JP2006207028A - Method for producing high strength/high toughness thick steel plate excellent in cutting-crack resistance - Google Patents

Method for producing high strength/high toughness thick steel plate excellent in cutting-crack resistance Download PDF

Info

Publication number
JP2006207028A
JP2006207028A JP2005375432A JP2005375432A JP2006207028A JP 2006207028 A JP2006207028 A JP 2006207028A JP 2005375432 A JP2005375432 A JP 2005375432A JP 2005375432 A JP2005375432 A JP 2005375432A JP 2006207028 A JP2006207028 A JP 2006207028A
Authority
JP
Japan
Prior art keywords
cooling
temperature
strength
steel plate
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005375432A
Other languages
Japanese (ja)
Other versions
JP5157066B2 (en
Inventor
Mitsuhiro Okatsu
光浩 岡津
Shigeru Endo
茂 遠藤
Ryuji Muraoka
隆二 村岡
Junji Shimamura
純二 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005375432A priority Critical patent/JP5157066B2/en
Publication of JP2006207028A publication Critical patent/JP2006207028A/en
Application granted granted Critical
Publication of JP5157066B2 publication Critical patent/JP5157066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high strength/high toughness thick steel plate preventing the generation of cracking on the cutting-off surface at cutting off time with a shearing work and having excellent DWTT (Drop Weight Tear Test) characteristics. <P>SOLUTION: This production method is performed as the followings, by which after reheating at 1,000-1,200°C to a steel composed by mass% of 0.03-0.12% C, ≤0.5% Si, 1.5-3.0% Mn, 0.01-0.08% Al, 0.01-0.08% Nb, 0.005-0.025% Ti, 0.001-0.01% N and further, one or two or more kinds of Cu, Ni, Cr, Mo, V, B and if necessary, one or two or more kinds of Ca, REM, Zr, Mg and the balance Fe with inevitable impurities, the hot-rolling is performed so as to become ≥67% accumulating rolling reduction ratio in the temperature zone of ≤950°C and the cooling is started at 20-80°C/s cooling velocity from the temperature zone of ≥700°C after completing the rolling, and the reheating of performed to ≥300°C to <500°C at ≥5°C/s temperature-rising velocity just after stopping the cooling in the temperature zone of <250°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高強度・高靱性厚鋼板の製造方法に関し、特に、せん断加工での切断の際の切断面での割れ発生防止とDWTT特性に優れ、天然ガスや原油の輸送用として用いられる引張強度が650MPa以上の高強度・高靱性のラインパイプ用厚鋼板に好適なものに関する。   The present invention relates to a method for producing a high-strength and high-tough steel plate, and in particular, it has excellent prevention of cracking and DWTT properties at the cut surface during shearing and is used for transportation of natural gas and crude oil. The present invention relates to a material suitable for a thick steel plate for line pipe having a strength of 650 MPa or more and high strength and toughness.

近年,天然ガスや原油の輸送用として使用されるラインパイプは,高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上のため、年々高強度化し、既にAPI規格でX100グレードのラインパイプが実用化され、引張強度900MPaを超えるX120グレードに対する要望が具体化されている。   In recent years, line pipes used for transportation of natural gas and crude oil have been strengthened year by year in order to improve transport efficiency by increasing pressure and to improve local welding work efficiency by reducing wall thickness, and already have X100 grade lines based on API standards. Pipes have been put into practical use, and the demand for an X120 grade exceeding a tensile strength of 900 MPa is realized.

このような高強度ラインパイプ用溶接鋼管用の厚鋼板の製造方法に関し、例えば特許文献1に、熱間圧延後2段冷却を行い、2段目の冷却停止温度を300℃以下とすることで高強度化を達成する技術が開示されている。また、特許文献2には、Cu析出強化による高強度化を加速冷却+時効熱処理条件により達成する技術が開示されている。
特開2003−293089号公報 特開平08―311548号公報
Regarding such a method for producing a thick steel plate for welded steel pipes for high-strength line pipes, for example, in Patent Document 1, two-stage cooling is performed after hot rolling, and the second-stage cooling stop temperature is set to 300 ° C. or lower. A technique for achieving high strength is disclosed. Patent Document 2 discloses a technique for achieving high strength by Cu precipitation strengthening by accelerated cooling + aging heat treatment conditions.
JP 2003-293089 A Japanese Patent Laid-Open No. 08-311548

しかしながら、特許文献1記載のように冷却停止温度を低くし、低温変態生成する硬質なベイナイトあるいはマルテンサイト組織を導入することで高強度を達成した場合、冷却ままの鋼板を必要なサイズにせん断加工で切断すると鋼中に残存する拡散性水素が原因で板面に平行な割れ(以降切断割れと称する)が発生する。   However, when high strength is achieved by lowering the cooling stop temperature and introducing a hard bainite or martensite structure that generates a low-temperature transformation as described in Patent Document 1, shearing the steel plate as it is cooled to the required size When cutting at, cracks parallel to the plate surface (hereinafter referred to as cutting cracks) occur due to diffusible hydrogen remaining in the steel.

一方、特許文献2記載のように、加速冷却後に熱処理を行うと、鋼中の水素は十分拡散し切断割れは抑制できるものの熱処理過程においてベイナイトあるいはマルテンサイト中にセメンタイトが析出・粗大化し、靱性低下、特に脆性亀裂伝播停止特性の評価を行うDWTT(Drop Weight Tear Test)特性が劣化する。   On the other hand, as described in Patent Document 2, when heat treatment is performed after accelerated cooling, hydrogen in the steel is sufficiently diffused and cutting cracks can be suppressed, but cementite precipitates and coarsens in bainite or martensite during the heat treatment process, resulting in reduced toughness. In particular, the DWTT (Drop Weight Tear Test) characteristic for evaluating the brittle crack propagation stop characteristic deteriorates.

本発明は、靱性、特に脆性亀裂伝播停止特性を劣化させずに耐切断割れ性を向上させた板厚10mm以上の高張力厚鋼板の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a high-tensile thick steel plate having a thickness of 10 mm or more, which has improved toughness, particularly resistance to cut cracking without deteriorating brittle crack propagation stopping characteristics.

