JP2013108167A - Method of producing high strength steel plate of tensile strength of 950 mpa or greater, excellent in weldability and delayed fracture resistance - Google Patents

Method of producing high strength steel plate of tensile strength of 950 mpa or greater, excellent in weldability and delayed fracture resistance Download PDF

Info

Publication number
JP2013108167A
JP2013108167A JP2012160207A JP2012160207A JP2013108167A JP 2013108167 A JP2013108167 A JP 2013108167A JP 2012160207 A JP2012160207 A JP 2012160207A JP 2012160207 A JP2012160207 A JP 2012160207A JP 2013108167 A JP2013108167 A JP 2013108167A
Authority
JP
Japan
Prior art keywords
less
steel
weldability
delayed fracture
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160207A
Other languages
Japanese (ja)
Other versions
JP6056235B2 (en
Inventor
Hirofumi Otsubo
浩文 大坪
Shigeki Kizutani
茂樹 木津谷
Kenji Hayashi
謙次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012160207A priority Critical patent/JP6056235B2/en
Publication of JP2013108167A publication Critical patent/JP2013108167A/en
Application granted granted Critical
Publication of JP6056235B2 publication Critical patent/JP6056235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a high strength steel plate of a tensile strength of 950 MPa or greater, excellent in weldability and delayed fracture resistance relative to prior art steel.SOLUTION: The method of producing a high strength steel plate of a tensile strength of 950 MPa or greater, excellent in weldability and delayed fracture resistance, comprises: heating a steel of a composition comprising by mass, C: 0.03 to 0.25%, Si: 0.01 to 0.8%, Mn: 0.5 to 2%, P: 0.010% or less, S: 0.003% or less, Al: 0.005 to 0.1%, and N: 0.0005 to 0.008% with the balance being Fe and inevitable impurities, wherein a weld crack sensitivity index Pcm of 0.26% or lower, to an Actransformation point or higher; hot-rolling the steel at a cumulative rolling reduction of not higher than 80% in an un-crystallization temperature range; completing the hot rolling at an Artransformation point or higher; subsequently cooling the steel from the Artransformation point or higher down to a temperature of 250°C or lower at a cooling speed of at least 10°C/s; thereafter reheating the steel at a mean temperature increase rate of at least 1°C/s; and subjecting the steel to a tempering treatment with the highest achieved temperature kept in a range of 100 to 400°C.

Description

本発明は、溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法に関し、特に引張強さが950MPa以上の高張力鋼板の製造方法として好適なものに関する。   The present invention relates to a method for producing a high-tensile steel plate excellent in weldability and delayed fracture resistance, and particularly relates to a suitable method for producing a high-tensile steel plate having a tensile strength of 950 MPa or more.

近年、建設産業機械、タンク、ペンストック、ラインパイプ等の鋼材使用分野では、構造物の大型化、軽量化を背景として、使用する鋼材の高強度化が指向されると共に鋼材使用量が急激に増加している。   In recent years, in the field of using steel materials such as construction industrial machines, tanks, penstocks, line pipes, etc., against the backdrop of increasing the size and weight of structures, the strength of steel materials to be used has been increasing and the amount of steel materials used has rapidly increased. It has increased.

このような需要の増大に対しては、特許文献1、2、3に焼戻し処理を省略する780MPa級高張力厚鋼板が提案されている。   In response to such an increase in demand, Patent Documents 1, 2, and 3 propose 780 MPa class high-tensile thick steel plates that omit the tempering treatment.

またさらに高強度の需要に対応するため、特許文献4に焼戻し処理を省略する降伏強度885MPa以上の高張力鋼板が提案されている。   Furthermore, in order to meet the demand for higher strength, Patent Document 4 proposes a high-tensile steel plate having a yield strength of 885 MPa or more that omits the tempering treatment.

特許文献5、6には、炭化物の微細分散等様々な技術を利用する耐水素脆化特性に優れた鋼板の製造方法が提案されている。   Patent Documents 5 and 6 propose a method for producing a steel sheet having excellent hydrogen embrittlement resistance using various techniques such as fine dispersion of carbides.

特開2007−277622号公報JP 2007-277622 A 特開2007−277623号公報JP 2007-277623 A 特開2009−263772号公報JP 2009-263774 A 特開2011−012315号公報JP 2011-012315 A 特開2006−206942号公報JP 2006-206942 A 特開2007−009324号公報JP 2007-009324 A

特許文献1、2、3に記載の焼戻し処理を省略する高強度鋼板は、引張強度が780MPa程度だが、冷却停止温度が室温〜350℃の範囲としており、自己焼鈍による不均一な炭化物の生成が起こりやすく、耐遅れ破壊特性の観点からは不十分である。また、焼入れままの強度を調整するためにCを低減する必要があり、必要な特性を確保するために合金を大量に添加する必要があり、省合金の観点から製造コストが高くなる。   The high-strength steel sheets that omit the tempering treatment described in Patent Documents 1, 2, and 3 have a tensile strength of about 780 MPa, but the cooling stop temperature is in the range of room temperature to 350 ° C., and non-uniform carbides are generated by self-annealing. It tends to occur and is insufficient from the viewpoint of delayed fracture resistance. In addition, it is necessary to reduce C in order to adjust the as-quenched strength, and it is necessary to add a large amount of alloy in order to ensure necessary characteristics, which increases the manufacturing cost from the viewpoint of alloy saving.

特許文献4に記載の焼戻し処理を省略する降伏強度885MPa以上の高強度鋼板は、冷却停止温度を200〜400℃とし、その後、20℃/min以下で冷却することが規定されており、特許文献1、2、3と同様に、自己焼鈍による不均一な炭化物の生成が起こりやすく、耐遅れ破壊特性の観点からは不十分である。また、オートエージングにより強度を確保しているため、低温靭性も十分とは言い難い。   A high strength steel sheet with a yield strength of 885 MPa or more that omits the tempering process described in Patent Document 4 is specified to have a cooling stop temperature of 200 to 400 ° C. and then cooled at 20 ° C./min or less. Similar to 1, 2, and 3, non-uniform carbides are likely to be generated by self-annealing, which is insufficient from the viewpoint of delayed fracture resistance. Moreover, since the strength is secured by auto-aging, it is difficult to say that the low temperature toughness is sufficient.

また、特許文献5、6に記載されている方法により、引張強度が780MPa以上の高強度鋼板を得ようとする場合、焼戻し温度が高く製造性が劣り、多くの合金を添加する必要があるため溶接性が低下すると言う問題がある。   Moreover, when trying to obtain a high-strength steel sheet having a tensile strength of 780 MPa or more by the methods described in Patent Documents 5 and 6, the tempering temperature is high, the productivity is inferior, and many alloys need to be added. There is a problem that weldability deteriorates.

本発明はかかる事情に鑑みてなされたものであり、引張強度が950MPa以上で、従来の鋼材より溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a high-tensile steel sheet having a tensile strength of 950 MPa or more and superior in weldability and delayed fracture resistance to conventional steel materials.

