlは、
必要に応じて含まれてよい。その他、P、S、O、N等
の不純物は、少ない方がよい。また、介在物制御のため
のCaやREM 等の元素は、特にこの発明の目的を損
なうものではないことから含まれていてもよい。また、
Bは0.001%を超えない範囲で含んでいてもよい。
Al added as a deoxidizing element is
May be included as needed. In addition, it is better that impurities such as P, S, O, and N are small. Elements such as Ca and REM for controlling inclusions may be included because they do not particularly impair the object of the present invention. Also,
B may be contained in a range not exceeding 0.001%.

【0033】次に、本発明の鋼管の製造方法について説
明する。
Next, a method of manufacturing a steel pipe according to the present invention will be described.

【0034】本発明の鋼管は上記成分を有する鋼を熱間
圧延によって鋼板とし、その後冷間成形により鋼管とす
る。この時、優れた耐座屈性能を有し、かつ高い内圧破
壊性能を兼ね備えた鋼管を得るためには、熱間圧延後の
冷却開始温度、冷却速度及び造管最終工程における拡管
率を以下のように規定する。
In the steel pipe of the present invention, steel having the above-mentioned components is formed into a steel sheet by hot rolling, and then formed into a steel pipe by cold forming. At this time, in order to obtain a steel pipe having excellent buckling resistance and high internal pressure fracture performance, the cooling start temperature after hot rolling, the cooling rate, and the expansion ratio in the final pipe forming process are as follows. It is prescribed as follows.

【0035】本発明において、熱延後の冷却開始温度は
(Ar3 + 40)〜(Ar3−80)℃とする。ここ
で、Ar3温度は鋼の成分から、Ar3(℃)=910−
310C(%)−80Mn(%)−20Cu(%)−15Cr
(%)−55Ni(%)−80Mo(%)である。冷却開始温
度が(Ar3+40)℃を超えると85%以下の管軸方
向の降伏比:YSL/TSLが得られない。一方、(Ar
3−80)℃未満になるとシャルピー吸収エネルギーが
低下するだけでなく、著しい生産能率の低下を招く。
In the present invention, the cooling start temperature after hot rolling is (Ar3 + 40) to (Ar3-80) ° C. Here, the Ar3 temperature is determined by the following equation: Ar3 (° C.) = 910−
310C (%)-80Mn (%)-20Cu (%)-15Cr
(%)-55Ni (%)-80Mo (%). If the cooling start temperature exceeds (Ar3 + 40) ° C., a yield ratio in the tube axis direction: YS L / TS L of 85% or less cannot be obtained. On the other hand, (Ar
If the temperature is lower than 3-80) ° C., not only the Charpy absorbed energy is reduced, but also the production efficiency is significantly reduced.

【0036】本発明において、熱延後の冷却速度は2℃
/sec以上とする。ただし、冷却速度は冷却開始から
500℃までの平均冷却速度を示す。冷却速度が2℃/
sec未満では変態が不十分で高い強度が得られず、さ
らに、85%以下の管軸方向の降伏比:YSL/TSL
得られない。また、冷却後の金属組織がベイナイトまた
はマルテンサイトを含んだ組織となればよいため、冷却
速度の上限は特に規定する必要はない。
In the present invention, the cooling rate after hot rolling is 2 ° C.
/ Sec or more. Here, the cooling rate indicates an average cooling rate from the start of cooling to 500 ° C. Cooling rate 2 ℃ /
If it is less than sec, the transformation is insufficient and high strength cannot be obtained, and further, a yield ratio in the tube axis direction: YS L / TS L of 85% or less cannot be obtained. Since the metal structure after cooling may be a structure containing bainite or martensite, the upper limit of the cooling rate does not need to be particularly defined.