本発明者等は冷却ままの高張力鋼の切断割れについて鋭意研究を重ねた結果、
1.鋼中の拡散性水素が、各トラップサイトにトラップされることを阻止するためには、少なくとも300℃以上での脱水素の熱処理が必要であること。
As a result of intensive research on cutting cracks in high-strength steel as it is cooled,
1. In order to prevent diffusible hydrogen in steel from being trapped at each trap site, heat treatment for dehydrogenation at least at 300 ° C. or more is necessary.

2.冷却停止後,ただちに再加熱を開始し、鋼板温度を300℃以上に昇温すると水素の拡散が促進される結果、鋼中に残留する水素量が割れ発生限界量を下回ること
を見出した。
2. After cooling was stopped, reheating was started immediately, and when the steel sheet temperature was raised to 300 ° C. or higher, hydrogen diffusion was promoted. As a result, it was found that the amount of hydrogen remaining in the steel was below the crack initiation limit.

また、DWTT特性劣化の原因となるベイナイトあるいはマルテンサイト中のセメンタイトの粗大化挙動については、再加熱時の加熱速度を速くすると300〜500℃の温度域に加熱してもセメンタイトが粗大化せず、0.5μm以下に抑制され、DWTT特性の劣化が抑制されることを見出した。   In addition, regarding the coarsening behavior of cementite in bainite or martensite, which causes deterioration of DWTT characteristics, cementite does not coarsen even when heated to a temperature range of 300 to 500 ° C. when the heating rate during reheating is increased. It was found to be suppressed to 0.5 μm or less, and the deterioration of DWTT characteristics was suppressed.

本発明は以上の知見を基に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、
C:0.03〜0.12%
Si:≦0.5%
Mn:1.5〜3.0%
Al:0.01〜0.08%
Nb:0.01〜0.08%
Ti:0.005〜0.025%
N:0.001〜0.01%
更に、
Cu:0.01〜2%
Ni:0.01〜3%
Cr:0.01〜1%
Mo:0.01〜1%
V:0.01〜0.1%
B:0.0005〜0.005%
の1種又は2種以上を含有し
残部Fe及び不可避的不純物からなる鋼を1000〜1200℃に加熱後、950℃以下の温度域での累積圧下量≧67%となるよう熱間圧延を行い、圧延終了後600℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し、250℃未満の温度域で冷却停止後直ちに5℃/s以上の昇温速度で300℃以上500℃未満の温度に再加熱することを特徴とする耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法。
The present invention has been made on the basis of the above findings and further studies, that is, the present invention,
1. % By mass
C: 0.03-0.12%
Si: ≦ 0.5%
Mn: 1.5 to 3.0%
Al: 0.01 to 0.08%
Nb: 0.01 to 0.08%
Ti: 0.005-0.025%
N: 0.001 to 0.01%
Furthermore,
Cu: 0.01-2%
Ni: 0.01 to 3%
Cr: 0.01 to 1%
Mo: 0.01 to 1%
V: 0.01 to 0.1%
B: 0.0005 to 0.005%
After the steel containing one or more of these and the balance Fe and inevitable impurities is heated to 1000 to 1200 ° C., hot rolling is performed so that the cumulative reduction amount in the temperature range of 950 ° C. or lower is ≧ 67% After the end of rolling, cooling is started at a cooling rate of 20 to 80 ° C./s from a temperature range of 600 ° C. or higher, and immediately after cooling is stopped at a temperature range of less than 250 ° C., a heating rate of 5 ° C./s or higher is immediately applied at 300 ° C. or higher and 500 ° C. A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance, characterized by reheating to a temperature of less than ° C.

2.1記載の成分組成に更に、質量%で、
Ca: 0.0005〜0.01%
REM:0.0005〜0.02%
Zr:0.0005〜0.03%
Mg:0.0005〜0.01%
の1種または2種以上を含有する鋼を
1000〜1200℃に加熱後、950℃以下の温度域での累積圧下量≧67%となるよう熱間圧延を行い、圧延終了後600℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し、250℃未満の温度域で冷却停止後直ちに5℃/s以上の昇温速度で300℃以上500℃未満の温度に再加熱することを特徴とする耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法。
3.1又は2に記載の成分組成を有し、ミクロ組織にベイナイトまたはマルテンサイトを含み、これらの組織中に存在するセメンタイトの平均粒径が0.5μm以下であることを特徴とする耐切断割れ性に優れた高強度・高靭性厚鋼板。
In addition to the component composition described in 2.1, in mass%,
Ca: 0.0005 to 0.01%
REM: 0.0005 to 0.02%
Zr: 0.0005 to 0.03%
Mg: 0.0005 to 0.01%
After heating the steel containing 1 type or 2 types or more to 1000 to 1200 ° C., hot rolling is performed so that the cumulative reduction amount ≧ 67% in a temperature range of 950 ° C. or less, and after the end of rolling, the temperature is 600 ° C. or more. Start cooling from the temperature range at a cooling rate of 20 to 80 ° C./s, and immediately reheat to a temperature of 300 ° C. or more and less than 500 ° C. at a rate of temperature increase of 5 ° C./s or more immediately after stopping cooling at a temperature range of less than 250 ° C. A method for producing a high-strength, high-toughness thick steel plate having excellent cut cracking resistance.
3.1 The composition having the composition described in 1 or 2, including bainite or martensite in the microstructure, and having an average particle size of cementite present in these structures of 0.5 μm or less. High strength, high toughness thick steel plate with excellent cracking properties.

本発明により、せん断による切断割れ防止とDWTT特性に優れる、天然ガスや原油の輸送用の引張強度が650MPa以上の高強度・高靱性のラインパイプ用として好適な厚鋼板の製造が可能となり産業上極めて有用である。   The present invention makes it possible to produce a thick steel plate suitable for use in high-strength, high-toughness line pipes with excellent tensile strength for transportation of natural gas and crude oil, with excellent DWTT properties and prevention of shear cracks due to shearing, and more than 650 MPa. Very useful.

本発明は鋼板の成分組成と製造条件において、スラブ加熱温度、熱間圧延条件、冷却条件および再熱処理条件を規定する。以下、限定理由を説明する。   The present invention defines the slab heating temperature, hot rolling conditions, cooling conditions, and reheat treatment conditions in the component composition and manufacturing conditions of the steel sheet. The reason for limitation will be described below.