本発明者らは、950MPa以上の強度と溶接性、耐遅れ破壊特性を有する鋼板について鋭意研究を重ねた結果、焼戻し処理時における鋼材の板厚方向中心部の昇温速度および、焼戻し温度を規定することによって、炭化物の生成が効果的に抑制され、拡散性水素の炭化物への集積を抑えることができ、さらに、加熱時の脱水素により鋼中の拡散性水素量を低減でき、焼戻し後でも焼入れ時の強度と同程度の強度となり、省合金設計を可能とすることにより、従来鋼よりも、溶接性および耐遅れ破壊特性に優れた高張力鋼板を得ることが可能となることを見出した。   As a result of intensive research on a steel sheet having a strength of 950 MPa or more, weldability, and delayed fracture resistance, the present inventors have specified the rate of temperature rise and the tempering temperature at the center in the thickness direction of the steel during tempering. This effectively suppresses the formation of carbides, suppresses the accumulation of diffusible hydrogen in the carbides, and further reduces the amount of diffusible hydrogen in the steel by dehydrogenation during heating, even after tempering. It has been found that high strength steel sheets with better weldability and delayed fracture resistance than conventional steels can be obtained by making the alloy strength comparable to the strength during quenching and enabling alloy-saving design. .

本発明は上記の得られた知見に基づき、更に検討を加えてなされたもので、本発明の要旨は、以下の通りである。   The present invention has been made on the basis of the above-described findings and further studies. The gist of the present invention is as follows.

[1]質量%で、C:0.03〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.010%以下、S:0.003%以下、Al:0.005〜0.1%、N:0.0005〜0.008%を含有し、下記式(1)に示す溶接割れ感受性指数Pcmが0.26%以下であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼をAc変態点以上に加熱し、未再結晶温度域での累積圧下率を80%以下とする熱間圧延を行い、Ar変態点以上で熱間圧延を終了し、引き続きAr変態点以上から10℃/s以上の冷却速度で250℃以下の温度まで冷却後、1℃/s以上の平均昇温速度で再加熱し、最高到達温度を100〜400℃の範囲とする焼戻し処理を行うことを特徴とする溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。 [1] By mass%, C: 0.03 to 0.25%, Si: 0.01 to 0.8%, Mn: 0.5 to 2%, P: 0.010% or less, S: 0.00. 003% or less, Al: 0.005 to 0.1%, N: 0.0005 to 0.008%, the weld crack sensitivity index Pcm shown in the following formula (1) is 0.26% or less, A steel having a composition composed of Fe and unavoidable impurities in the balance is heated to the Ac 3 transformation point or higher, and hot rolling is performed so that the cumulative reduction rate in the non-recrystallization temperature range is 80% or less, and the Ar 3 transformation point. The hot rolling is completed as described above. Subsequently, the steel is cooled from the Ar 3 transformation point or higher to a temperature of 250 ° C. or lower at a cooling rate of 10 ° C./s or higher and then reheated at an average heating rate of 1 ° C./s or higher. Weldability and delayed fracture characterized by performing a tempering treatment in which the ultimate temperature is in the range of 100 to 400 ° C. Excellent tensile strength 950MPa or more of the method for manufacturing the high-tensile steel sheet properties.

Figure 2013108167
Figure 2013108167

[2]前記鋼に、更に、質量%で、Mo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.03%以下、Cu:2%以下、Ni:4%以下、Cr:2%以下、W:2%以下の中から選ばれる一種以上を含有することを特徴とする上記[1]に記載の溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。   [2] In addition to the steel, by mass%, Mo: 0.01-1%, Nb: 0.001-0.1%, V: 0.001-0.5%, Ti: 0.03% The weldability according to [1] above, which contains at least one selected from Cu: 2% or less, Ni: 4% or less, Cr: 2% or less, and W: 2% or less A method for producing a high-tensile steel sheet having a tensile strength of 950 MPa or more and excellent in delayed fracture resistance.

[3]前記鋼に、更に、質量%で、B:0.0003%〜0.003%、Ca:0.01%以下、REM:0.02%以下の中から選ばれる一種以上が添加されていることを特徴とする上記[1]または[2]に記載の溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。   [3] One or more kinds selected from B: 0.0003% to 0.003%, Ca: 0.01% or less, and REM: 0.02% or less are further added to the steel by mass%. The method for producing a high-tensile steel sheet having a tensile strength of 950 MPa or more and having excellent weldability and delayed fracture resistance as described in [1] or [2] above.

[4]金属組織がマルテンサイト相主体の組織であり、マルテンサイト相のラス界面における炭化物の円相当径が100nm以下、炭化物被覆率が20%以下であることを特徴とする上記[1]乃至[3]の何れかに記載の溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。   [4] The above [1] to [1], wherein the metal structure is a structure mainly composed of a martensite phase, the equivalent circle diameter of the carbide at the lath interface of the martensite phase is 100 nm or less, and the carbide coverage is 20% or less. [3] A method for producing a high-tensile steel sheet having a tensile strength of 950 MPa or more and excellent in weldability and delayed fracture resistance.

本発明を用いることで、引張強度が950MPa以上の高強度を有するとともに、溶接性および耐遅れ破壊特性に優れる高張力鋼を安価に安定して製造することができる。   By using the present invention, a high-strength steel having a high tensile strength of 950 MPa or more and excellent in weldability and delayed fracture resistance can be stably produced at low cost.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel of this invention is demonstrated. In addition, all component% means the mass%.

C:0.03〜0.25%
Cは、構造用鋼に求められる強度を得るために必要不可欠な元素であるが、0.03%未満の添加では、十分な強度が得られず、合金元素の大量添加が必要になり溶接性が低下する。0.25%を超える添加では、溶接熱影響部のマルテンサイトの生成量が多くなり靭性を低下させるため、C量は0.03〜0.25%の範囲とする。好ましくは0.12〜0.23%の範囲である。より好ましくは0.12〜0.22%の範囲である。
C: 0.03-0.25%
C is an indispensable element for obtaining the strength required for structural steel, but if it is added less than 0.03%, sufficient strength cannot be obtained, and a large amount of alloying element is required, so that weldability is required. Decreases. If the addition exceeds 0.25%, the amount of martensite generated in the weld heat-affected zone increases and the toughness decreases, so the C content is in the range of 0.03 to 0.25%. Preferably it is 0.12 to 0.23% of range. More preferably, it is 0.12 to 0.22% of range.

Si:0.01〜0.8%
Siは脱酸のために添加するが、0.01%未満の添加では脱酸効果が十分でなく、0.8%を超えて添加すると母材および溶接熱影響部の靭性が顕著に低下するとともに溶接性が著しく低下するため、Si量は0.01%〜0.8%の範囲とする。好ましくは0.05〜0.6%の範囲である。より好ましくは0.2〜0.5%の範囲である。
Si: 0.01 to 0.8%
Si is added for deoxidation, but if less than 0.01% is added, the deoxidation effect is not sufficient, and if added over 0.8%, the toughness of the base metal and the weld heat-affected zone significantly decreases. At the same time, the weldability is remarkably lowered, so the Si content is in the range of 0.01% to 0.8%. Preferably it is 0.05 to 0.6% of range. More preferably, it is 0.2 to 0.5% of range.