【0037】本発明法は造管最終工程として拡管を施
し、この時の拡管率は0.4%以上とする。造管最終工
程における拡管率が0.4%未満では85%以下の管軸
方向の降伏比:YSL/TSLが得られず、また管軸方向
と管周方向の降伏強度の差が不十分である。また、拡管
率の上限は特に設けないが、鋼管のシーム溶接部に過度
の変形を与える事は好ましくなく、またバウシンガー効
果によって管軸方向の降伏強度が低下しすぎるため、2
%以下とする事が好ましい。
In the method of the present invention, pipe expansion is performed as a final step of pipe formation, and the expansion rate at this time is set to 0.4% or more. If the expansion ratio in the final pipe forming step is less than 0.4%, a yield ratio in the pipe axis direction of YS L / TS L of 85% or less cannot be obtained, and the difference in yield strength between the pipe axis direction and the pipe circumferential direction is not good. It is enough. Although there is no particular upper limit on the pipe expansion ratio, it is not preferable to give excessive deformation to the seam welded portion of the steel pipe, and the yield strength in the pipe axis direction is too low due to the Bauschinger effect.
% Is preferable.

【0038】[0038]

【実施例】以下に本発明の実施例を示す。表1に示す成
分の鋼を1100℃に加熱し、未再結晶温度域で50%
以上の圧下を加えた後に、表2に示す条件で加速冷却を
施し板厚15mmの鋼板とした。そして、UOEプロセ
スによって外径610mmの鋼管とした後、表2に示す
条件で拡管を行った。
Examples of the present invention will be described below. A steel having the composition shown in Table 1 was heated to 1100 ° C., and 50% in a non-recrystallization temperature range.
After applying the above reduction, accelerated cooling was performed under the conditions shown in Table 2 to obtain a steel plate having a thickness of 15 mm. Then, after a steel pipe having an outer diameter of 610 mm was formed by the UOE process, the pipe was expanded under the conditions shown in Table 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】管周方向の引張特性は、矯正をしていない
鋼管の管周方向から採取した、平行部径6mmφ、標点
間距離25mmの丸棒試験片によって、または管軸方向
の引張特性は平行部幅38mm、標点間距離50mmの
全厚試験片によって評価した。また、鋼管の管周方向か
ら採取したVノッチシャルピー試験片により0℃でのシ
ャルピー吸収エネルギーを測定した。
The tensile properties in the circumferential direction of the pipe were measured using a round bar test piece having a parallel part diameter of 6 mmφ and a distance between gauge points of 25 mm taken from the circumferential direction of the uncorrected steel pipe, or a tensile property in the axial direction of the pipe. The evaluation was performed using a full-thickness test piece having a parallel portion width of 38 mm and a distance between gauge points of 50 mm. The Charpy absorbed energy at 0 ° C. was measured using a V-notch Charpy test piece taken from the circumferential direction of the steel pipe.

【0042】耐座屈性能を評価するため軸力圧縮による
座屈試験を行った。座屈試験は、長さ1800mmの鋼
管の両端に鋼板を溶接した後、大型プレス試験装置によ
り圧縮試験を行い、座屈発生により荷重低下が開始する
歪(圧下量/全長)を座屈歪として評価した。鋼管の管
周方向及び管軸方向の引張特性、シャルピー吸収エネル
ギーそして座屈歪を製造条件と併せて表2に示す。
In order to evaluate the buckling resistance, a buckling test was performed by compressing the axial force. In the buckling test, after a steel plate is welded to both ends of a steel pipe having a length of 1800 mm, a compression test is performed by a large-sized press test device, and a strain at which load reduction starts due to buckling (a reduction amount / total length) is defined as a buckling strain. evaluated. Table 2 shows the tensile properties, Charpy absorbed energy, and buckling strain of the steel pipe in the pipe circumferential direction and the pipe axis direction, together with the production conditions.