[成分組成]
C:0.03〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与する。この効果を得るためには0.03%以上の添加が必要であるが、0.12%を超えて添加すると,パイ
プの円周溶接部の硬度上昇が著しくなり、溶接低温割れが発生しやすくなるため、上限を0.12%とする。
[Ingredient composition]
C: 0.03-0.12%
C contributes to an increase in strength by being supersaturated in a low temperature transformation structure. In order to obtain this effect, addition of 0.03% or more is necessary. However, if added over 0.12%, the hardness of the circumferential welded part of the pipe is remarkably increased and cold cracking is likely to occur. Therefore, the upper limit is made 0.12%.

Si:≦0.5%
Siは変態組織によらず固溶強化するため、強度上昇に有効であるので添加する。しかし、0.5%を超えて添加すると靱性が著しく低下するため上限を0.5%とする。
Si: ≦ 0.5%
Since Si strengthens the solid solution irrespective of the transformation structure, it is effective in increasing the strength, so it is added. However, if added over 0.5%, the toughness is significantly reduced, so the upper limit is made 0.5%.

Mn:1.5〜3.0%
Mnは焼入性向上元素として作用し、1.5%以上の添加によりその効果が得られるが連続鋳造プロセスでは中心偏析部の濃度上昇が著しく、3.0%を超える添加を行うと偏析部での遅れ破壊の原因となるため、上限を3.0%とする。
Mn: 1.5 to 3.0%
Mn acts as a hardenability improving element, and the effect can be obtained by addition of 1.5% or more. However, in the continuous casting process, the concentration in the central segregation part is remarkably increased. Therefore, the upper limit is set to 3.0%.

Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.08%を超えて添加すると鋼中の清浄度が低下し、靱性劣化の原因となるため上限を0.08%とする。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. To do.

Nb:0.01〜0.08%
Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり、特に950℃まで未再結晶領域とするためには0.01%以上の添加が必要である。一方、0.08%を超えて添加するとHAZの靱性を著しく損ねることから上限を0.08%とする。
Nb: 0.01 to 0.08%
Nb has an effect of expanding the austenite non-recrystallized region at the time of hot rolling, and in order to make the non-recrystallized region up to 950 ° C., addition of 0.01% or more is necessary. On the other hand, if added over 0.08%, the toughness of HAZ is significantly impaired, so the upper limit is made 0.08%.

Ti:0.005〜0.025%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効で、析出したTiNがピンニング効果でオーステナイト粒の粗大化抑制防止をすることで,母材,HAZの靱性向上に寄与する。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel, and the precipitated TiN prevents the austenite grains from coarsening by the pinning effect, thereby contributing to the improvement of the toughness of the base material and HAZ.

必要なピンニング効果を得るためには0.005%以上の添加が必要であるが0.025%を超えて添加すると炭化物を形成するようになり、その析出硬化で靱性が著しく劣化するため、上限を0.025%とする。   Addition of 0.005% or more is necessary to obtain the necessary pinning effect, but if added over 0.025%, carbides are formed, and the toughness deteriorates remarkably due to precipitation hardening. Is 0.025%.

N:0.001〜0.01%
Nは通常鋼中の不可避不純物として存在するが、前述の通りTi添加を行うことで、オーステナイト粗大化を抑制するTiNを形成するため規定する。
N: 0.001 to 0.01%
N is usually present as an inevitable impurity in steel, but is defined to form TiN that suppresses austenite coarsening by adding Ti as described above.

必要とするピンニング効果を得るためには0.001%以上鋼中に存在することが必要であるが、0.01%を超える場合、溶接部、特に溶融線近傍で1450℃以上に加熱されたHAZでTiNが分解し、固溶Nの悪影響が著しいため、上限を0.01%とする。   In order to obtain the required pinning effect, it is necessary to be present in the steel in an amount of 0.001% or more, but when it exceeds 0.01%, it was heated to 1450 ° C or more in the vicinity of the weld, particularly in the vicinity of the melting line The upper limit is set to 0.01% because TiN decomposes in HAZ and the negative effect of solute N is significant.

本発明では更に、Cu、Ni、Cr、Mo、V、Bの一種または二種以上を添加する。Cu、Ni、Cr、Mo、V、Bはいずれも焼入性向上元素として作用し、これらの元素の1種または2種以上を添加することで板厚10mm以上の厚鋼板において高強度化が可能となる。   In the present invention, one or more of Cu, Ni, Cr, Mo, V, and B are further added. Cu, Ni, Cr, Mo, V, and B all act as hardenability improving elements, and by adding one or more of these elements, high strength can be achieved in a thick steel plate having a thickness of 10 mm or more. It becomes possible.

Cu:0.01〜2%
Cuは、0.01%以上添加することで鋼の焼入性向上に寄与し、0.8%以上添加した場合、時効熱処理で析出強化が著しいことから溶接熱影響部の軟化防 止にも寄与する。しかし、2%以上の添加を行うと,靱性劣化が生じるため上限は2%で、添加する場合は0.01〜2%とする。
Cu: 0.01-2%
When Cu is added in an amount of 0.01% or more, it contributes to improving the hardenability of the steel, and when added in an amount of 0.8% or more, precipitation strengthening is remarkable during aging heat treatment, thus preventing softening of the heat affected zone. Contribute. However, if 2% or more is added, toughness deteriorates, so the upper limit is 2%. If added, 0.01 to 2%.

Ni:0.01〜3%
Niは0.01%以上添加することで鋼の焼入性向上に寄与する。特に、多量に添加しても靱性劣化を生じないため、強靱化に有効であるが高価な元素であり、且つ、3%を超えて添加しても強度上昇が飽和するため、上限は3%で、添加する場合は0.01〜3%とする。
Ni: 0.01 to 3%
Ni contributes to improving the hardenability of steel by adding 0.01% or more. In particular, even if added in a large amount, it does not cause toughness degradation, so it is an effective element for toughening but is an expensive element, and even if added over 3%, the increase in strength is saturated, so the upper limit is 3% And when adding, it is made into 0.01 to 3%.