Mn:0.5〜2%
Mnは母材強度を確保する観点から添加するが、0.5%未満の添加ではその効果が十分でなく、2%を超えて添加すると、過剰に焼入性を高め、溶接熱影響部の靭性を著しく低下させることから、Mn量は0.5〜2%の範囲とする。好ましくは0.6〜1.6%の範囲である。より好ましくは0.6〜1.5%の範囲である。
Mn: 0.5-2%
Mn is added from the viewpoint of securing the strength of the base metal. However, if it is added in an amount of less than 0.5%, the effect is not sufficient. Since the toughness is remarkably lowered, the amount of Mn is set in the range of 0.5 to 2%. Preferably it is 0.6 to 1.6% of range. More preferably, it is 0.6 to 1.5% of range.

P:0.010%以下
Pは、0.010%を超えて含有すると、母材および溶接熱影響部の靭性を著しく低下させるため、P量は0.010%以下とする。
P: 0.010% or less When P exceeds 0.010%, the toughness of the base metal and the weld heat-affected zone is remarkably reduced, so the P content is 0.010% or less.

S:0.003%以下
Sは、0.003%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に低下させるため、S量は0.003%以下とする。好ましくは0.0015%以下である。
S: 0.003% or less If S is contained in excess of 0.003%, the toughness of the base metal and the weld heat-affected zone is remarkably reduced. Therefore, the amount of S is made 0.003% or less. Preferably it is 0.0015% or less.

Al:0.005〜0.1%
Alは溶鋼を十分に脱酸するために添加されるが、0.005%未満の添加では脱酸効果が十分でなく、0.1%を超えて添加すると母材中に固溶するAl量が多くなり、母材靭性を低下させるので、Al量は0.005〜0.1%の範囲とする。好ましくは0.01〜0.06%の範囲である。より好ましくは0.01〜0.04%の範囲である。
Al: 0.005 to 0.1%
Al is added in order to sufficiently deoxidize molten steel, but if it is added less than 0.005%, the deoxidation effect is not sufficient, and if added over 0.1%, the amount of Al that dissolves in the base metal And the base metal toughness is reduced, so the Al content is in the range of 0.005 to 0.1%. Preferably it is 0.01 to 0.06% of range. More preferably, it is 0.01 to 0.04% of range.

N:0.0005〜0.008%
Nは、Tiなどと窒化物を形成することによって組織を微細化し、母材および溶接熱影響部の靭性を向上させる効果を有するために添加する。しかし、0.0005%未満の添加では組織微細化の効果が十分ではなく、一方、0.008%を超えて添加すると、母材中に固溶するN量が増大し、母材靭性が著しく低下し、さらに溶接熱影響部においても粗大な炭窒化物を形成し靭性を低下させるので、N量は0.0005%〜0.008%の範囲とする。好ましくは0.0010〜0.006%の範囲である。より好ましくは0.0010〜0.004%の範囲である。
N: 0.0005 to 0.008%
N is added in order to refine the structure by forming a nitride with Ti or the like and to improve the toughness of the base material and the weld heat affected zone. However, if the addition is less than 0.0005%, the effect of refining the structure is not sufficient. On the other hand, if the addition exceeds 0.008%, the amount of N dissolved in the base material increases and the base material toughness is remarkably increased. Further, a coarse carbonitride is formed also in the weld heat affected zone and the toughness is lowered. Therefore, the N content is set in the range of 0.0005% to 0.008%. Preferably it is 0.0010 to 0.006% of range. More preferably, it is 0.0010 to 0.004% of range.

Pcm:0.26%以下
溶接割れ感受性指数Pcm値は、溶接時の予熱温度を低減し、施工しやすい鋼材とするために、0.26%以下とする。Pcmが低すぎると、必要な強度を確保できないため、好ましくは0.15〜0.26%の範囲であり、より好ましくは、0.20〜0.26%の範囲である。
ここで、Pcmは、下記式(1)により求める。
Pcm: 0.26% or less The weld cracking susceptibility index Pcm value is set to 0.26% or less in order to reduce the preheating temperature during welding and to make the steel material easy to construct. If the Pcm is too low, the required strength cannot be ensured, so the range is preferably 0.15 to 0.26%, more preferably 0.20 to 0.26%.
Here, Pcm is obtained by the following formula (1).

Figure 2013108167
Figure 2013108167

以上が本発明の基本化学成分であり、残部はFe及び不可避的不純物からなるが、さらに強度を高める目的でMo、Nb、V、Ti、Cu、Ni、Cr、Wの中から選ばれる1種以上を選択元素として添加してもよい。   The above is the basic chemical component of the present invention, and the balance consists of Fe and unavoidable impurities, but one kind selected from Mo, Nb, V, Ti, Cu, Ni, Cr, and W for the purpose of further increasing the strength. The above may be added as selective elements.

Mo:0.01〜1%
Moは、母材の高強度化に有効な元素であるが、0.01%未満ではその効果が十分でなく、1%を超えて添加すると合金炭化物の析出による硬度の上昇を引き起こし、靭性を低下させるので、Moを添加する場合は、Mo量は0.01〜1%の範囲とすることが好ましい。より好ましくは0.1〜0.8%の範囲である。
Mo: 0.01 to 1%
Mo is an element effective for increasing the strength of the base material, but if it is less than 0.01%, the effect is not sufficient, and if added over 1%, it causes an increase in hardness due to precipitation of alloy carbides, resulting in toughness. In order to reduce, when adding Mo, it is preferable to make Mo amount into the range of 0.01 to 1%. More preferably, it is 0.1 to 0.8% of range.

Nb:0.001〜0.1%
Nbは鋼の強化に有効な元素であるが、0.001%未満ではその効果が十分でなく、0.1%を超える添加は母材の靭性を著しく低下させるので、Nbを添加する場合は、Nb量は0.001〜0.1%の範囲とすることが好ましい。より好ましくは0.005〜0.05%の範囲である。
Nb: 0.001 to 0.1%
Nb is an element effective for strengthening steel, but if it is less than 0.001%, the effect is not sufficient, and if it exceeds 0.1%, the toughness of the base metal is significantly reduced. The Nb content is preferably in the range of 0.001 to 0.1%. More preferably, it is 0.005 to 0.05% of range.

V:0.001〜0.5%
Vは母材の強度・靭性の向上に効果があり、また、VNとして析出することで固溶Nの低下に有効であるが、0.001%未満ではその効果が十分でなく、0.5%を超えて添加すると硬質なVCの析出により靭性が低下するので、Vを添加する場合は、V量は0.001〜0.5%の範囲とすることが好ましい。より好ましくは0.01〜0.1%の範囲である。
V: 0.001 to 0.5%
V is effective in improving the strength and toughness of the base metal, and is effective for lowering the solid solution N by being precipitated as VN. However, if it is less than 0.001%, the effect is not sufficient. If added in excess of%, the toughness decreases due to precipitation of hard VC, so when adding V, the V content is preferably in the range of 0.001 to 0.5%. More preferably, it is 0.01 to 0.1% of range.