【0043】表2より、No.1〜18の本発明例は、
いずれも、YSL/YSCが0.9以下で、かつ管軸方向
の降伏比:YSL/TSLが85%以下であるため、座屈
ひずみが1.0%以上で、かつ、高い管周方向強度とシ
ャルピー吸収エネルギーを有しており、優れた耐座屈性
能と耐内圧破壊強度を有している事が明らかである。
As shown in Table 2, Examples 1 to 18 of the present invention include:
In any case, since YS L / YS C is 0.9 or less and the yield ratio in the tube axis direction: YS L / TS L is 85% or less, the buckling strain is 1.0% or more and high. It has tube circumferential strength and Charpy absorbed energy, and it is clear that it has excellent buckling resistance and internal pressure fracture resistance.

【0044】一方、No.19〜23の比較例は、YS
L/YSCもしくは管軸方向の降伏比:YSL/TSLが本
発明の範囲から外れているため、耐座屈性能が劣ってい
る。
On the other hand, No. Comparative examples 19 to 23 are YS
Since L / YS C or the yield ratio in the tube axis direction: YS L / TS L is out of the range of the present invention, the buckling resistance is inferior.

【0045】[0045]

【発明の効果】本発明によれば、大きな圧縮荷重に対す
る耐座屈性能に優れ、かつ高い耐内圧破壊性能を兼ね備
えた鋼管を提供することができる。本発明により得られ
る鋼管は耐座屈性能および耐内圧破壊性能に優れている
ので、ガスパイプライン、水道配管等の流体輸送用また
は貯蔵用に使用される鋼管として最適である。
According to the present invention, it is possible to provide a steel pipe which is excellent in buckling resistance against a large compressive load and has high internal pressure fracture resistance. Since the steel pipe obtained by the present invention has excellent buckling resistance and internal pressure fracture resistance, it is most suitable as a steel pipe used for fluid transportation or storage such as gas pipelines and water pipes.

【0046】また、本発明の鋼管は、特に大地震の際な
どに受ける地盤変動や海底ラインパイプの敷設時に生じ
る圧縮応力または曲げ応力に対して優れた耐座屈性能を
有し、かつ高い内圧破壊性能を有する。
Further, the steel pipe of the present invention has excellent buckling resistance performance against compressive stress or bending stress generated when laying a submarine line pipe, especially when a submarine line pipe is laid, such as during a large earthquake, and has a high internal pressure. Has destructive performance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 38/58 C22C 38/58