Cr:0.01〜1%
Crもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると靱性が劣化するため、上限は1%で、添加する場合は0.01〜1%とする。
Cr: 0.01 to 1%
Cr also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so the upper limit is 1%, and if added, 0.01 to 1%.

Mo:0.01〜1%
Moもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると靱性が劣化するため、上限は1%で、添加する場合は0.01〜1%とする。
Mo: 0.01 to 1%
Mo also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so the upper limit is 1%, and if added, 0.01 to 1%.

V:0.01〜0.1%
Vは炭窒化物を形成することで析出強化し、特に溶接熱影響部の軟化防止に寄与する。0.01%以上の添加によりこの効果が得られるが、0.1%を超えて添加すると析出強化が著しく靱性が低下するため、上限は0.1%で、添加する場合は0.01〜0.1%とする。
V: 0.01 to 0.1%
V forms precipitation strengthening by forming carbonitride, and contributes especially to the softening prevention of a weld heat affected zone. This effect can be obtained by addition of 0.01% or more, but if added over 0.1%, precipitation strengthening significantly reduces toughness, so the upper limit is 0.1%. 0.1%.

B:0.0005〜0.005%
Bはオーステナイト粒界に偏析し、特に0.0005%以上の添加でフェライト変態が抑制され、強度低下防止に寄与する。しかし、0.005%を超えて添加してもその効果は飽和するため、上限は0.005%で、添加する場合は、0.0005〜0.005%とする。
B: 0.0005 to 0.005%
B segregates at the austenite grain boundaries, and in particular, addition of 0.0005% or more suppresses ferrite transformation and contributes to prevention of strength reduction. However, since the effect is saturated even if added over 0.005%, the upper limit is 0.005%, and in the case of adding 0.0005% to 0.005%.

本発明の基本成分組成は以上であるが、更に靭性を向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を添加することができる。   Although the basic component composition of the present invention is as described above, when further improving toughness, one or more of Ca, REM, Zr, and Mg can be added.

Ca,REM,Zr,Mgは鋼中の非金属介在物であるMnSの形態制御、あるいは酸化物あるいは窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒粗大化をピンニング効果で抑制する。   Ca, REM, Zr, and Mg form MnS, which is a non-metallic inclusion in the steel, or form oxides or nitrides, and mainly suppress austenite grain coarsening in the weld heat affected zone by a pinning effect.

Ca:0.0005〜0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靱性に有害なMnSの生成を抑制する。しかし、0.01%を超えて添加するとCaO−CaSのクラスターを形成し、靱性を劣化させるようになるので、上限は0.01%で、添加する場合は0.0005〜0.01%とする。
Ca: 0.0005 to 0.01%
Ca is an element effective for controlling the form of sulfide in steel, and the addition of 0.0005% or more suppresses the generation of MnS harmful to toughness. However, if added over 0.01%, a CaO-CaS cluster is formed and the toughness deteriorates, so the upper limit is 0.01%, and when added, 0.0005-0.01%. To do.

REM:0.0005〜0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靱性に有害なMnSの生成を抑制する。しかし、高価な元素であり、且つ0.02%を超えて添加しても効果が飽和するため、上限は0.02%で、添加する場合は0.0005〜0.02%とする。
REM: 0.0005 to 0.02%
REM is also an element effective for controlling the form of sulfide in steel, and by adding 0.0005% or more, the generation of MnS harmful to toughness is suppressed. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit is 0.02%, and when added, the content is made 0.0005 to 0.02%.

Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し、特に溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには0.0005%以上の添加が必要であるが、0.03%を超えて添加すると鋼中の清浄度が著しく低下し、靱性が低下するようになるので、上限は0.03%で、添加する場合は0.0005〜0.03%とする。
Zr: 0.0005 to 0.03%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.03%, the cleanliness in the steel is remarkably lowered, and the toughness is lowered. The upper limit is 0.03%, and when added, the content is 0.0005 to 0.03%.

Mg:0.0005〜0.01%
Mgは製鋼過程で鋼中に微細な酸化物として生成し、特に、溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると鋼中の清浄度が低下し、靱性が低下するようになるため、上限は0.01%で、添加する場合は、0.0005〜0.01%とする。
Mg: 0.0005 to 0.01%
Mg is produced as fine oxides in the steel during the steelmaking process, and in particular, has a pinning effect that suppresses the coarsening of austenite grains in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.01%, the cleanliness in the steel decreases, and the toughness decreases, The upper limit is 0.01%, and when added, 0.0005 to 0.01%.

[製造条件]
製造方法の限定理由について説明する.
スラブ加熱温度:1000〜1200℃
スラブをオーステナイト化するための下限温度が1000℃である.一方、1200℃を超える温度まで鋼片を加熱すると、TiNピンニングを行っていても、オーステナイト粒成長が著しく、母材靱性が劣化するため、上限を1200℃とする。
[Production conditions]
The reason for limiting the manufacturing method will be explained.
Slab heating temperature: 1000-1200 ° C
The minimum temperature for austenizing the slab is 1000 ° C. On the other hand, when the steel slab is heated to a temperature exceeding 1200 ° C., even if TiN pinning is performed, the austenite grain growth is remarkable and the base material toughness deteriorates, so the upper limit is set to 1200 ° C.

熱間圧延:950℃以下での累積圧下量≧67%
Nb添加によって950℃以下はオーステナイト未再結晶域である.該温度域にて累積で大圧下を行うことにより、オーステナイト粒を伸展させ、特に板厚方向で細粒とし、加速冷却して得られるベイナイト鋼の靱性を向上させる。
Hot rolling: Cumulative reduction at 950 ° C or lower ≥ 67%
950 ° C. or less is an austenite non-recrystallized region by Nb addition. By carrying out cumulative large pressure reduction in the temperature range, the austenite grains are expanded, particularly in the thickness direction, and the toughness of the bainite steel obtained by accelerated cooling is improved.

圧下量を67%未満では,細粒化効果は不十分でベイナイト鋼の靱性向上が得られないため,累積圧下量の下限を67%とする。なお,著しく靱性向上を狙うための好適範囲は75%以上である。   If the reduction amount is less than 67%, the effect of refining is insufficient and the toughness of bainite steel cannot be improved, so the lower limit of the cumulative reduction amount is set to 67%. In addition, the suitable range for aiming at a remarkable toughness improvement is 75% or more.

