JPH11293383A - Thick steel plate minimal in hydrogen induced defect, and its production - Google Patents

Thick steel plate minimal in hydrogen induced defect, and its production

Info

Publication number
JPH11293383A
JPH11293383A JP11285998A JP11285998A JPH11293383A JP H11293383 A JPH11293383 A JP H11293383A JP 11285998 A JP11285998 A JP 11285998A JP 11285998 A JP11285998 A JP 11285998A JP H11293383 A JPH11293383 A JP H11293383A
Authority
JP
Japan
Prior art keywords
transformation point
less
cooling
thick steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11285998A
Other languages
Japanese (ja)
Inventor
Shuji Aihara
周二 粟飯原
Manabu Hoshino
学 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11285998A priority Critical patent/JPH11293383A/en
Publication of JPH11293383A publication Critical patent/JPH11293383A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent hydrogen induced defects liable to occur in an extra thick steel plate after rolling or after accelerated cooling and hardening treatment with respect to the extra thick steel plate. SOLUTION: This steel plate is a thick steel plate in which the proportion of the elements (excluding 0) constituting oxides satisfies (Ti+Mg)>=60 atomic % and the oxides having 0.05 to 5.0 μm grain size are contained by 10 to 500 pieces per mm<2> . This thick steel plate has a composition consisting of, by weight, 0.04-0.2% C, 0.02-0.5% Si, 0.6-2% Mn, <=0.02% P, <=0.02$ S, 0.05-0.025% Ti, 0.0002-0.005% Mg, <=0.01% Al, 0.001-0.006% N, 0.005-0.008% O, and the balance Fe with inevitable impurities. Further, Cu, Ni, Cr, Mo, Nb, V, B Ca, and REM can be incorporated into the composition, if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極厚鋼板あるいは
高張力鋼板において、圧延後あるいは加速冷却、焼入れ
処理後に鋼板中に発生しやすい水素性欠陥を防止する技
術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing hydrogen-induced defects, which are likely to occur in an extremely thick steel sheet or a high-tensile steel sheet after rolling or accelerated cooling or quenching, in the steel sheet.

【0002】[0002]

【従来の技術】厚鋼板における水素性欠陥の防止に関す
る技術は従来から多くの検討がある。例えば、「鉄と
鋼」第62年(1976)第13号1708〜1719
頁、同第64年(1978)第9号1343〜1352
頁に、鋼中水素の挙動と水素性欠陥について詳しい研究
の結果が報告されている。水素性欠陥は、鋼中に存在す
る水素がミクロ偏析部に集積して拡散性水素濃度が局所
的に高くなり、鋼板内部応力の作用により擬脆性破壊に
より生じるものである。あるいは、未圧着ザクあるいは
MnSをはじめとする粗大な介在物に集積し、ガスとし
て高い圧力を生成して割れを発生させる場合もある。
2. Description of the Related Art There have been many studies on techniques for preventing hydrogen-induced defects in thick steel plates. For example, "Iron and Steel", 62nd year (1976), No. 13, 1708-1719
Pp. 64 (1978), No. 9, 1343-1352
The page reports the results of a detailed study of the behavior of hydrogen in steel and hydrogen deficiencies. Hydrogen defects are caused by pseudo-brittle fracture caused by the action of the internal stress of the steel sheet due to the local increase in the concentration of diffusible hydrogen due to the accumulation of hydrogen existing in the steel in the micro-segregated portion. Alternatively, cracks may be generated by accumulating on non-compressed Zaku or coarse inclusions such as MnS and generating a high pressure as a gas.

【0003】上記文献などに記載されている従来技術に
おける水素性欠陥防止法は、要約すると下記の4点に集
約される。(1)製鋼段階において溶鋼中の水素濃度を
低下させる、(2)鋳造時に生じる偏析を極力低減す
る、あるいは、均熱拡散処理により偏析を低減する、
(3)鋳片または圧延後の厚鋼板にフェライト域で水素
拡散熱処理を施す、(4)水素集積サイトとなる未圧着
ザクをなくすために高圧下比または高形状比圧延を施
す。
The hydrogen deficiency prevention methods in the prior art described in the above-mentioned documents and the like are summarized in the following four points. (1) reduce the hydrogen concentration in the molten steel in the steelmaking stage; (2) reduce segregation generated during casting as much as possible; or reduce segregation by soaking diffusion treatment.
(3) A slab or a rolled thick steel plate is subjected to a hydrogen diffusion heat treatment in a ferrite region. (4) A high-pressure ratio or a high-shape-ratio rolling is performed in order to eliminate a non-compression-bonded zac that becomes a hydrogen accumulation site.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来技
術により厚鋼板の水素性欠陥を防止するための手段が確
立されているが、このうち、(1)では、溶鋼中の水素
濃度を安定して低値に制御することは製鋼段階における
コスト上昇を招き、工業的には限度がある。(2)で
は、連続鋳造において特殊な鋳造方法を採用することに
より偏析を低減することは可能であるが、鋳造速度の低
下を招くなど、生産性を阻害しやすい。さらに、偏析を
低減するための均熱拡散処理はたとえば、1250℃以
上で10時間以上の処理が必要であり、生産性阻害とコ
スト上昇をもたらす。(3)では、フェライト域で水素
を拡散させる必要があり、例えば600℃以下の低温で
の熱処理となるために、水素拡散が遅く、必然的に長時
間熱処理となるため、生産性を阻害しやすい。(4)で
は、特に高圧下比圧延が困難な極厚鋼板、あるいは高形
状比圧延が困難な高張力鋼(例えば、引張り強さが78
0MPa以上)においてはこのような圧延を実施するこ
とが困難であり、水素性欠陥を防止するためには、鋳片
あるいは圧延後鋼板の脱水素熱処理が必須となる。
As described above, the prior art has established means for preventing hydrogen defects in thick steel plates. Among them, in (1), the hydrogen concentration in molten steel is reduced. Stable control at a low value causes an increase in cost in the steel making stage, and there is an industrial limit. In (2), segregation can be reduced by adopting a special casting method in continuous casting, but productivity is liable to be impaired, such as lowering the casting speed. Furthermore, the soaking diffusion treatment for reducing segregation requires, for example, treatment at 1250 ° C. or more for 10 hours or more, resulting in productivity loss and cost increase. In (3), it is necessary to diffuse hydrogen in the ferrite region. For example, heat treatment is performed at a low temperature of 600 ° C. or less, so hydrogen diffusion is slow, and heat treatment is necessarily performed for a long time. Cheap. In the case of (4), particularly, a very thick steel plate which is difficult to roll under high pressure or a high tensile strength steel which is difficult to roll at a high shape ratio (for example, having a tensile strength of 78
(0 MPa or more), it is difficult to perform such rolling, and in order to prevent hydrogen defects, a dehydrogenation heat treatment of a slab or a rolled steel sheet is essential.