Ti:0.03%以下
Tiは圧延加熱時あるいは溶接時にTiNを生成し、オーステナイトの粗大化を効果的に抑制し、母材および溶接熱影響部の靭性を向上させるが、0.03%を超えて添加すると、Ti窒化物が粗大化し母材および溶接熱影響部の靭性を低下させるので、Tiを添加する場合は、Ti量は0.03%以下とすることが好ましい。より好ましくは0.02%以下である。
Ti: 0.03% or less Ti produces TiN at the time of rolling heating or welding, and effectively suppresses the austenite coarsening and improves the toughness of the base metal and the weld heat affected zone. If added in excess, Ti nitride becomes coarse and lowers the toughness of the base metal and the weld heat affected zone. Therefore, when adding Ti, the Ti content is preferably 0.03% or less. More preferably, it is 0.02% or less.

Cu:2%以下
Cuは低温靭性を損なうことなく鋼の強度の向上が図れるが、2%を超えて添加すると、熱間圧延時に鋼板表面に割れを生じるので、Cuを添加する場合は、Cu量は2%以下とすることが好ましい。より好ましくは1%以下である。
Cu: 2% or less Cu can improve the strength of the steel without impairing the low-temperature toughness, but if added over 2%, the steel plate surface is cracked during hot rolling. The amount is preferably 2% or less. More preferably, it is 1% or less.

Ni:4%以下
Niは、鋼の強度および溶接熱影響部の靭性を向上させる有益な元素であるが、4%を超えて添加すると、効果が飽和し経済性が劣るため、Niを添加する場合は、Ni量は4%以下とすることが好ましい。より好ましくは2%以下である。
Ni: 4% or less Ni is a beneficial element that improves the strength of the steel and the toughness of the heat affected zone of the steel, but if added over 4%, the effect is saturated and the economy is inferior, so Ni is added. In this case, the amount of Ni is preferably 4% or less. More preferably, it is 2% or less.

Cr:2%以下
Crは、強度および靭性の向上に有効な元素であるが、2%を超えて添加すると、溶接性が低下するので、Crを添加する場合は、Cr量は2%以下とすることが好ましい。より好ましくは0.1〜1.2%の範囲である。
Cr: 2% or less Cr is an element effective for improving the strength and toughness, but if added over 2%, the weldability deteriorates. Therefore, when Cr is added, the Cr amount is 2% or less. It is preferable to do. More preferably, it is 0.1 to 1.2% of range.

W:2%以下
Wは強度を向上する作用を有している元素であるが、2%を超えて添加すると、溶接性が低下するので、Wを添加する場合は、W量は2%以下とすることが好ましい。より好ましくは、0.05〜2%の範囲である。
W: 2% or less W is an element that has the effect of improving the strength, but if added over 2%, the weldability deteriorates, so when adding W, the amount of W is 2% or less. It is preferable that More preferably, it is 0.05 to 2% of range.

本発明の高張力鋼は、上記組成に加えて、さらに材質を改善する目的でB、Ca、REMの中から選ばれる1種以上を選択元素として添加してもよい。   In addition to the above composition, the high-tensile steel of the present invention may be added with one or more selected from B, Ca, and REM as selective elements for the purpose of further improving the material.

B:0.0003〜0.003%
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑制し、焼入性を高める効果を有するが、この効果を十分に発揮させるためには0.0003%以上添加することが好ましいが、0.003%を超えて添加すると、炭窒化物として析出し焼入性を低下させ、靭性が低下するので、Bを添加する場合は、B量は0.0003〜0.003%の範囲とするのが好ましい。より好ましくは0.0005〜0.002%の範囲である。
B: 0.0003 to 0.003%
B has the effect of suppressing the ferrite transformation from the grain boundary by segregating at the austenite grain boundary and improving the hardenability, but 0.0003% or more may be added in order to fully exhibit this effect. Preferably, if added over 0.003%, it precipitates as carbonitride, lowering the hardenability and lowering the toughness. Therefore, when adding B, the amount of B is 0.0003 to 0.003%. It is preferable to be in the range. More preferably, it is 0.0005 to 0.002% of range.

Ca:0.01%以下
Caは硫化物系介在物の形態制御に有用な元素である。しかし0.01%を超えて添加すると、清浄度の低下を招くので、Caを添加する場合は、Ca量は0.01%以下とするのが好ましい。より好ましくは0.0005〜0.0025%の範囲である。
Ca: 0.01% or less Ca is an element useful for controlling the form of sulfide inclusions. However, if added over 0.01%, the cleanliness is lowered, so when adding Ca, the Ca content is preferably 0.01% or less. More preferably, it is 0.0005 to 0.0025% of range.

REM:0.02%以下
REMもCaと同様に鋼中で酸化物および硫化物を形成して材質を改善する効果があるが、0.02%を超えて添加しても、その効果が飽和するため、REMを添加する場合は、REM量は0.02%以下とするのが好ましい。より好ましくは0.0005〜0.0025%の範囲である。
REM: 0.02% or less REM also has the effect of improving the quality of the material by forming oxides and sulfides in the steel, similar to Ca, but the effect is saturated even if added over 0.02%. Therefore, when REM is added, the amount of REM is preferably 0.02% or less. More preferably, it is 0.0005 to 0.0025% of range.

2.金属組織について
本発明における金属組織の限定理由について説明する。
2. Regarding the metal structure, the reasons for limiting the metal structure in the present invention will be described.

引張強さ950MPa以上の高強度化を図るために金属組織は、マルテンサイトを主体とする組織とする。マルテンサイトを主体とする組織とは、本発明では、強度と靭性を両立するためにマルテンサイト+下部ベイナイト組織分率を95%以上とする。5%未満のフェライトや上部ベイナイト、残留γなどは許容する。   In order to increase the tensile strength of 950 MPa or more, the metal structure is a structure mainly composed of martensite. In the present invention, the structure mainly composed of martensite has a martensite + lower bainite structure fraction of 95% or more in order to achieve both strength and toughness. Less than 5% ferrite, upper bainite, residual γ, etc. are allowed.

なお、ミクロ組織分率の定量化は、ナイタールでエッチングした後に、走査型電子顕微鏡で組織写真を10視野以上撮影し、画像解析によりマルテンサイトと下部ベイナイトの面積率を計測することにより求める。   The microstructure fraction is quantified by etching with nital, taking 10 or more views of the structure photograph with a scanning electron microscope, and measuring the area ratio of martensite and lower bainite by image analysis.