冷却の冷却開始温度≧600℃
熱間圧延後,冷却を開始するまでの空冷過程においてオーステナイト粒界から初析フェライトが生成し、ミクロ組織の大部分がフェライトとなり、母材強度が低下するため、冷却の冷却開始温度の下限温度を600℃とする。
Cooling start temperature of cooling ≧ 600 ° C.
In the air cooling process after hot rolling until cooling starts, pro-eutectoid ferrite is generated from the austenite grain boundaries, and most of the microstructure becomes ferrite and the strength of the base metal decreases. Is 600 ° C.

冷却の冷却速度:20〜80℃/s
強度低下の原因となるフェライト変態を抑制するために20℃/s以上で冷却を行う。一方、80℃/sを超える冷却速度では鋼板表面近傍でマルテンサイト変態が生じ、鋼板強度は上昇するものの、靱性劣化、特にシャルピー吸収エネルギー低下が著しいため冷却速度の上限を80℃/sとする。
Cooling rate of cooling: 20-80 ° C / s
Cooling is performed at 20 ° C./s or more in order to suppress ferrite transformation that causes strength reduction. On the other hand, when the cooling rate exceeds 80 ° C./s, martensitic transformation occurs in the vicinity of the steel plate surface, and the strength of the steel plate increases, but the upper limit of the cooling rate is set to 80 ° C./s due to significant deterioration in toughness, particularly Charpy absorbed energy. .

冷却の冷却停止温度:≦250℃
鋼板のミクロ組織をベイナイトやマルテンサイト組織化して、高強度化するため,冷却の冷却停止温度を規定する。冷却停止温度が250℃を超えると強度や靱性に劣る上部ベイナイト組織となるため、冷却停止温度は250℃以下とする。
Cooling stop temperature: ≦ 250 ° C
The cooling stop temperature for cooling is defined in order to increase the strength of the steel sheet by making it a bainite or martensite structure. When the cooling stop temperature exceeds 250 ° C., an upper bainite structure inferior in strength and toughness is obtained, so the cooling stop temperature is set to 250 ° C. or less.

再加熱処理
再加熱処理は、切断割れを防止するために行う。冷却による低温変態で高強度化した鋼板は空冷後において、拡散性水素が鋼中に残留し、切断割れを起こす場合がある。
Reheating treatment The reheating treatment is performed to prevent cutting cracks. In steel sheets that have been strengthened by low-temperature transformation by cooling, diffusible hydrogen may remain in the steel after air cooling, causing cutting cracks.

再加熱処理は、再加熱までの時間が長いとその間の空冷過程での温度低下によって水素が拡散しにくくなるため、冷却停止後すみやかに行い、望ましくは300秒以内、更に望ましくは100秒以内とする。再加熱方法は,炉加熱、誘導加熱いずれでも良く本発明では特に規定しない。   If the time until reheating is long, hydrogen is less likely to diffuse due to a decrease in temperature during the air cooling process during the reheating process. Therefore, the reheating process should be performed immediately after stopping cooling, preferably within 300 seconds, more preferably within 100 seconds. To do. The reheating method may be either furnace heating or induction heating, and is not particularly defined in the present invention.

再加熱時の昇温速度:≧5℃/s
冷却を停止した鋼を直ちに再加熱することで、冷却によって変態生成したベイイナイトあるいはマルテンサイト中に過飽和固溶している炭素がセメンタイトとして均質・微細に析出する。
Heating rate during reheating: ≧ 5 ° C / s
By immediately reheating the steel whose cooling has stopped, the supersaturated solid solution of carbon in the bainite or martensite transformed by cooling is precipitated homogeneously and finely as cementite.

そして、300℃を超える温度域から凝集・粗大化し、特にDWTT特性に悪影響を及ぼす。   And it aggregates and coarsens from the temperature range exceeding 300 degreeC, and has a bad influence especially on DWTT characteristic.

しかし、発明者等の研究の結果、加熱時の昇温速度を早くするほどこの凝集過程が抑制され、セメンタイトが粗大化しなくなることを見出した。   However, as a result of studies by the inventors, it has been found that the faster the temperature rise rate during heating, the more the aggregation process is suppressed and the cementite is not coarsened.

そして、昇温速度を5℃/s以上とすることで、セメンタイトがほぼ析出直後の微細な状態を維持できたことから昇温速度は5℃/s以上とする。   And since the cementite was able to maintain the fine state almost immediately after precipitation by setting a temperature increase rate to 5 degrees C / s or more, a temperature increase rate shall be 5 degrees C / s or more.

再加熱温度:300℃〜500℃
再加熱温度が300℃未満の場合、鋼中において十分に水素が拡散せず、切断割れを防止することができないため,再加熱温度は300℃以上とする。一方、500℃を超える温度まで加熱すると、焼き戻しによる軟化で強度低下が著しいため、上限を500℃とする。
Reheating temperature: 300 ° C to 500 ° C
When the reheating temperature is less than 300 ° C., hydrogen does not diffuse sufficiently in the steel and cutting cracks cannot be prevented. Therefore, the reheating temperature is set to 300 ° C. or higher. On the other hand, if the temperature is higher than 500 ° C., the upper limit is set to 500 ° C. because the strength decreases significantly due to softening by tempering.

[ミクロ組織]
ベイナイトまたはマルテンサイトを含み、かつこれらのベイナイトまたはマルテンサイト中に存在するセメンタイトの平均粒径が0.5μm以下、引張強度650MPa以上の高強度を得るためには、ミクロ組織にベイナイトあるいはマルテンサイトを含む必要がある。
[Microstructure]
In order to obtain high strength containing bainite or martensite and having an average particle size of cementite present in these bainite or martensite of 0.5 μm or less and a tensile strength of 650 MPa or more, bainite or martensite is added to the microstructure. Need to include.

ベイナイト、マルテンサイト、ベイナイトとマルテンサイトのいずれの面積率は60%以上であることが望ましく、その他の組織としてフェライトやパーライトを30%未満含むことが許容される。   Any area ratio of bainite, martensite, bainite and martensite is desirably 60% or more, and it is allowed to contain less than 30% of ferrite or pearlite as other structures.