【0005】本発明は生産性低下やコスト上昇をもたら
すことなく厚鋼板の水素性欠陥を防止することが可能な
画期的なものである。
[0005] The present invention is an epoch-making technology that can prevent hydrogen defects in a thick steel sheet without reducing productivity or increasing costs.

【0006】本発明の要旨は次のとおりである。The gist of the present invention is as follows.

【0007】(1) 酸化物を構成する元素(ただしO
を除く)の割合が原子%で、(Ti+Mg)≧60%を
満足し、粒子径が0.05〜5.0μmの酸化物を1平
方mmあたり10〜500個含有する鋼であることを特
徴とする水素性欠陥の少ない厚鋼板。
(1) Elements constituting oxide (however, O
Is a steel that satisfies (Ti + Mg) ≧ 60% and contains 10 to 500 oxides per square mm having a particle size of 0.05 to 5.0 μm. Steel plate with few hydrogen defects.

【0008】(2) 重量%で、0.04≦C≦0.
2、0.02≦Si≦0.5、0.6≦Mn≦2、P≦
0.02、S≦0.02、0.005≦Ti≦0.02
5、0.0002≦Mg≦0.005、Al≦0.0
1、0.001≦N≦0.006、0.0005≦O≦
0.008を含有し、残部Feおよび不可避的不純物よ
りなる鋼であることを特徴とする上記(1)に記載の水
素性欠陥の少ない厚鋼板。
(2) 0.04 ≦ C ≦ 0% by weight.
2, 0.02 ≦ Si ≦ 0.5, 0.6 ≦ Mn ≦ 2, P ≦
0.02, S ≦ 0.02, 0.005 ≦ Ti ≦ 0.02
5, 0.0002 ≦ Mg ≦ 0.005, Al ≦ 0.0
1, 0.001 ≦ N ≦ 0.006, 0.0005 ≦ O ≦
The steel sheet according to the above (1), wherein the steel sheet contains 0.008 and the balance is Fe and inevitable impurities.

【0009】(3) 鋼に、更に母材強度上昇元素群
を、重量%で、0.05≦Cu≦1.5、0.05≦N
i≦2、0.02≦Cr≦1、0.02≦Mo≦1、
0.005≦Nb≦0.05、0.005≦V≦0.
1、0.0004≦B≦0.004の1種または2種以
上を含有することを特徴とする上記(2)に記載の水素
性欠陥の少ない厚鋼板。
(3) In addition to the steel, a group of elements for increasing the strength of the base material are further added in weight% to 0.05 ≦ Cu ≦ 1.5, 0.05 ≦ N
i ≦ 2, 0.02 ≦ Cr ≦ 1, 0.02 ≦ Mo ≦ 1,
0.005 ≦ Nb ≦ 0.05, 0.005 ≦ V ≦ 0.
(1) The thick steel sheet having few hydrogen defects as described in (2) above, wherein one or more kinds of 0.0004 ≦ B ≦ 0.004 are contained.

【0010】(4) 鋼に、更に、重量%で、0.00
05≦Ca≦0.003、0.0005≦REM≦0.
003、を含有することを特徴とする上記(2)または
(3)に記載の水素性欠陥の少ない厚鋼板。
(4) In steel, 0.00% by weight is added.
05 ≦ Ca ≦ 0.003, 0.0005 ≦ REM ≦ 0.
003, wherein the steel plate has a small number of hydrogen defects as described in the above (2) or (3).

【0011】(5) 上記(2)ないし(4)のいずれ
かに記載の組成からなる鋳片を連続鋳造により製造し、
Ar1変態点以下まで冷却後、Ac3変態点以上且つ13
50℃以下に加熱し、700℃以上で圧下比が1.5以
上となる熱間圧延を行った後、大気中放冷により常温ま
で冷却することを特徴とする水素性欠陥の少ない厚鋼板
の製造方法。
(5) A slab having the composition described in any of the above (2) to (4) is produced by continuous casting,
After cooling to the Ar 1 transformation point or lower, the cooling temperature is changed from the Ac 3 transformation point to 13
After heating to 50 ° C. or lower, and performing hot rolling at a reduction ratio of 1.5 or higher at 700 ° C. or higher, the steel plate is cooled to room temperature by cooling in the air, and is characterized in that it has a low hydrogen-defect property. Production method.

【0012】(6) 上記(2)ないし(4)のいずれ
かに記載の組成からなる鋳片を連続鋳造により製造し、
Ar1変態点以下まで冷却後、Ac3変態点以上且つ13
50℃以下に加熱し、700℃以上で圧下比が1.5以
上となる熱間圧延を行った後、変態終了温度以下まで冷
却し、さらに、Ac3変態点以上且つ1000℃以下に
再加熱後冷却することを特徴とする水素性欠陥の少ない
厚鋼板の製造方法。
(6) A slab having the composition described in any of the above (2) to (4) is produced by continuous casting,
After cooling to the Ar 1 transformation point or lower, the cooling temperature is changed from the Ac 3 transformation point to 13
After heating to 50 ° C. or lower, and performing hot rolling at a temperature of 700 ° C. or higher and a reduction ratio of 1.5 or higher, it is cooled to the transformation end temperature or lower and further reheated to the Ac 3 transformation point or higher and 1000 ° C. or lower. A method for producing a thick steel plate having few hydrogen-induced defects, characterized by performing post-cooling.