鋼中の拡散性水素量を極力低減して溶接性、耐遅れ破壊特性を向上させる観点からマルテンサイト組織は焼戻し処理を施す。
また、耐遅れ破壊特性の向上には、炭化物の微細分散化が極めて重要である。特にマルテンサイト相のラス界面に生成した炭化物の円相当径を100nm以下と微細化することに加え、ラス界面に占める炭化物の量(以下、炭化物被覆率と言う)を20%以下とすることにより、拡散性水素の炭化物への集積を抑制でき、耐遅れ破壊特性を向上させる事が可能となる。一方、ラス界面での炭化物の円相当径が100nmを超えるか、もしくはラス界面での炭化物被覆率が20%を超えると、拡散性水素の炭化物への集積により、耐遅れ破壊特性が低下する。
なお、マルテンサイトのラス界面に生成した炭化物の円相当径と炭化物被覆率の測定方法については、ナイタールでエッチングした後に、走査型電子顕微鏡で組織写真を10視野以上撮影し、その写真を用いて求める。炭化物の円相当径は、例えば50個以上のラスの界面に生成した炭化物の大きさを画像解析により解析し、円相当径に換算する。また、炭化物被覆率は、50個以上のラス界面に生成した炭化物のラス界面に沿った長さ(Lcarbide)と、ラスの界面長さ(Llath)を画像解析により計測し、炭化物のラス界面に沿った長さの総和を、ラス界面長さの総和で除し、100を掛けた数値とする。
The martensitic structure is tempered from the viewpoint of improving the weldability and delayed fracture resistance by reducing the amount of diffusible hydrogen in the steel as much as possible.
In addition, fine dispersion of carbide is extremely important for improving delayed fracture resistance. In particular, by reducing the equivalent circle diameter of the carbide generated at the lath interface of the martensite phase to 100 nm or less, the amount of carbide in the lath interface (hereinafter referred to as carbide coverage) is set to 20% or less. In addition, accumulation of diffusible hydrogen in the carbide can be suppressed, and the delayed fracture resistance can be improved. On the other hand, if the equivalent circle diameter of the carbide at the lath interface exceeds 100 nm or the carbide coverage at the lath interface exceeds 20%, the delayed fracture resistance deteriorates due to accumulation of diffusible hydrogen in the carbide.
In addition, about the measuring method of the circle equivalent diameter and carbide | carbonized_material coverage of the carbide | carbonized_material produced | generated in the lath interface of the martensite, after etching with nital, a structure | tissue photograph was image | photographed 10 or more views with the scanning electron microscope, and the photograph was used. Ask. For example, the equivalent circle diameter of carbide is converted into an equivalent circle diameter by analyzing the size of carbide generated at the interface of 50 or more laths by image analysis. In addition, the carbide coverage is measured by image analysis of the length (L carbide ) of the carbide formed on 50 or more lath interfaces and the interface length (L lath ) of the lath by image analysis. The sum of the lengths along the interface is divided by the sum of the lath interface lengths and multiplied by 100.

3.製造条件について
以下に本発明の製造方法について説明する。
3. About manufacturing conditions The manufacturing method of this invention is demonstrated below.

なお本発明は、上述した組成を有する鋼を、転炉、電気炉等の溶製手段で溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることができるが、鋼の溶製方法や鋳造方法を特定するものではない。   In the present invention, the steel having the above-described composition is melted by a melting means such as a converter or an electric furnace, and is made into a steel material such as a slab by a conventional method such as a continuous casting method or an ingot-bundling method. However, it does not specify a method for melting or casting steel.

圧延条件について
上述した組成を有する鋼片を、加熱炉でAc変態点以上に加熱する。加熱炉への鋼片の装入方法としては、鋳片をAr変態点以下に冷却することなく加熱炉に装入する熱片装入法や、一度冷却した鋳片を加熱炉に装入し、Ac変態点以上に再加熱する冷片装入法があるが、本発明ではいずれの方法も用いることができる。
The steel slab having the composition described above for rolling conditions, heated to Ac 3 transformation point or higher in a heating furnace. As a method of charging a steel slab into the heating furnace, a hot piece charging method in which the slab is charged into the heating furnace without being cooled below the Ar 3 transformation point, or a slab once cooled is charged into the heating furnace. However, although there is a cold piece charging method in which reheating is performed to the Ac 3 transformation point or higher, any method can be used in the present invention.

加熱炉でAc変態点以上に加熱するのは、鋼をオーステナイト組織一相に均一化するためであり、加熱温度としては、1100℃以上1250℃以下とするのが好ましい。特に靭性を重視する場合は1100℃以上1200℃以下とするのがより好ましい。 The reason why the steel is heated to the Ac 3 transformation point or higher in the heating furnace is to make the steel uniform in one phase of the austenite structure, and the heating temperature is preferably 1100 ° C. or higher and 1250 ° C. or lower. In particular, when emphasizing toughness, the temperature is more preferably 1100 ° C. or more and 1200 ° C. or less.

熱間圧延は、未再結晶温度域での累積圧下率を80%以下とし、Ar変態点以上で熱間圧延を終了し、続く加速冷却開始温度がAr変態点以上となるようにする。 Hot rolling, the cumulative reduction rate in the pre-recrystallization temperature region is 80% or less, and finished hot rolled at Ar 3 transformation point or higher, the accelerated cooling start temperature is made to be than the Ar 3 transformation point followed by .

累積圧下率は80%以下とするが、未再結晶温度域での累積圧下率が80%を超える場合は、制御圧延による歪導入が顕著になり、変態の駆動力が高まり、圧延後、または冷却中に一部フェライトが生成するなどの焼入れ性低下を招き、母材の950MPa以上の高強度化と高靭性化の両立を達成することが困難となるため、累積圧下率を80%以下とする。なお、累積圧下率が10%未満では、オーステナイト粒微細化効果が得られないため、
好ましい累積圧下率の範囲は10〜80%の範囲である。
The cumulative rolling reduction is 80% or less. However, when the cumulative rolling reduction in the non-recrystallization temperature region exceeds 80%, strain introduction by controlled rolling becomes significant, and the driving force for transformation increases, after rolling, or It causes hardenability degradation such as the formation of some ferrite during cooling, and it becomes difficult to achieve both high strength and high toughness of the base material of 950 MPa or more, so the cumulative rolling reduction is 80% or less. To do. In addition, since the austenite grain refinement effect cannot be obtained if the cumulative rolling reduction is less than 10%,
A preferable range of the cumulative rolling reduction is in the range of 10 to 80%.

なお、未再結晶温度域は圧延中に再結晶が起こらない温度域であり、本発明の鋼では930℃以下である。また、累積圧下率は(元厚−仕上厚)/元厚×100%で表される。   The non-recrystallization temperature range is a temperature range where recrystallization does not occur during rolling, and is 930 ° C. or less in the steel of the present invention. The cumulative rolling reduction is expressed by (original thickness−finished thickness) / original thickness × 100%.

なお、Ar変態点は、下記式(2)により計算される値を用いる。 Incidentally, Ar 3 transformation point, a value that is calculated by the following equation (2).

Figure 2013108167
Figure 2013108167

Ac変態点は、下記式(3)により計算される値を用いる。 As the Ac 3 transformation point, a value calculated by the following formula (3) is used.