さらにこれらの組織中のセメンタイトが粗大化するとDWTT特性が劣化するので、セメンタイトの平均粒径は0.5μm以下とする。好ましくは0.2μm以下である。   Furthermore, when cementite in these structures becomes coarse, the DWTT characteristics deteriorate, so the average particle size of cementite is 0.5 μm or less. Preferably it is 0.2 micrometer or less.

尚、本発明では鋼の製鋼方法は特に限定しない。経済性の観点から転炉法による製鋼プロセスと、連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。   In the present invention, the steel making method is not particularly limited. From the economical point of view, it is desirable to cast steel pieces by a steelmaking process by a converter method and a continuous casting process.

表1に示す化学組成の鋼を用い、表2に示す熱間圧延・冷却、再加熱条件で鋼板A
〜Kを作製した。尚、再加熱処理は冷却(水冷)設備と同一ライン上に設置した誘導加熱型の加熱装置を用いて行った。
Steel plate A was used under the conditions of hot rolling / cooling and reheating shown in Table 2 using steel having the chemical composition shown in Table 1.
~ K was made. The reheating treatment was performed using an induction heating type heating device installed on the same line as the cooling (water cooling) facility.

Figure 2006207028
Figure 2006207028

Figure 2006207028
Figure 2006207028

まず、それぞれの鋼板をせん断機により20箇所切断し、その切断端面を磁粉探傷により調査し、切断割れが認められた切断端面の数を求めた。1つの端面内に複数の割れが確認できた場合でも、端面としては1つなので、切断割れの発生数は1とした。全ての切断箇所において、切断割れが認められない場合を切断割れ発生数0とした。   First, each steel plate was cut at 20 locations with a shearing machine, and the cut end faces were examined by magnetic particle flaw detection to determine the number of cut end faces at which cut cracks were observed. Even when a plurality of cracks could be confirmed in one end face, the number of occurrences of cut cracks was set to 1 because there was only one end face. The number of occurrences of cut cracks was defined as 0 when no cut cracks were observed at all cut locations.

次に、それぞれの鋼板より、API−5Lに準拠した全厚引張試験片およびDWTT試験片を、板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し、鋼板の引張試験、DWTT試験およびシャルピー衝撃試験を実施して、強度と靱性を評価した。   Next, a full thickness tensile test piece and a DWTT test piece in accordance with API-5L were collected from each steel plate, and a V-notch Charpy impact test piece of JIS Z2202 (1980) was taken from the plate thickness center position, and a tensile test of the steel plate. A DWTT test and a Charpy impact test were performed to evaluate strength and toughness.

圧延方向断面に平行にミクロ組織観察用サンプルを採取し、鏡面研磨後、硝酸アルコールエッチング処理を行って光学顕微鏡にてミクロ組織観察を行った。   A sample for observing the microstructure was taken in parallel with the cross section in the rolling direction, and after mirror polishing, nitric alcohol etching was performed and the microstructure was observed with an optical microscope.

次に、再度、鏡面研磨後、スピードエッチング処理を行って、走査型電子顕微鏡にてセメンタイトの観察を行い、無作為10視野で観察されたセメンタイト粒子の円相当径を平均して算出した。   Next, after mirror polishing again, speed etching treatment was performed, and cementite was observed with a scanning electron microscope, and the equivalent circle diameters of the cementite particles observed in 10 random fields were averaged and calculated.

また、それぞれの鋼板より、再現熱サイクル試験片を採取し、溶融線近傍の粗粒熱影響部を模擬した最高加熱温度1400℃とする熱サイクルを付与後、JIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し、シャルピー衝撃試験を実施して溶接熱影響部靱性を評価した。   In addition, reproducible thermal cycle test specimens were collected from each steel plate and given a thermal cycle with a maximum heating temperature of 1400 ° C. simulating the coarse-grained heat-affected zone in the vicinity of the melting line, and then JIS Z2202 (1980) V-notch Charpy. An impact test piece was collected and a Charpy impact test was performed to evaluate the toughness of the weld heat affected zone.

更に、JIS Z 3158(1993)に準拠し、y形溶接割れ試験を実施した。試験雰囲気は気温30℃で湿度80%とし、該雰囲気内に1時間放置した100kgf級高張力鋼用の手溶接棒を用い、予熱温度100℃とした試験体に試験ビードを溶接した。溶接割れ感受性は試験ビードと直交する断面の断面割れ率で評価した。   Furthermore, a y-type weld cracking test was performed in accordance with JIS Z 3158 (1993). The test atmosphere was a temperature of 30 ° C. and a humidity of 80%, and a test bead was welded to a test body at a preheating temperature of 100 ° C. using a hand-welded rod for 100 kgf class high-strength steel left in the atmosphere for 1 hour. Weld crack susceptibility was evaluated by the cross-sectional crack rate of the cross section orthogonal to the test beads.

鋼板のせん断切断試験結果、母材の強度・靱性調査結果、再現熱サイクルによる溶接熱影響部の靱性調査結果、および溶接割れ感受性の評価結果をまとめて表3に示す。   Table 3 summarizes the results of the shear cutting test on the steel sheet, the results of the strength / toughness investigation of the base metal, the results of the toughness investigation of the weld heat affected zone by the reproducible thermal cycle, and the evaluation results of the weld crack sensitivity.

Figure 2006207028
Figure 2006207028

本発明範囲は、せん断切断試験では割れ無し、母材の強度は引張強度650MPa以上、降伏強度550MPa以上、母材靭性vE−30200J以上、DWTT SA−3085%以上、溶接熱影響部の靱性vE−30100J以上、y形溶接割れ試験断面割れ率(%)0%を本発明範囲内とした。 The present invention range, no cracks in the shear cutting test, the strength of the base metal tensile strength 650MPa or more, a yield strength 550MPa or more, the base material toughness vE -30 200 J or more, DWTT SA -30 85% or more, toughness of the weld heat affected zone vE- 30 100J or more, y-type weld crack test cross section crack rate (%) 0% was within the scope of the present invention.