【0013】(7) 上記(2)ないし(4)のいずれ
かに記載の組成からなる鋳片を連続鋳造により製造し、
Ar1変態点以下まで冷却後、Ac3変態点以上且つ13
50℃以下に加熱し、700℃以上で圧下比が1.5以
上となる熱間圧延を行った後、変態終了温度以下まで冷
却し、さらに、Ac1変態点以上且つ1000℃以下に
再加熱後焼入れ処理を行って変態終了温度以下に冷却し
た後、500℃以上かつAc1変態点以下に焼き戻すこ
とを特徴とする水素性欠陥の少ない厚鋼板の製造方法。
(7) A slab having the composition described in any of the above (2) to (4) is produced by continuous casting,
After cooling to the Ar 1 transformation point or lower, the cooling temperature is changed from the Ac 3 transformation point to 13
After heating to 50 ° C. or lower and performing hot rolling at a temperature of 700 ° C. or higher and a reduction ratio of 1.5 or higher, cooling to the transformation end temperature or lower, and further reheating to the Ac 1 transformation point or higher and 1000 ° C. or lower. A method for producing a thick steel sheet having a small number of hydrogen defects, wherein the steel sheet is subjected to a post-quenching treatment, cooled to a transformation end temperature or lower, and then tempered to 500 ° C. or higher and an Ac 1 transformation point or lower.

【0014】(8) 上記(2)ないし(4)のいずれ
かに記載の組成からなる鋳片を連続鋳造により製造し、
Ar1変態点以下まで冷却後、Ac3変態点以上且つ13
50℃以下に加熱し、700℃以上で圧下比が1.5以
上となる熱間圧延を行った後、直接焼入れまたは加速冷
却により800〜500℃における平均冷却速度が2〜
100℃/秒で室温まで冷却し、さらに、500℃以上
かつAc1変態点以下に焼き戻すことを特徴とする水素
性欠陥の少ない厚鋼板の製造方法。
(8) A slab having the composition described in any of the above (2) to (4) is produced by continuous casting,
After cooling to the Ar 1 transformation point or lower, the cooling temperature is changed from the Ac 3 transformation point to 13
After heating to 50 ° C. or less and performing hot rolling at a reduction ratio of 1.5 or more at 700 ° C. or more, the average cooling rate at 800 to 500 ° C. by direct quenching or accelerated cooling is 2 to 2.
A method for producing a thick steel sheet having few hydrogen defects, wherein the steel sheet is cooled to room temperature at a rate of 100 ° C./sec and tempered to a temperature of 500 ° C. or more and an Ac 1 transformation point or less.

【0015】(9) 上記(2)ないし(4)のいずれ
かに記載の組成からなる鋳片を連続鋳造により製造し、
Ar1変態点以下まで冷却後、Ac3変態点以上且つ13
50℃以下に加熱し、700℃以上で圧下比が1.5以
上となる熱間圧延を行った後、加速冷却により800〜
500℃における平均冷却速度が2〜100℃/秒で冷
却して700℃以下且つ500℃以上で冷却を停止し、
室温まで放冷することを特徴とする水素性欠陥の少ない
厚鋼板の製造方法。
(9) A slab having the composition described in any of the above (2) to (4) is produced by continuous casting,
After cooling to the Ar 1 transformation point or lower, the cooling temperature is changed from the Ac 3 transformation point to 13
After heating to 50 ° C. or less, and performing hot rolling at 700 ° C. or more and a reduction ratio of 1.5 or more, 800 to 800 ° C. by accelerated cooling
The average cooling rate at 500 ° C. is 2 to 100 ° C./sec, and the cooling is stopped at 700 ° C. or less and 500 ° C. or more,
A method for producing a thick steel plate having few hydrogen defects, which is cooled to room temperature.

【0016】(10) 上記(2)ないし(4)のいず
れかに記載の組成からなる鋳片を連続鋳造により製造
し、Ar1変態点以下まで冷却後、Ac3変態点以上且つ
1350℃以下に加熱し、700℃以上で圧下比が1.
5以上となる熱間圧延を行った後、直接焼入れまたは加
速冷却により800〜500℃における平均冷却速度が
2〜100℃/秒で室温まで冷却し、Ac1変態点以上
Ac3変態点以下に再加熱後焼き入れにより室温まで冷
却し、さらに、500℃以上かつAc1変態点以下に焼
き戻すことを特徴とする水素性欠陥の少ない厚鋼板の製
造方法。
(10) A slab having the composition described in any one of the above (2) to (4) is produced by continuous casting, cooled to an Ar 1 transformation point or lower, and then an Ac 3 transformation point or more and 1350 ° C. or less. At 700 ° C. or more and a reduction ratio of 1.
After performing hot rolling of 5 or more, it is cooled to room temperature at an average cooling rate of 800 to 500 ° C. at 2 to 100 ° C./sec by direct quenching or accelerated cooling, and is cooled to an Ac 1 transformation point or more and an Ac 3 transformation point or less. A method for producing a thick steel sheet having few hydrogen defects, wherein the steel sheet is cooled to room temperature by quenching after reheating, and further tempered to a temperature of 500 ° C. or more and an Ac 1 transformation point or less.

【0017】[0017]

【発明の実施の形態】本発明者らは、水素性欠陥発生に
関する要因を再検討した結果、水素トラップサイトを微
細に分散させれてそこに水素をトラップさせれば、地鉄
中の拡散性水素濃度を下げることにより擬脆性破壊を生
じにくくできる、また、そこに集積した水素がガス状と
なって高い圧力を生じても微細であるために、水素性欠
陥には成長しない、これら結果として水素性欠陥を防止
できるものと考えた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors re-examined the factors relating to the generation of hydrogen defects, and found that if hydrogen trap sites were finely dispersed and hydrogen was trapped therein, the diffusivity in ground iron could be reduced. By reducing the hydrogen concentration, pseudo-brittle fracture can be less likely to occur, and even if the accumulated hydrogen becomes gaseous and generates high pressure, it is so fine that it does not grow into hydrogen defects. It was thought that hydrogen defects could be prevented.