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 管周方向の降伏強度及び引張強度をそれ
ぞれYSC及びTSC、管軸方向の降伏強度及び引張強度
をそれぞれYSL及びTSLとしたときに、YSL/YSC
≦0.9、かつ管軸方向の降伏比:YSL/TSL≦85
%を満たすことを特徴とする鋼管。
Yield strength of 1. A pipe circumferential direction and tensile strength, respectively YS C and TS C, in the tube axis direction yield strength and tensile strength when formed into a YS L and TS L respectively, YS L / YS C
≦ 0.9 and the yield ratio in the tube axis direction: YS L / TS L ≦ 85
% Steel pipe.
【請求項2】 mass%で、C:0.03〜0.15
%、Si:0.01〜1%、Mn:0.5〜2.0%を
含有することを特徴とする請求項1に記載の鋼管。
2. Mass%, C: 0.03 to 0.15
%, Si: 0.01 to 1%, and Mn: 0.5 to 2.0%.
【請求項3】 さらに、mass%で、Cu:0.05
〜0.5%、Ni:0.05〜0.5%、Cr:0.0
5〜0.5%、Mo:0.05〜0.5%、Nb:0.
005〜0.1%、V:0.005〜0.1%、及びT
i:0.005〜0.1%の群から選択された1種また
は2種以上を含有することを特徴とする請求項2に記載
の鋼管。
3. The method according to claim 1, further comprising:
0.5%, Ni: 0.05 to 0.5%, Cr: 0.0
5 to 0.5%, Mo: 0.05 to 0.5%, Nb: 0.
005 to 0.1%, V: 0.005 to 0.1%, and T
The steel pipe according to claim 2, wherein the steel pipe contains one or more kinds selected from the group of i: 0.005 to 0.1%.
【請求項4】 mass%で、C:0.03〜0.15
%、Si:0.01〜1%、Mn:0.5〜2.0%を
含有する鋼を熱間圧延した後、冷却開始温度:(Ar3
+40)〜(Ar3−80)℃、冷却速度:2℃/se
c以上で冷却して得られた鋼板を、造管最終工程におけ
る拡管率:0.4%以上で冷間成形して造管することに
より、YSL/YSC≦0.9、かつ管軸方向の降伏比:
YSL/TSL≦85%を満足する鋼管を得ることを特徴
とする鋼管の製造方法。ただし、YSC:鋼管の管周方
向の降伏強度、TSC:鋼管の管周方向の引張強度、Y
L:管軸方向の降伏強度、TSL:管軸方向の引張強
度。
4. Mass%, C: 0.03 to 0.15
%, Si: 0.01 to 1%, and Mn: 0.5 to 2.0%, after hot rolling, a cooling start temperature: (Ar3
+40) to (Ar3-80) ° C, cooling rate: 2 ° C / sec
By subjecting the steel sheet obtained by cooling at a temperature of c or more to cold forming at a pipe expansion ratio of 0.4% or more in the final pipe-forming step and forming a pipe, YS L / YS C ≦ 0.9 and the pipe axis Yield ratio in direction:
A method for producing a steel pipe, wherein a steel pipe satisfying YS L / TS L ≦ 85% is obtained. Here, YS C : yield strength in the circumferential direction of the steel pipe, TS C : tensile strength in the circumferential direction of the steel pipe, Y
S L : Yield strength in the pipe axis direction, TS L : Tensile strength in the pipe axis direction.
【請求項5】 mass%で、C:0.03〜0.15
%、Si:0.01〜1%、Mn:0.5〜2.0%
を含み、かつ、Cu:0.05〜0.5%、Ni:0.
05〜0.5%、Cr:0.05〜0.5%、Mo:
0.05〜0.5%、Nb:0.005〜0.1%、
V:0.005〜0.1%、Ti:0.005〜0.1
% の1種または2種以上を含有する鋼を熱間圧延した
後、冷却開始温度:(Ar3+ 40)〜(Ar3−8
0)℃、冷却速度:2℃/sec以上で冷却して得られ
た鋼板を、造管最終工程における拡管率:0.4%以上
で冷間成形して造管することにより、YSL/YSC
0.9、かつ管軸方向の降伏比:YSL/TSL≦85%
を満足する鋼管を得ることを特徴とする鋼管の製造方
法。ただし、YSC:鋼管の管周方向の降伏強度、T
C:鋼管の管周方向の引張強度、YSL:管軸方向の降
伏強度、TSL:管軸方向の引張強度。
5. Mass%, C: 0.03 to 0.15
%, Si: 0.01 to 1%, Mn: 0.5 to 2.0%
, And Cu: 0.05-0.5%, Ni: 0.
05 to 0.5%, Cr: 0.05 to 0.5%, Mo:
0.05-0.5%, Nb: 0.005-0.1%,
V: 0.005 to 0.1%, Ti: 0.005 to 0.1
% After hot-rolling a steel containing one or more of the following types: (Ar3 + 40) to (Ar3-8)
0) The cooling rate is 2 ° C./sec or more, and the steel sheet obtained is cooled at a pipe expansion ratio of 0.4% or more in the final pipe-forming step to form YS L / YS C
0.9 and the yield ratio in the tube axis direction: YS L / TS L ≦ 85%
A method for producing a steel pipe, characterized by obtaining a steel pipe satisfying the following. Here, YS C : yield strength in the circumferential direction of the steel pipe, T
S C : tensile strength in the circumferential direction of the steel pipe, YS L : yield strength in the axial direction of the pipe, TS L : tensile strength in the axial direction of the pipe.
JP2000401886A 2000-12-28 2000-12-28 Steel tube and production method therefor Pending JP2002206140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401886A JP2002206140A (en) 2000-12-28 2000-12-28 Steel tube and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401886A JP2002206140A (en) 2000-12-28 2000-12-28 Steel tube and production method therefor