化学組成および圧延・冷却・再加熱条件が本発明の範囲内の発明例1〜8、17、18は切断割れが発生することなく、且つ高強度・高靱性を示した。   Inventive Examples 1 to 8, 17 and 18 in which the chemical composition and rolling / cooling / reheating conditions were within the scope of the present invention exhibited no high strength and high toughness without causing cracking.

一方,化学組成は本発明範囲内(鋼種C)であるものの、製造条件が本発明範囲外である比較例9〜12は耐切断特性などが本発明例と比較して劣る。   On the other hand, although the chemical composition is within the scope of the present invention (steel type C), Comparative Examples 9 to 12 whose production conditions are outside the scope of the present invention are inferior in cutting resistance and the like as compared with the inventive examples.

熱間圧延後の加速冷却停止温度が上限を外れた比較例9は、発明例3に較べ強度が著しく低下した。   In Comparative Example 9 in which the accelerated cooling stop temperature after hot rolling was out of the upper limit, the strength was remarkably reduced as compared with Invention Example 3.

また、冷却後の再加熱時の昇温速度が下限を下回った比較例10は、母材強度や溶接熱影響部靱性は本発明例と同等であったが、セメンタイト粒径が0.5μmを超える粗大化が生じ、DWTT特性が著しく低下した。   Further, Comparative Example 10 in which the heating rate during reheating after cooling was lower than the lower limit, the base metal strength and the weld heat affected zone toughness were equivalent to those of the present invention example, but the cementite particle size was 0.5 μm. Excessive coarsening occurred, and the DWTT characteristics were remarkably lowered.

再加熱温度が下限を下回った比較例11は、水素の拡散が十分でなかったため、切断割れが発生した。再加熱温度が上限を上回った比較例12は、母材強度が低下した。   In Comparative Example 11 in which the reheating temperature was lower than the lower limit, hydrogen cracks were not sufficiently diffused, so that cut cracks occurred. In Comparative Example 12 in which the reheating temperature exceeded the upper limit, the base material strength decreased.

鋼のC量が上限を上回った鋼種Gによる比較例13は、母材および溶接熱影響部靱性が低く、溶接割れ試験において割れが発生した。Mn量が上限を上回った鋼種Hによる比較例14も同じく溶接割れ試験で割れが発生した。   In Comparative Example 13 with steel type G in which the C content of the steel exceeded the upper limit, the base material and the weld heat affected zone toughness were low, and cracks occurred in the weld crack test. In Comparative Example 14 with steel type H in which the amount of Mn exceeded the upper limit, cracks also occurred in the weld cracking test.

また,Nb量が上限を上回った鋼種Jによる比較例15、Ti量が上限を上回った鋼種Kによる比較例16はいずれも母材と溶接熱影響部の靱性が著しく低い。   Moreover, the comparative example 15 by the steel type J in which the Nb amount exceeded the upper limit and the comparative example 16 by the steel type K in which the Ti amount exceeded the upper limit both have extremely low toughness of the base material and the weld heat affected zone.

Claims (3)

質量%で、
C:0.03〜0.12%
Si:≦0.5%
Mn:1.5〜3.0%
Al:0.01〜0.08%
Nb:0.01〜0.08%
Ti:0.005〜0.025%
N:0.001〜0.01%
更に、
Cu:0.01〜2%
Ni:0.01〜3%
Cr:0.01〜1%
Mo:0.01〜1%
V:0.01〜0.1%
B:0.0005〜0.005%
の1種又は2種以上を含有し
残部Fe及び不可避的不純物からなる鋼を1000〜1200℃に加熱後、950℃以下の温度域での累積圧下量≧67%となるよう熱間圧延を行い、圧延終了後600℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し、250℃未満の温度域で冷却停止後直ちに5℃/s以上の昇温速度で300℃以上500℃未満の温度に再加熱することを特徴とする耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法。
% By mass
C: 0.03-0.12%
Si: ≦ 0.5%
Mn: 1.5 to 3.0%
Al: 0.01 to 0.08%
Nb: 0.01 to 0.08%
Ti: 0.005-0.025%
N: 0.001 to 0.01%
Furthermore,
Cu: 0.01-2%
Ni: 0.01 to 3%
Cr: 0.01 to 1%
Mo: 0.01 to 1%
V: 0.01 to 0.1%
B: 0.0005 to 0.005%
After the steel containing one or more of these and the balance Fe and inevitable impurities is heated to 1000 to 1200 ° C., hot rolling is performed so that the cumulative reduction amount in the temperature range of 950 ° C. or lower is ≧ 67% After the end of rolling, cooling is started at a cooling rate of 20 to 80 ° C./s from a temperature range of 600 ° C. or higher, and immediately after cooling is stopped at a temperature range of less than 250 ° C., a heating rate of 5 ° C./s or higher is immediately applied at 300 ° C. or higher and 500 ° C. A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance, characterized by reheating to a temperature of less than ° C.
請求項1記載の成分組成に更に、質量%で、
Ca: 0.0005〜0.01%
REM:0.0005〜0.02%
Zr:0.0005〜0.03%
Mg:0.0005〜0.01%
の1種または2種以上を含有する鋼を
1000〜1200℃に加熱後、950℃以下の温度域での累積圧下量≧67%となるよう熱間圧延を行い、圧延終了後600℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し、250℃未満の温度域で冷却停止後直ちに5℃/s以上の昇温速度で300℃以上500℃未満の温度に再加熱することを特徴とする耐切断割れ性に優れた高強度・高靱性厚鋼板の製造方法。
The component composition according to claim 1, further in mass%,
Ca: 0.0005 to 0.01%
REM: 0.0005 to 0.02%
Zr: 0.0005 to 0.03%
Mg: 0.0005 to 0.01%
After heating the steel containing 1 type or 2 types or more to 1000 to 1200 ° C., hot rolling is performed so that the cumulative reduction amount ≧ 67% in a temperature range of 950 ° C. or less, and after the end of rolling, the temperature is 600 ° C. or more. Start cooling from the temperature range at a cooling rate of 20 to 80 ° C./s, and immediately reheat to a temperature of 300 ° C. or more and less than 500 ° C. at a rate of temperature increase of 5 ° C./s or more immediately after stopping cooling at a temperature range of less than 250 ° C. A method for producing a high-strength, high-toughness thick steel plate having excellent cut cracking resistance.
請求項1又は2に記載の成分組成を有し、ミクロ組織にベイナイトまたはマルテンサイトを含み、これらの組織中に存在するセメンタイトの平均粒径が0.5μm以下であることを特徴とする耐切断割れ性に優れた高強度・高靭性厚鋼板。
The component composition according to claim 1 or 2, comprising bainite or martensite in a microstructure, and an average particle diameter of cementite present in these structures is 0.5 μm or less. High strength, high toughness thick steel plate with excellent cracking properties.
JP2005375432A 2004-12-28 2005-12-27 A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics. Active JP5157066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375432A JP5157066B2 (en) 2004-12-28 2005-12-27 A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004378619 2004-12-28
JP2004378619 2004-12-28
JP2005375432A JP5157066B2 (en) 2004-12-28 2005-12-27 A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012234574A Division JP5505487B2 (en) 2004-12-28 2012-10-24 High-strength, high-tough steel plate with excellent cut crack resistance and DWTT properties