【0018】ここで、問題となるのは水素をトラップす
る能力を有する粒子を如何に微細に分散させるかという
ことである。本発明者らは種々の酸化物について検討を
行った結果、TiとMgを主体とする複合酸化物がこの
目的に最も適したものであることを発見した。TiとM
gを主成分とする酸化物は水素を酸化物内に効果的にト
ラップすることに加えて、酸化物と地鉄との界面に水素
をガスとしてトラップする能力を有する。その機構の詳
細は不明であるが、酸化物中の格子欠陥中に水素がトラ
ップされる、酸化物を構成するTiあるいはMgが水素
化物を生成する、あるいは、酸化物が触媒作用を有して
拡散性水素をガス状水素に変換するものと推定してい
る。これらの水素トラップ作用は炭窒化物、例えば、V
C、VNによる水素トラップ作用よりも強力なものであ
る。Ti・Mgを主体とする酸化物の代表的な結晶構造
はTi23、TiO、TiO2、MgO、MgTiO5
MgTiO3、Mg2TiO4、MgTi24、MgTi2
5などが考えられるが、本発明では結晶構造について
は特に限定するものではない。
The problem here is how to finely disperse the particles capable of trapping hydrogen. The present inventors have studied various oxides and found that a composite oxide mainly composed of Ti and Mg is most suitable for this purpose. Ti and M
The oxide containing g as a main component has an ability to trap hydrogen as a gas at the interface between the oxide and the base iron in addition to effectively trapping hydrogen in the oxide. Although the details of the mechanism are unknown, hydrogen is trapped in lattice defects in the oxide, Ti or Mg forming the oxide generates hydride, or the oxide has a catalytic action. It is estimated that diffusible hydrogen is converted to gaseous hydrogen. These hydrogen trapping actions are based on carbonitrides such as V
It is stronger than the hydrogen trapping action of C and VN. Typical crystal structures of oxides mainly composed of Ti.Mg are Ti 2 O 3 , TiO, TiO 2 , MgO, MgTiO 5 ,
MgTiO 3 , Mg 2 TiO 4 , MgTi 2 O 4 , MgTi 2
O 5 and the like are conceivable, but the crystal structure is not particularly limited in the present invention.

【0019】このような水素トラップ能は酸化物の種類
で大きく異なるものであり、TiとMgを主成分とする
酸化物で顕著な効果を有する。酸化物を構成する元素の
うち、Oを除いて考えると、TiとMgの量が多いほど
水素トラップ能は高く、Oを除いた元素について、原子
%でTiとMgの合計で60%以上であれば、本発明の
効果を発揮できる。残余を構成する元素は特に限定する
ものではないが、Mn、Al、Ca、REMなどを含有
してもよい。
Such hydrogen trapping ability differs greatly depending on the type of oxide, and an oxide containing Ti and Mg as main components has a remarkable effect. Assuming that, except for O, among the elements constituting the oxide, the larger the amount of Ti and Mg, the higher the hydrogen trapping ability. With respect to the element excluding O, the total of Ti and Mg in atomic% is 60% or more. If so, the effects of the present invention can be exhibited. The elements constituting the residue are not particularly limited, but may contain Mn, Al, Ca, REM, and the like.

【0020】さらに、TiとMgを主成分とする酸化物
(以下、Ti・Mg主体酸化物と記す)は溶鋼の脱酸工
程において、溶鋼中に微細に晶出し、これが、凝固まで
の間、一部は凝集・合体・浮上するものの、多くが溶鋼
中に微細のまま残留し、連続鋳造の鋳片中に微細に残留
することができる。Ti・Mg主体酸化物といえども鋳
型鋳造では凝固までの時間が長くなるので、微細分散は
困難となる。
Further, an oxide containing Ti and Mg as main components (hereinafter, referred to as a Ti.Mg-based oxide) is finely crystallized in the molten steel in a deoxidizing step of the molten steel, and this crystallizes during solidification until the solidification. Although a part is coagulated, coalesced, and floated, many remain fine in the molten steel, and finely remain in the slab of continuous casting. Even in the case of Ti / Mg-based oxides, the time required for solidification is long in mold casting, so that fine dispersion becomes difficult.

【0021】本発明では、上記組成を有する酸化物の粒
子径を0.05〜5.0μmに限定した。水素トラップ
の観点からは酸化物が微細に且つ多数存在したほうがよ
い。Ti・Mg主体酸化物を0.05μmより小さく分
散させることは工業的には困難であるので、下限を0.
05μmとした。5.0μmを超えると、酸化物にトラ
ップされたガス状水素の圧力により地鉄に割れを生じ易
くなり、かえって、水素性欠陥を多くする可能性が高く
なる。さらに、粗大酸化物を起点として脆性破壊が発生
しやすくなり、靭性を低下させる。従って、上限を5.
0μmとした。
In the present invention, the particle diameter of the oxide having the above composition is limited to 0.05 to 5.0 μm. From the viewpoint of the hydrogen trap, it is better that oxides are finely and numerously present. Since it is industrially difficult to disperse the Ti / Mg main oxide smaller than 0.05 μm, the lower limit is set to 0.1 μm.
It was set to 05 μm. If it exceeds 5.0 μm, cracks are likely to occur in the base iron due to the pressure of gaseous hydrogen trapped in the oxide, and on the contrary, the possibility of increasing the number of hydrogen defects increases. Further, brittle fracture is likely to occur starting from the coarse oxide, and the toughness is reduced. Therefore, the upper limit is set to 5.
It was set to 0 μm.

【0022】上記のTi・Mg主体酸化物は1平方mm
あたり10個以上存在することが必要である。10個未
満では水素トラップ総量が低下する。500個を超える
と、鋼板の延性を低下させる可能性が高くなる。ここ
で、Ti・Mg主体酸化物の個数はEPMAまたはCM
Aを用いて計測する。鋼板研磨面の1mm平方について
電子ビーム径を0.5μm以下にしてTi、Mg、さら
には酸化物となる可能性ある元素(Ca、Al、Mn、
REMなど)、及びOの二次元マップを作成し、各酸化
物組成を決定し、原子%で(Ti+Mg)が60%以上
の酸化物について個数をカウントすればよい。
The above-mentioned Ti / Mg-based oxide is 1 square mm
It is necessary that there be 10 or more per unit. If the number is less than 10, the total amount of hydrogen traps decreases. If it exceeds 500, the possibility of lowering the ductility of the steel sheet increases. Here, the number of Ti.Mg-based oxides is EPMA or CM
Measure using A. By making the electron beam diameter 0.5 μm or less per 1 mm square of the polished surface of the steel sheet, Ti, Mg, and further elements (Ca, Al, Mn,
REM), and a two-dimensional map of O is created, the composition of each oxide is determined, and the number of oxides whose atomic percentage (Ti + Mg) is 60% or more may be counted.

【0023】上記のTi・Mgを主体とする酸化物はフ
ェライト生成核としての作用も有するので、凝固時にお
けるデルタフェライトを微細に晶出する作用を有し、そ
の結果としてミクロ偏析を低減する効果も有する。その
結果として、水素性欠陥の発生確率を低下させる。さら
には、大入熱溶接熱影響部における粒内フェライト変態
の核としても作用しやすく、HAZ靭性も向上させるの
で、溶接構造溶鋼として特に好ましい。
Since the above-mentioned oxide mainly composed of Ti.Mg also has a function as a ferrite forming nucleus, it has a function of finely crystallizing delta ferrite during solidification, and as a result, an effect of reducing micro segregation. Also have. As a result, the probability of occurrence of hydrogen defects is reduced. Further, it is easily used as a nucleus of intragranular ferrite transformation in the heat-affected zone of the large heat input welding, and improves the HAZ toughness.