Figure 2013108167
Figure 2013108167

圧延後の冷却条件
熱間圧延終了後、母材強度および靭性を確保するため、Ar変態点以上の温度から10℃/s以上の冷却速度で250℃以下の温度まで強制冷却を行う。
Cooling conditions after rolling After hot rolling is completed, forced cooling is performed from a temperature above the Ar 3 transformation point to a temperature below 250 ° C. at a cooling rate of 10 ° C./s or more in order to ensure the base metal strength and toughness.

Ar変態点以下から冷却を開始すると、フェライトが一部生成し、950MPa以上の母材強度を達成することが困難であるため、Ar変態点以上の温度から冷却を開始する必要がある。 When cooling is started from the Ar 3 transformation point or lower, a part of ferrite is generated, and it is difficult to achieve a base material strength of 950 MPa or higher. Therefore, it is necessary to start cooling from a temperature above the Ar 3 transformation point.

冷却停止温度が250℃以下になるまで冷却する理由は、オーステナイトからマルテンサイトへの変態を完了させ、母材を強化するためである。本発明では、強度と靭性を両立させるためにマルテンサイト+下部ベイナイト組織分率を95%以上とする。   The reason for cooling until the cooling stop temperature is 250 ° C. or lower is to complete the transformation from austenite to martensite and strengthen the base material. In the present invention, in order to achieve both strength and toughness, the martensite + lower bainite structure fraction is set to 95% or more.

強制冷却時の冷却速度は、10℃/s以上とする。10℃/s未満では冷却時に、部分的にフェライト、パーライトが生成し易くなり、所望の強度、靭性を安定的に確保できないからである。   The cooling rate during forced cooling is 10 ° C./s or more. This is because if it is less than 10 ° C./s, ferrite and pearlite are likely to be partially formed during cooling, and the desired strength and toughness cannot be secured stably.

冷却方法は、直接焼入れ、加速冷却等の手法が用いられるが、冷却速度10℃/s以上、冷却停止温度250℃以下が得られれば冷却方法を特定するものではない。   As a cooling method, techniques such as direct quenching and accelerated cooling are used, but the cooling method is not specified if a cooling rate of 10 ° C./s or more and a cooling stop temperature of 250 ° C. or less are obtained.

なお、冷却速度は700〜500℃での平均冷却速度で規定する。この温度域がフェライトやパーライト等の軟質相が出易い温度領域であり、高強度のマルテンサイト組織を得るには、この温度領域を早く冷却する必要があるからである。   In addition, a cooling rate is prescribed | regulated by the average cooling rate in 700-500 degreeC. This is because this temperature range is a temperature range in which a soft phase such as ferrite or pearlite is likely to appear, and in order to obtain a high-strength martensite structure, it is necessary to cool this temperature range quickly.

焼戻し条件
焼戻しは、圧延機および直接冷却もしくは加速冷却装置と同一の製造ライン上に直結して設置された加熱装置を用いて行うのが良い。これは、直結化により、圧延・冷却処理から焼戻し処理までに要する時間を短くすることが可能となり、生産性の向上、熱エネルギーの低減効果がもたらされるためである。
Tempering conditions Tempering is preferably performed using a heating device installed directly on the same production line as the rolling mill and the direct cooling or accelerated cooling device. This is because the time required from the rolling / cooling process to the tempering process can be shortened by the direct connection, thereby improving the productivity and reducing the heat energy.

焼戻しの加熱方式は、平均昇温速度が達成でき、加熱温度の上限・下限を管理できる方式であれば、誘導加熱、通電加熱、赤外線輻射加熱、雰囲気加熱等いずれを用いてもよい。   As the heating method for tempering, any method such as induction heating, current heating, infrared radiation heating, atmosphere heating, or the like may be used as long as the average temperature rising rate can be achieved and the upper and lower limits of the heating temperature can be managed.

焼戻しの温度条件は、平均昇温速度を1℃/s以上とし、加熱温度の上限を400℃とした。加熱時の昇温速度を1℃/s以上と高速にすることによって、通常の炉加熱等での遅い昇温速度で生じるラス界面での炭化物の粗大化を抑制できる。また、加熱温度の上限を400℃に制限することで、Cの拡散が抑制され、炭化物の生成・粗大化を効果的に抑制することができる。一方、加熱温度が100℃未満の場合、安定的な強度の確保および脱水素が不十分であり、加熱温度の下限を100℃以上とする。   The temperature conditions for tempering were an average rate of temperature increase of 1 ° C./s or higher and an upper limit of the heating temperature of 400 ° C. By increasing the heating rate during heating to 1 ° C./s or higher, it is possible to suppress the coarsening of carbides at the lath interface that occurs at a slow heating rate such as in normal furnace heating. Moreover, by restrict | limiting the upper limit of heating temperature to 400 degreeC, the spreading | diffusion of C can be suppressed and the production | generation and coarsening of a carbide | carbonized_material can be suppressed effectively. On the other hand, when the heating temperature is less than 100 ° C, securing of stable strength and dehydrogenation are insufficient, and the lower limit of the heating temperature is set to 100 ° C or more.

なお、上記した本発明の温度は、特に明記しない限り、いずれも板厚中心部の温度であり、表面実測温度からの計算により管理される。なお平均昇温速度は冷却後、再加熱温度(100〜400℃)までの再加熱に必要な昇温量を再加熱に要した時間で割った値である。   The above-described temperatures of the present invention are all temperatures at the center of the plate thickness unless otherwise specified, and are managed by calculation from the surface measured temperature. In addition, an average temperature increase rate is the value which divided the temperature increase amount required for reheating to reheating temperature (100-400 degreeC) after cooling by the time required for reheating.

また、焼戻し時の昇温過程は、所定の平均昇温速度が得られればよく、直線的な温度履歴を取っても、途中温度で滞留するような温度履歴を取っても構わない。   Moreover, the temperature rising process at the time of tempering is not limited as long as a predetermined average temperature rising rate can be obtained, and a linear temperature history may be taken or a temperature history that stays at an intermediate temperature may be taken.

焼戻し温度における保持時間は、生産性・製造費用や析出物の粗大化に起因する靭性の劣化を防止するために、60s以下とするのが望ましい。   The holding time at the tempering temperature is preferably 60 s or less in order to prevent deterioration of toughness due to productivity / manufacturing cost and coarsening of precipitates.

焼戻し後の冷却速度については、冷却中の析出物の粗大化に起因する靭性の劣化を防止すべく、100℃以下までにおける板厚中心部の平均冷却速度を0.05℃/s以上、20℃/s以下とすることが望ましい。   With respect to the cooling rate after tempering, the average cooling rate at the central portion of the plate thickness up to 100 ° C. or lower is 0.05 ° C./s or higher, 20 to prevent deterioration of toughness due to coarsening of precipitates during cooling. It is desirable that the temperature is not more than ° C / s.

表1に示す化学成分の鋼種A〜Tの20種類を溶製してスラブを鋳造し、加熱炉で加熱後、圧延を行い鋼板とした。圧延後、引き続き直接焼入れし、次いで、ソレノイド型誘導加熱装置を用いて焼もどし処理を行った。   Twenty kinds of steel types A to T having chemical components shown in Table 1 were melted to cast a slab, heated in a heating furnace, and then rolled to obtain a steel plate. After rolling, it was subsequently quenched directly, and then tempered using a solenoid induction heating device.