Publications (1)

Publication Number Publication Date
JP2002206140A true JP2002206140A (en) 2002-07-26

Family

ID=18866260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401886A Pending JP2002206140A (en) 2000-12-28 2000-12-28 Steel tube and production method therefor

Country Status (1)

Country Link
JP (1) JP2002206140A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303465A (en) * 2008-07-10 2008-12-18 Sumitomo Metal Ind Ltd Steel tube for low yield ratio column for building and steel plate used for this, and manufacturing method therefor
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same
JP2013180311A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Welded steel pipe excellent in collapse resistance and internal pressure fracture resistance, and manufacturing method thereof
CN104726664A (en) * 2015-03-13 2015-06-24 武汉钢铁(集团)公司 Production method of double-composite coating strap for optical and medical instrument components
JP2015224374A (en) * 2014-05-29 2015-12-14 Jfeスチール株式会社 Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and production method thereof
CN105385954A (en) * 2015-12-09 2016-03-09 内蒙古包钢钢联股份有限公司 600-MPa dual-phase steel belt over 10 mm and machining method thereof
CN107653418A (en) * 2017-09-19 2018-02-02 芜湖市和蓄机械股份有限公司 A kind of automobile caliper body and preparation method and application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303465A (en) * 2008-07-10 2008-12-18 Sumitomo Metal Ind Ltd Steel tube for low yield ratio column for building and steel plate used for this, and manufacturing method therefor
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same
JP2013180311A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Welded steel pipe excellent in collapse resistance and internal pressure fracture resistance, and manufacturing method thereof
JP2015224374A (en) * 2014-05-29 2015-12-14 Jfeスチール株式会社 Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and production method thereof
CN104726664A (en) * 2015-03-13 2015-06-24 武汉钢铁(集团)公司 Production method of double-composite coating strap for optical and medical instrument components
CN105385954A (en) * 2015-12-09 2016-03-09 内蒙古包钢钢联股份有限公司 600-MPa dual-phase steel belt over 10 mm and machining method thereof
CN107653418A (en) * 2017-09-19 2018-02-02 芜湖市和蓄机械股份有限公司 A kind of automobile caliper body and preparation method and application

Similar Documents

Publication Publication Date Title
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP6369658B1 (en) Steel pipe and steel plate
US7780800B2 (en) Method of manufacturing a bent pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
WO2007136019A1 (en) High-strength steel pipe with excellent unsusceptibility to strain aging for line piping, high-strength steel plate for line piping, and processes for producing these
JP2007519819A (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP6773020B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
WO2012141220A1 (en) High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
EP1746175A1 (en) Super high strength uoe steel pipe and method for production thereof
JP4276480B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance
WO2009119570A1 (en) Uoe steel tube for linepipes and process for production thereof
JP3846246B2 (en) Steel pipe manufacturing method
JP2004143500A (en) High-strength steel pipe excellent in buckling resistance and its production method
JP2002206140A (en) Steel tube and production method therefor
JP4741715B2 (en) High strength steel pipe and manufacturing method thereof
JP2002226945A (en) Steel tube and manufacturing method
JP4336294B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging
JP3470632B2 (en) Steel pipe for line pipe excellent in buckling resistance and method of manufacturing the same
JP5874290B2 (en) Steel material for welded joints excellent in ductile crack growth characteristics and method for producing the same
JP2004131810A (en) Method for manufacturing steel pipe having excellent buckling resistance performance
JP3772696B2 (en) Steel sheet for high-strength steel pipe and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208