【0024】上記のようなTi・Mg主体酸化物を鋼中
に生成させるためには、Ti、Mg、Al及びOを重量
%で以下の範囲とすることが望ましい。
In order to form the above-mentioned Ti.Mg-based oxide in steel, it is desirable that Ti, Mg, Al and O be in the following ranges by weight%.

【0025】TiはTi・Mg主体酸化物を生成させる
ために必要な元素である。0.005%未満では酸化物
個数が低下する。0.025%超では粗大酸化物が生成
する上に、TiCも多量に生成して靭性を低下させる。
従って、Ti量の範囲を0.005〜0.025%とし
た。
Ti is an element necessary for generating a Ti.Mg-based oxide. If it is less than 0.005%, the number of oxides decreases. If the content exceeds 0.025%, a coarse oxide is formed, and also a large amount of TiC is formed to lower the toughness.
Therefore, the range of the Ti amount is set to 0.005 to 0.025%.

【0026】MgはTi・Mg主体酸化物を生成させる
ために必要な元素である。0.0002%未満では酸化
物個数が低下する。0.005%超では粗大酸化物を生
成して靭性を低下させる。従って、Mg量の範囲を0.
0002〜0.005%とした。
Mg is an element necessary for forming a Ti.Mg-based oxide. If it is less than 0.0002%, the number of oxides decreases. If it exceeds 0.005%, a coarse oxide is formed to lower the toughness. Therefore, the range of the amount of Mg is set to 0.1.
0002 to 0.005%.

【0027】AlはTiとMgより脱酸力が強いので、
Ti・Mg主体酸化物を生成させるためには低いほうが
よい。0.01%を超えるとTi・Mg主体酸化物が減
少し、アルミナが増えるので、0.01%を上限とす
る。
Since Al has a stronger deoxidizing power than Ti and Mg,
The lower the better, in order to generate a Ti.Mg-based oxide. If the content exceeds 0.01%, the amount of the oxide mainly containing Ti and Mg decreases, and the amount of alumina increases. Therefore, the upper limit is set to 0.01%.

【0028】Nは、TiNを形成し、γ粒のピンニング
効果を有するが、TiNとしては、0.001%以上が
好ましい。Nが0.006%超では、粗大なAlNが形
成する場合があり、表面性状や靭性や厚鋼板の加工(例
えば曲げ加工等)において好ましくない。
N forms TiN and has a pinning effect of γ grains, but TiN is preferably 0.001% or more. If N exceeds 0.006%, coarse AlN may be formed, which is not preferable in surface properties, toughness, and processing (for example, bending) of a thick steel plate.

【0029】OはTi・Mg主体酸化物を生成させるた
めに必要な元素である。0.0005%未満では酸化物
個数が低下する。0.008%超では粗大酸化物を生成
して靭性を低下させる。従って、O量の範囲を0.00
05〜0.008%とした。
O is an element necessary for producing a Ti.Mg-based oxide. If it is less than 0.0005%, the number of oxides decreases. If it exceeds 0.008%, a coarse oxide is formed, and the toughness is reduced. Therefore, the range of the amount of O is 0.00
05 to 0.008%.

【0030】上記のように特定組成の酸化物が鋼中に分
散していれば、水素性欠陥の防止に効果を発揮するが、
如何にこのような酸化物を含有してる鋼でも鋼中の水素
濃度が高いと水素性欠陥の防止は困難となる。かかる観
点から鋼中水素濃度は3ppm以下とすることが望まし
い。
As described above, if an oxide having a specific composition is dispersed in steel, it is effective in preventing hydrogen defects.
No matter how steel containing such an oxide is contained, it is difficult to prevent hydrogen defects when the hydrogen concentration in the steel is high. From such a viewpoint, the hydrogen concentration in steel is desirably 3 ppm or less.

【0031】本発明の対象は厚鋼板であり、鋼板として
の強度及び母材・HAZ靭性を確保するために、以下の
ように成分元素の範囲を定めた。
The object of the present invention is a thick steel plate, and the range of component elements is determined as follows in order to secure the strength and the base metal / HAZ toughness as a steel plate.

【0032】Cは母材の強度を上昇できる元素である。
0.04%未満では母材強度の確保が得られないので
0.04%を下限値とした。逆にCを多く含有すると、
脆性破壊の起点となるセメンタイトを増加させるため、
母材・HAZの靱性を低下させる。0.2%を超えると
靱性低下が顕著となるので、これを上限値とした。な
お、母材・HAZ靭性をさらに向上させるためには、
0.04〜0.15%とすることが望ましい。
C is an element capable of increasing the strength of the base material.
If it is less than 0.04%, the base material strength cannot be secured, so 0.04% was made the lower limit. Conversely, if a large amount of C is contained,
To increase cementite, which is the starting point of brittle fracture,
Decreases the toughness of base metal and HAZ. If the content exceeds 0.2%, the toughness is significantly reduced. In order to further improve the base material and HAZ toughness,
It is desirable to set it to 0.04 to 0.15%.

【0033】Siは母材強度上昇に有効な元素である。
0.02%未満ではこの効果が得られないので下限値を
0.02%とした。逆に、0.5%超含有すると、HA
Z組織中に島状マルテンサイトが多量に生成し、さら
に、フェライト地を硬化させるので、HAZ靱性を低下
させる。従って、上限を0.5%とした。なお、HAZ
靭性を向上させるためには0.3%以下とすることが望
ましい。
Si is an element effective for increasing the strength of the base material.
If less than 0.02%, this effect cannot be obtained, so the lower limit is set to 0.02%. Conversely, if the content exceeds 0.5%, HA
A large amount of island-like martensite is generated in the Z structure and further hardens the ferrite ground, thereby lowering the HAZ toughness. Therefore, the upper limit is set to 0.5%. In addition, HAZ
In order to improve toughness, it is desirable that the content be 0.3% or less.

【0034】Mnは母材の強度上昇に有効な元素であ
る。0.6%未満ではこの効果が得られないので下限値
を0.6%とした。逆に、2%超含有すると靱性低下が
顕著となる。従って、上限値を2%とした。
Mn is an element effective for increasing the strength of the base material. If the content is less than 0.6%, this effect cannot be obtained, so the lower limit is set to 0.6%. Conversely, if the content exceeds 2%, the toughness is significantly reduced. Therefore, the upper limit is set to 2%.