板厚中心部の平均昇温速度は鋼板の通板速度によって管理した。なお、焼戻し温度にて保持する場合には、鋼板を往復させて加熱することによって、±5℃の範囲で保持した。   The average heating rate at the center of the plate thickness was controlled by the plate passing rate of the steel plate. In addition, when hold | maintaining at tempering temperature, it hold | maintained in the range of +/- 5 degreeC by reciprocating and heating a steel plate.

また、加熱後の冷却は空冷とした。焼戻し温度や焼入れ温度などの板厚中心部における温度は、放射温度計による表面の逐次における温度測定結果から、伝熱計算によって求めた。   The cooling after heating was air cooling. The temperature at the center of the plate thickness, such as the tempering temperature and the quenching temperature, was obtained by heat transfer calculation from the results of temperature measurement at the surface in succession by a radiation thermometer.

表2に鋼板製造条件、および得られた鋼板の降伏強度、引張強度、破面遷移温度(vTrs)、予熱温度、耐遅れ破壊安全度指数、金属組織におけるマルテンサイト+下部ベイナイト組織分率(%)、炭化物の円相当径、炭化物被覆率を示す。   Table 2 shows steel sheet production conditions, and yield strength, tensile strength, fracture surface transition temperature (vTrs), preheating temperature, resistance to delayed fracture safety, and martensite + lower bainite structure fraction in metal structure (% ), Equivalent circle diameter of carbide, and carbide coverage.

引張試験はJIS Z 2241に準拠して行い、板厚20mm以下ではJIS5号試験片により、板厚20mm超では板厚の1/4部から採取したJIS4号試験片により降伏強度および引張強度を測定した。   Tensile tests are performed in accordance with JIS Z 2241. Yield strength and tensile strength are measured with a JIS No. 5 test piece when the plate thickness is 20 mm or less, and with a JIS No. 4 test piece taken from 1/4 part of the plate thickness when the plate thickness exceeds 20 mm. did.

靭性はJIS Z 2242に規定の衝撃試験片を採取し、板厚の1/4部より採取した試験片を用いたシャルピー衝撃試験によって得られる破面遷移温度(vTrs)で評価した。   The toughness was evaluated by a fracture surface transition temperature (vTrs) obtained by a Charpy impact test using a test piece taken from 1/4 part of the plate thickness after collecting an impact test piece specified in JIS Z 2242.

溶接性は、JIS Z 3158に規定の方法で入熱17kJ/cmの被覆アーク溶接を行い、ルート割れ防止に必要な予熱温度により評価した。   Weldability was evaluated by a preheating temperature necessary for preventing root cracking by performing coated arc welding with a heat input of 17 kJ / cm by a method prescribed in JIS Z 3158.

耐遅れ破壊安全度指数は、平滑丸棒試験片を用いて陰極水素チャージ法により試験片中の拡散性水素量が約0.5massppmになるように水素をチャージ後、試験片表面に亜鉛めっきを施すことにより水素を封入し、その後、1×10−6/sの歪速度にて引張試験を行い、破断した試験片の絞りを求め、一方、同様の歪速度にて水素チャージを行わない試験片の引張試験も行い、下記の式に従って評価した。
耐遅れ破壊安全度指数(%)=100×(X1/X0)
ここで、X0:実質的に拡散性水素を含まない試験片の絞り(%)
X1:拡散性水素を含む試験片の絞り(%)
各特性の目標値は、降伏応力が885MPa以上、引張強度が950MPa以上、vTrs≦−40℃、必要予熱温度が75℃以下とした。耐遅れ破壊安全度指数の目標は、80%以上とした。
The delayed fracture resistance index is obtained by charging hydrogen so that the amount of diffusible hydrogen in the test piece is about 0.5 massppm by the cathodic hydrogen charging method using a smooth round bar test piece, and then galvanizing the surface of the test piece. Hydrogen is sealed by applying, and then a tensile test is performed at a strain rate of 1 × 10 −6 / s to obtain a squeeze of the fractured test piece, while no hydrogen charge is performed at the same strain rate. A tensile test of the piece was also performed and evaluated according to the following formula.
Delayed fracture resistance index (%) = 100 x (X1 / X0)
Here, X0: Drawing of test specimen substantially not containing diffusible hydrogen (%)
X1: Test specimen containing diffusible hydrogen (%)
The target values for each characteristic were a yield stress of 885 MPa or more, a tensile strength of 950 MPa or more, vTrs ≦ −40 ° C., and a necessary preheating temperature of 75 ° C. or less. The target for the delayed fracture resistance index was 80% or more.

なお、鋼板の組織の定量は、板厚1/4部付近についてナイタール腐食液で組織を現出し、走査型電子顕微鏡で10視野観察を行い、画像解析により、その平均値で評価した。   In addition, the structure of the steel sheet was quantified by revealing the structure with a nital etchant in the vicinity of ¼ part of the plate thickness, performing 10 field observations with a scanning electron microscope, and evaluating the average value by image analysis.

Figure 2013108167
Figure 2013108167

Figure 2013108167
Figure 2013108167

表2に示すように、本発明法により製造した発明例No.1〜No.12は成分組成、製造方法、が本発明の範囲内であり、良好な強度と溶接性および耐遅れ破壊特性を有する鋼板を得ることができる。   As shown in Table 2, Invention Example No. manufactured by the method of the present invention was used. 1-No. No. 12 has a component composition and production method within the scope of the present invention, and a steel sheet having good strength, weldability and delayed fracture resistance can be obtained.

これに対して、成分組成が本発明から外れる比較例No.13〜No.20は、強度、靭性、予熱温度および耐遅れ破壊安全度指数および炭化物の円相当径、炭化物被覆率のいずれか1つ以上の特性が目標値に達していない。また、成分組成は本発明の範囲内であるが製造条件が本発明から外れる比較例No.21〜No.28は、強度、靭性、予熱温度、耐遅れ破壊安全度指数および炭化物の円相当径、炭化物被覆率のいずれか1つ以上の特性が目標値に達していない。   On the other hand, comparative example No. in which a component composition remove | deviates from this invention. 13-No. In No. 20, at least one of the properties of strength, toughness, preheating temperature, delayed fracture safety index, carbide equivalent circle diameter, and carbide coverage does not reach the target value. Further, the composition of the components is within the scope of the present invention, but the production conditions deviate from the present invention. 21-No. In No. 28, any one or more of the properties of strength, toughness, preheating temperature, delayed fracture safety index, carbide equivalent circle diameter, and carbide coverage does not reach the target value.