Publications (2)

Publication Number Publication Date
JP2006207028A true JP2006207028A (en) 2006-08-10
JP5157066B2 JP5157066B2 (en) 2013-03-06

Family

ID=36964193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375432A Active JP5157066B2 (en) 2004-12-28 2005-12-27 A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.

Country Status (1)

Country Link
JP (1) JP5157066B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095926A (en) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp High tensile strength steel sheet excellent in weldability and manufacturing method thereof
JP2013108167A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 950 mpa or greater, excellent in weldability and delayed fracture resistance
JP2013108168A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
JP2014029003A (en) * 2011-09-30 2014-02-13 Jfe Steel Corp Method of producing high tensile steel sheet excellent in delayed fracture resistance
JP2014029004A (en) * 2011-09-30 2014-02-13 Jfe Steel Corp Method of producing high tensile steel sheet excellent in weldability and delayed fracture resistance
KR101528064B1 (en) * 2013-12-18 2015-06-10 주식회사 포스코 Lightweight high phosphorus steel having excellent hot-rolling property and method for manufactuing the same
CN105088096A (en) * 2015-08-31 2015-11-25 山东钢铁股份有限公司 X80 pipeline steel with high stress ratio and high arrest toughness and preparation method and application of X80 pipeline steel
WO2020196214A1 (en) * 2019-03-28 2020-10-01 Jfeスチール株式会社 Steel material for line pipes and method for manufacturing same, and line pipe and method for manufacturing same
CN113235007A (en) * 2021-05-14 2021-08-10 新疆八一钢铁股份有限公司 Production method of thick Z-direction wind power steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460407B (en) * 2017-08-25 2019-02-19 中冶华天包头设计研究总院有限公司 Rare earth reinforced long-distance transport pipes steel and the preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258788A (en) * 1994-03-18 1995-10-09 Nippon Steel Corp Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JPH07268457A (en) * 1994-03-28 1995-10-17 Sumitomo Metal Ind Ltd Production of thick steel plate for line pipe, having high strength and high toughness
JP2002003942A (en) * 2000-06-14 2002-01-09 Nippon Steel Corp Method for producing tough low yield ratio steel having small quality deviation
JP2002241837A (en) * 2001-02-14 2002-08-28 Nkk Corp Method for producing high toughness and high tensile strength steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258788A (en) * 1994-03-18 1995-10-09 Nippon Steel Corp Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JPH07268457A (en) * 1994-03-28 1995-10-17 Sumitomo Metal Ind Ltd Production of thick steel plate for line pipe, having high strength and high toughness
JP2002003942A (en) * 2000-06-14 2002-01-09 Nippon Steel Corp Method for producing tough low yield ratio steel having small quality deviation
JP2002241837A (en) * 2001-02-14 2002-08-28 Nkk Corp Method for producing high toughness and high tensile strength steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029003A (en) * 2011-09-30 2014-02-13 Jfe Steel Corp Method of producing high tensile steel sheet excellent in delayed fracture resistance
JP2014029004A (en) * 2011-09-30 2014-02-13 Jfe Steel Corp Method of producing high tensile steel sheet excellent in weldability and delayed fracture resistance
JP2013095926A (en) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp High tensile strength steel sheet excellent in weldability and manufacturing method thereof
JP2013108167A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 950 mpa or greater, excellent in weldability and delayed fracture resistance
JP2013108168A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
KR101528064B1 (en) * 2013-12-18 2015-06-10 주식회사 포스코 Lightweight high phosphorus steel having excellent hot-rolling property and method for manufactuing the same
CN105088096A (en) * 2015-08-31 2015-11-25 山东钢铁股份有限公司 X80 pipeline steel with high stress ratio and high arrest toughness and preparation method and application of X80 pipeline steel
CN105088096B (en) * 2015-08-31 2017-04-19 山东钢铁股份有限公司 X80 pipeline steel with high stress ratio and high arrest toughness and preparation method and application of X80 pipeline steel
WO2020196214A1 (en) * 2019-03-28 2020-10-01 Jfeスチール株式会社 Steel material for line pipes and method for manufacturing same, and line pipe and method for manufacturing same
JP6819835B1 (en) * 2019-03-28 2021-01-27 Jfeスチール株式会社 Steel materials for line pipes and their manufacturing methods and line pipes and their manufacturing methods
EP3950997A4 (en) * 2019-03-28 2022-05-18 JFE Steel Corporation Steel material for line pipes and method for manufacturing same, and line pipe and method for manufacturing same
CN113235007A (en) * 2021-05-14 2021-08-10 新疆八一钢铁股份有限公司 Production method of thick Z-direction wind power steel

Also Published As

Publication number Publication date
JP5157066B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5157066B2 (en) A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.
JP3968011B2 (en) High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP5391542B2 (en) High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JPH11293383A (en) Thick steel plate minimal in hydrogen induced defect, and its production
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5505487B2 (en) High-strength, high-tough steel plate with excellent cut crack resistance and DWTT properties
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP5472423B2 (en) High-strength, high-toughness steel plate with excellent cutting crack resistance

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5157066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250