【0035】Pは粒界脆化をもたらし、靱性に有害な元
素であり、低いほうが望ましい。0.02%超含有する
と靱性低下が顕著となるので、0.02%を上限とす
る。しかし、母材・HAZ靭性をさらに向上させるため
には0.01%以下とすることが望ましい。
P is an element that causes grain boundary embrittlement and is harmful to the toughness. If the content exceeds 0.02%, the toughness is significantly reduced, so the upper limit is 0.02%. However, in order to further improve the base material / HAZ toughness, the content is desirably 0.01% or less.

【0036】Sは伸長MnSを生成し、水素をトラップ
して水素性欠陥を生じ易くする。さらに、板厚方向の特
性を低下させる。0.02%超のSを含有すると水素性
欠陥防止が困難となるので、上限値を0.02%とし
た。しかし、欠陥を防止して母材・HAZ靭性をさらに
向上させるためには0.01%以下とすることが望まし
い。
S generates elongated MnS, traps hydrogen, and easily causes hydrogen defects. Further, the characteristics in the thickness direction are reduced. If the content of S exceeds 0.02%, it becomes difficult to prevent hydrogen-induced defects, so the upper limit was made 0.02%. However, in order to prevent defects and further improve the base material / HAZ toughness, the content is desirably 0.01% or less.

【0037】さらに、母材強度上昇に効果のある選択元
素の限定範囲を以下の理由で決定した。
Further, the limited range of the selected element effective for increasing the base metal strength was determined for the following reasons.

【0038】Cuは母材強度上昇に有効な元素であり、
特に、時効熱処理により微細Cu相を析出させることに
より著しい強度上昇が得られる。0.05%未満では強
度上昇が得られないので、0.05%を下限値とした。
逆に、1.5%超含有すると母材やHAZの脆化が顕著
となるので上限値を1.5%とした。しかし、母材及び
HAZ靭性をさらに向上させるためには過度のCu析出
による硬化を防ぐ必要があり、このために1%以下とす
ることが望ましい。
Cu is an element effective for increasing the base material strength.
In particular, a remarkable increase in strength can be obtained by precipitating a fine Cu phase by aging heat treatment. If less than 0.05%, no increase in strength can be obtained, so 0.05% was set as the lower limit.
Conversely, if the content exceeds 1.5%, the embrittlement of the base material and HAZ becomes remarkable, so the upper limit was set to 1.5%. However, in order to further improve the base material and the HAZ toughness, it is necessary to prevent hardening due to excessive Cu precipitation, and for this reason, it is desirable that the content be 1% or less.

【0039】Niは焼入れ性を上昇させることにより母
材強度上昇に効果を有し、さらに、靱性を向上させる。
0.05%未満ではこれらの効果が得られないので下限
値を0.05%とした。逆に、2%超含有すると焼入れ
性が高くなりすぎてHAZ硬化組織を生成しやすくな
り、HAZ靱性を低下させる。従って、上限値を2%と
した。しかし、HAZの硬化性を抑えて溶接性とHAZ
靭性を向上させるためには1.5%以下とすることが望
ましい。
Ni has the effect of increasing the strength of the base metal by increasing the hardenability, and further improves the toughness.
If the content is less than 0.05%, these effects cannot be obtained, so the lower limit is set to 0.05%. Conversely, if the content exceeds 2%, the hardenability becomes too high, so that a HAZ hardened structure is easily generated, and the HAZ toughness is reduced. Therefore, the upper limit is set to 2%. However, the curability of HAZ is suppressed and weldability and HAZ
In order to improve toughness, it is desirable that the content be 1.5% or less.

【0040】Crは母材強度上昇に効果を有する。0.
02%未満ではこの効果が得られないので下限値を0.
02%とした。逆に、1%超含有するとHAZに硬化組
織を生成するので、HAZ靱性を低下させる。従って、
上限値を1%とした。しかし、HAZの硬化性を抑えて
溶接性とHAZ靭性をさらに向上させるためには0.5
%以下とすることが望ましい。
Cr is effective in increasing the strength of the base material. 0.
If it is less than 02%, this effect cannot be obtained, so the lower limit is set to 0.
02%. Conversely, if the content exceeds 1%, a hardened structure is generated in the HAZ, so that the HAZ toughness is reduced. Therefore,
The upper limit was set to 1%. However, in order to suppress the hardenability of HAZ and further improve the weldability and HAZ toughness, 0.5
% Is desirable.

【0041】Moは母材強度上昇に効果を有する。0.
02%未満ではこの効果が得られないので下限値を0.
02%とした。逆に、1%超含有するとHAZに硬化組
織を生成するため、HAZ靱性を低下させる。従って、
上限値を1%とした。しかし、HAZの硬化性を抑えて
溶接性とHAZ靭性をさらに向上させるためには0.5
%以下とすることが望ましい。
Mo is effective in increasing the strength of the base material. 0.
If it is less than 02%, this effect cannot be obtained, so the lower limit is set to 0.
02%. Conversely, if the content exceeds 1%, a hardened structure is generated in the HAZ, so that the HAZ toughness is reduced. Therefore,
The upper limit was set to 1%. However, in order to suppress the hardenability of HAZ and further improve the weldability and HAZ toughness, 0.5
% Is desirable.

【0042】Nbは母材の強度上昇および細粒化に有効
な元素である。0.005%未満ではこれらの効果が得
られないので下限値を0.005%とした。逆に、0.
05%超含有すると母材・HAZにおけるNb炭窒化物
の析出が顕著となり、靱性低下が著しくなる。従って、
上限値を0.05%とした。しかし、過度の炭窒化物析
出を抑制し、靭性をさらに向上させるためには0.02
%以下とすることが望ましい。
Nb is an element effective for increasing the strength and reducing the size of the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.
When the content exceeds 0.05%, precipitation of Nb carbonitride in the base material / HAZ becomes remarkable, and the toughness is remarkably reduced. Therefore,
The upper limit was set to 0.05%. However, in order to suppress excessive carbonitride precipitation and further improve toughness, 0.02
% Is desirable.