Claims (4)

質量%で、C:0.03〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2%、P:0.010%以下、S:0.003%以下、Al:0.005〜0.1%、N:0.0005〜0.008%を含有し、下記式(1)に示す溶接割れ感受性指数Pcmが0.26%以下であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼をAc変態点以上に加熱し、未再結晶温度域での累積圧下率を80%以下とする熱間圧延を行い、Ar変態点以上で熱間圧延を終了し、引き続きAr変態点以上から10℃/s以上の冷却速度で250℃以下の温度まで冷却後、1℃/s以上の平均昇温速度で再加熱し、最高到達温度を100〜400℃の範囲とする焼戻し処理を行うことを特徴とする溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。
Figure 2013108167
In mass%, C: 0.03-0.25%, Si: 0.01-0.8%, Mn: 0.5-2%, P: 0.010% or less, S: 0.003% or less , Al: 0.005 to 0.1%, N: 0.0005 to 0.008%, the weld cracking sensitivity index Pcm shown in the following formula (1) is 0.26% or less, and the balance is Fe In addition, the steel having a component composition composed of inevitable impurities is heated to the Ac 3 transformation point or higher, hot rolling is performed so that the cumulative reduction in the non-recrystallization temperature range is 80% or less, and the steel is heated above the Ar 3 transformation point. After the hot rolling was completed, the steel sheet was cooled to a temperature of 250 ° C. or lower at a cooling rate of 10 ° C./s or higher from the Ar 3 transformation point or higher, and then reheated at an average temperature rising rate of 1 ° C./s or higher. Weldability and delayed fracture resistance characterized by performing a tempering treatment in the range of 100 to 400 ° C. Excellent tensile strength of 950MPa or more of the method of manufacturing the high-tensile steel plate.
Figure 2013108167
前記鋼に、更に、質量%で、Mo:0.01〜1%、Nb:0.001〜0.1%、V:0.001〜0.5%、Ti:0.03%以下、Cu:2%以下、Ni:4%以下、Cr:2%以下、W:2%以下の中から選ばれる一種以上を含有することを特徴とする請求項1に記載の溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。   In addition to the steel, in mass%, Mo: 0.01-1%, Nb: 0.001-0.1%, V: 0.001-0.5%, Ti: 0.03% or less, Cu 2 or less, Ni: 4% or less, Cr: 2% or less, and W: 2% or less. The weldability and delayed fracture resistance according to claim 1 A method for producing a high-tensile steel sheet having an excellent tensile strength of 950 MPa or more. 前記鋼に、更に、質量%で、B:0.0003%〜0.003%、Ca:0.01%以下、REM:0.02%以下の中から選ばれる一種以上が添加されていることを特徴とする請求項1または2に記載の溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。   One or more selected from B: 0.0003% to 0.003%, Ca: 0.01% or less, and REM: 0.02% or less are further added to the steel in mass%. The method for producing a high-tensile steel sheet having a tensile strength of 950 MPa or more and excellent in weldability and delayed fracture resistance according to claim 1. 金属組織がマルテンサイト相主体の組織であり、マルテンサイト相のラス界面における炭化物の円相当径が100nm以下、炭化物被覆率が20%以下であることを特徴とする請求項1乃至3項の何れかに記載の溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法。   The metal structure is a structure mainly composed of a martensite phase, the equivalent circle diameter of carbide at the lath interface of the martensite phase is 100 nm or less, and the carbide coverage is 20% or less. A method for producing a high-tensile steel plate having a tensile strength of 950 MPa or more and excellent in weldability and delayed fracture resistance.
JP2012160207A 2011-10-28 2012-07-19 Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more Active JP6056235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160207A JP6056235B2 (en) 2011-10-28 2012-07-19 Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011236594 2011-10-28
JP2011236594 2011-10-28
JP2012160207A JP6056235B2 (en) 2011-10-28 2012-07-19 Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more

Publications (2)

Publication Number Publication Date
JP2013108167A true JP2013108167A (en) 2013-06-06
JP6056235B2 JP6056235B2 (en) 2017-01-11

Family

ID=48705221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160207A Active JP6056235B2 (en) 2011-10-28 2012-07-19 Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more

Country Status (1)

Country Link
JP (1) JP6056235B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108168A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
JP2018505305A (en) * 2014-12-19 2018-02-22 宝山鋼鉄股▲分▼有限公司 Yield strength 800 MPa class high strength steel and method for producing the same
JP2018505303A (en) * 2014-12-19 2018-02-22 宝山鋼鉄股▲分▼有限公司 Yield strength 900-1000MPa tempered high strength steel and method for producing the same
CN108165881A (en) * 2018-01-08 2018-06-15 哈尔滨工程大学 A kind of 800MPa grades of more characteristic hot rolled steel plates and preparation method thereof
WO2019198468A1 (en) * 2018-04-09 2019-10-17 日本製鉄株式会社 Steel material suitable for use in sour environments
CN115404400A (en) * 2022-04-22 2022-11-29 安阳钢铁股份有限公司 Preparation method of Q960 steel plate for welding coal mine hydraulic support with heat input of 17KJcm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324012A (en) * 1986-07-16 1988-02-01 Kobe Steel Ltd Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JP2006207028A (en) * 2004-12-28 2006-08-10 Jfe Steel Kk Method for producing high strength/high toughness thick steel plate excellent in cutting-crack resistance
JP2006307324A (en) * 2005-03-29 2006-11-09 Jfe Steel Kk High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method
JP2007262477A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Low yield-ratio high-strength thick steel plate and its production method
JP2013108168A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324012A (en) * 1986-07-16 1988-02-01 Kobe Steel Ltd Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JP2006207028A (en) * 2004-12-28 2006-08-10 Jfe Steel Kk Method for producing high strength/high toughness thick steel plate excellent in cutting-crack resistance
JP2006307324A (en) * 2005-03-29 2006-11-09 Jfe Steel Kk High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method
JP2007262477A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Low yield-ratio high-strength thick steel plate and its production method
JP2013108168A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108168A (en) * 2011-10-28 2013-06-06 Jfe Steel Corp Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
JP2018505305A (en) * 2014-12-19 2018-02-22 宝山鋼鉄股▲分▼有限公司 Yield strength 800 MPa class high strength steel and method for producing the same
JP2018505303A (en) * 2014-12-19 2018-02-22 宝山鋼鉄股▲分▼有限公司 Yield strength 900-1000MPa tempered high strength steel and method for producing the same
CN108165881A (en) * 2018-01-08 2018-06-15 哈尔滨工程大学 A kind of 800MPa grades of more characteristic hot rolled steel plates and preparation method thereof
WO2019198468A1 (en) * 2018-04-09 2019-10-17 日本製鉄株式会社 Steel material suitable for use in sour environments
JPWO2019198468A1 (en) * 2018-04-09 2021-03-11 日本製鉄株式会社 Steel material suitable for use in sour environment
CN115404400A (en) * 2022-04-22 2022-11-29 安阳钢铁股份有限公司 Preparation method of Q960 steel plate for welding coal mine hydraulic support with heat input of 17KJcm

Also Published As

Publication number Publication date
JP6056235B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP6466582B2 (en) Yield strength 800 MPa class high strength steel and method for producing the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4730102B2 (en) Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP6056236B2 (en) Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same
JP5245414B2 (en) Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250