【0043】Vは母材の強度上昇および細粒化に有効な
元素である。0.005%未満ではこれらの効果が得ら
れないので下限値を0.005%とした。逆に、0.1
%超含有すると母材・HAZにおける炭窒化物の析出が
顕著となり、靭性低下が著しくなる。従って、上限値を
0.1%とした。しかし、過度の炭窒化物析出を抑制
し、靭性をさらに向上させるためには0.04%以下と
することが望ましい。
V is an element effective for increasing the strength and reducing the grain size of the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.1
%, The precipitation of carbonitrides in the base material and HAZ becomes remarkable, and the toughness is remarkably reduced. Therefore, the upper limit is set to 0.1%. However, in order to suppress excessive carbonitride precipitation and further improve toughness, the content is desirably 0.04% or less.

【0044】Bは制御冷却および焼入れ熱処理を施す場
合に特に顕著な強度上昇の効果を発揮する。0.000
4%未満の含有量では強度上昇効果が得られないので下
限値を0.0004%とした。逆に、0.004%超含
有すると粗大なB窒化物や炭ホウ化物を析出してこれが
破壊の起点となるために、靱性を低下させる。従って、
上限値を0.004%とした。しかし、過度の炭窒化物
析出を抑制し、靭性をさらに向上させるためには0.0
02%以下とすることが望ましい。
B exerts a particularly remarkable increase in strength when subjected to controlled cooling and quenching heat treatment. 0.000
If the content is less than 4%, the effect of increasing the strength cannot be obtained, so the lower limit was made 0.0004%. Conversely, if the content exceeds 0.004%, coarse B nitrides and carbon borides are precipitated and serve as starting points for fracture, so that toughness is reduced. Therefore,
The upper limit was set to 0.004%. However, in order to suppress excessive carbonitride precipitation and further improve toughness, 0.0
Desirably, it is not more than 02%.

【0045】Ca及びREMは、硫化物を生成すること
により伸長MnSの生成を抑制し、鋼材の板厚方向の特
性、特に耐ラメラテアー性を改善する。Ca、REMを
ともに0.0005%未満では、この効果が得られない
ので、下限値を0.0005%とした。逆に、0.00
3%超含有すると、Ca及びREMの酸化物が増加し、
Ti・Mg主体酸化物の個数が減少する。従って、Ca
及びREMの上限を0.003%とした。Ca及びRE
M含有量の合計をMg含有量よりも低くすることが望ま
しい。なお、粗大な酸化物生成を抑制するためにはCa
とREMの含有量の合計を0.0015%以下とするこ
とが望ましい。
Ca and REM suppress the formation of elongation MnS by forming sulfides, and improve the properties in the thickness direction of the steel material, particularly the lamella tear resistance. If both Ca and REM are less than 0.0005%, this effect cannot be obtained, so the lower limit is set to 0.0005%. Conversely, 0.00
When the content exceeds 3%, oxides of Ca and REM increase,
The number of Ti.Mg-based oxides decreases. Therefore, Ca
And the upper limit of REM is set to 0.003%. Ca and RE
It is desirable to make the total of the M content lower than the Mg content. In order to suppress the formation of coarse oxides, Ca
And the content of REM are desirably 0.0015% or less.

【0046】厚鋼板の製造方法を以下の理由により限定
した。
The method of manufacturing a thick steel plate was limited for the following reasons.

【0047】本発明では連続鋳造鋳片を脱水素熱処理あ
るいは均熱拡散処理の工程を経ずに加熱・圧延をするこ
とができる。ただし、鋼板の寸法制約などから鋳片を熱
間で圧延して圧延前の幅・厚みを変えて鋼片とすること
は差し支えない。
In the present invention, the continuous cast slab can be heated and rolled without going through the steps of dehydrogenation heat treatment or soaking diffusion treatment. However, the slab may be hot-rolled to change the width and thickness before rolling into a slab due to dimensional restrictions of the steel sheet.

【0048】請求項5は圧延まま鋼板の製造方法であ
り、圧延に先立って、鋳片をオーステナイト化する必要
があるので、Ac3変態点以上に加熱する必要がある。
1350℃以上の加熱は経済性の観点から好ましくな
く、また、オーステナイト粒が粗大化するので好ましく
ない。
A fifth aspect of the present invention relates to a method for producing a steel sheet as rolled. Since the slab must be austenitized before rolling, it is necessary to heat the slab to a temperature higher than the Ac 3 transformation point.
Heating at 1350 ° C. or higher is not preferable from the viewpoint of economy, and is not preferable because austenite grains become coarse.

【0049】熱間圧延における圧下比(鋼板板厚/鋳片
厚み)は1.5以上とする。これより低い圧下比ではザ
クが未圧着のまま残存し、本発明の酸化物で水素をトラ
ップしてもザクを起点として欠陥を生じ易くなる。ま
た、熱間圧延は700℃以上で終了する。これより低い
温度での圧延ではザクの圧着が不十分となる。
The reduction ratio in hot rolling (steel plate thickness / slab slab thickness) is 1.5 or more. At a lower reduction ratio, zaku remains uncompressed, and even if hydrogen is trapped by the oxide of the present invention, defects tend to occur starting from zaku. Hot rolling is completed at 700 ° C. or higher. Rolling at a lower temperature results in insufficient compression of the zaku.

【0050】請求項6は焼きならし鋼板の製造方法であ
り、圧延後再加熱により完全にオーステナイト化する必
要があるので、再加熱温度をAc3変態点以上とする。
1000℃を超えるとオーステナイト粒の粗大化が顕著
となるので、上限を1000℃とする。
A sixth aspect of the present invention relates to a method for manufacturing a normalized steel sheet. Since it is necessary to completely austenite by reheating after rolling, the reheating temperature is set to the Ac 3 transformation point or higher.
If the temperature exceeds 1000 ° C., the coarsening of austenite grains becomes remarkable, so the upper limit is made 1000 ° C.

【0051】請求項7は焼入れ焼戻し鋼板の製造方法で
あり、圧延後の冷却により一旦変態を終了させる。しか
る後にAc3変態点以上に再加熱後焼入れを行う。ただ
し、オーステナイト粒粗大化を抑制するために再加熱温
度を1000℃以下とする。焼き戻しは500℃未満で
は効果が少なく、Ac1超では逆変態が生じるので、5
00℃〜Ac1変態温度を焼き戻しの範囲とする。
A seventh aspect of the present invention relates to a method for manufacturing a quenched and tempered steel sheet, in which the transformation is temporarily terminated by cooling after rolling. Thereafter, quenching is performed after reheating to the Ac 3 transformation point or higher. However, the reheating temperature is set to 1000 ° C. or less in order to suppress austenite grain coarsening. Tempering is less effective at less than 500 ° C., and reverse transformation occurs at more than Ac 1.
The temperature from 00 ° C. to the Ac 1 transformation temperature is in the tempering range.

【0052】請求項8は圧延後直接焼入れまたは加速冷
却後焼き戻し処理を行う鋼板の製造方法である。冷却速
度が2℃/秒未満では強度確保が困難である。厚鋼板で
100℃/秒を超える冷却速度を得ることは工業的には
困難であるので、冷却速度を2〜100℃/秒とした。
焼き戻し温度が500℃未満では回復再結晶が不十分で
あり、Ac1変態点超では逆変態が生じるので焼き戻し
温度を500℃〜Ac1変態点とした。
An eighth aspect of the present invention is a method for manufacturing a steel sheet in which direct quenching after rolling or tempering after accelerated cooling is performed. If the cooling rate is less than 2 ° C./sec, it is difficult to secure strength. Since it is industrially difficult to obtain a cooling rate exceeding 100 ° C./sec for a thick steel plate, the cooling rate was set to 2 to 100 ° C./sec.
When the tempering temperature is lower than 500 ° C., the recovery recrystallization is insufficient, and when the temperature exceeds the Ac 1 transformation point, reverse transformation occurs. Therefore, the tempering temperature is set to 500 ° C. to the Ac 1 transformation point.

【0053】請求項9は加速冷却後途中で冷却を停止し
て自己焼き戻しにより製造する鋼板の製造方法である。
冷却速度範囲は上記と同じ理由で限定した。冷却停止温
度が700℃超では変態が充分に進行していないうちに
冷却を停止することになり、強度確保が困難となる。5
00℃未満では鋼板の顕熱が不十分で自己焼き戻しがで
きない。従って冷却停止温度を700℃以下、500℃
以上とした。
A ninth aspect of the present invention is a method for manufacturing a steel sheet in which cooling is stopped halfway after accelerated cooling and self-tempering is performed.
The cooling rate range was limited for the same reason as above. If the cooling stop temperature is higher than 700 ° C., the cooling is stopped before the transformation is sufficiently advanced, and it is difficult to secure the strength. 5
If the temperature is lower than 00 ° C., the sensible heat of the steel sheet is insufficient and self-tempering cannot be performed. Therefore, the cooling stop temperature is set to 700 ° C. or less, 500 ° C.
It was above.

【0054】請求項10は直接焼入れ後二相域に再加熱
焼入れ、さらに焼き戻し処理により製造する鋼板の製造
方法である。冷却速度は上記と同じ理由で限定した。二
相域熱処理によりオーステナイト・フェライト二相域か
ら焼入れる必要があるので、再加熱温度をAc1〜Ac3
変態点の範囲とした。焼き戻し温度範囲の限定理由は上
記と同じである。
A tenth aspect of the present invention is a method for manufacturing a steel sheet which is manufactured by reheating and quenching in a two-phase region after direct quenching, and further by tempering. The cooling rate was limited for the same reason as above. Since it is necessary to quench the austenite-ferrite two-phase region by the two-phase region heat treatment, the reheating temperature is set to Ac 1 to Ac 3.
The range of the transformation point was set. The reason for limiting the tempering temperature range is the same as above.

【0055】上記のとおり、T・Mg主体酸化物を微細
分散していない鋼では水素性欠陥を防止するために圧延
後あるいは焼入れ後などにフェライト域で脱水素熱処理
を施すことが必要になる場合があるが、本発明鋼ではこ
のような熱処理は大幅に軽減できるが、省略可能であ
る。
As described above, in the case of steel in which the T.Mg-based oxide is not finely dispersed, it is necessary to perform dehydrogenation heat treatment in the ferrite region after rolling or quenching to prevent hydrogen defects. However, in the steel of the present invention, such heat treatment can be greatly reduced, but can be omitted.

【0056】本発明は厚鋼板における水素性欠陥を防止
するものであるが、同時に、板厚方向の引張り特性、特
に、伸び・断面減少率の向上にも効果を発揮する。
The present invention is intended to prevent a hydrogen defect in a thick steel plate, but at the same time, is effective in improving the tensile properties in the thickness direction, particularly, the elongation and the reduction rate of the cross-section.

【0057】[0057]

【実施例】以下に、本発明の実施例を示す。転炉により
鋼を溶製し、連続鋳造により厚さが240mmの鋳片を
製造した。表1に鋼材の化学成分を示す。
Examples of the present invention will be described below. Steel was melted by a converter and cast pieces having a thickness of 240 mm were produced by continuous casting. Table 1 shows the chemical composition of the steel material.

【0058】[0058]

【表1】 表2に鋼板の製造方法と板厚、母材の機械的性質を示
す。表に示すとおり製造方法は、圧延まま、焼きなら
し、焼入れ焼き戻し、制御圧延後加速冷却、圧延後直接
焼入れ焼き戻し、圧延後直接焼入れ二相域熱処理焼き戻
し、とした。
[Table 1] Table 2 shows the manufacturing method and thickness of the steel sheet, and the mechanical properties of the base material. As shown in the table, the production methods were as-rolled, normalizing, quenching and tempering, accelerated cooling after controlled rolling, direct quenching and tempering after rolling, and direct quenching in the two-phase region heat treatment and tempering after rolling.

【0059】[0059]

【表2】 表3に、CMAで測定した酸化物の組成(10個の測定
値の平均値)及び、請求項1を満足する酸化物の個数を
示す。請求項2〜4に一致する成分の鋼1〜8では、酸
化物の組成は原子%で(Ti+Mg)≧60%であり、
請求項1を満足する。また、個数も1平方mmあたり1
0個以上である。
[Table 2] Table 3 shows the composition of the oxide (mean value of ten measured values) measured by CMA and the number of oxides satisfying claim 1. In the steels 1 to 8 of the components corresponding to claims 2 to 4, the composition of the oxide is (Ti + Mg) ≧ 60% in atomic%,
Claim 1 is satisfied. Also, the number is 1 per square mm.
Zero or more.

【0060】鋼板の水素性欠陥の有無を超音波探傷試験
(JIS G 0801による)により測定した。発明
鋼1〜8では欠陥なし、あるいは、欠陥が存在しても軽
微な欠陥である。これに対して比較鋼では拡散性水素を
吸蔵する酸化物が存在しないために、サイズの大きい欠
陥が生じている。これら鋼では従来技術で示した方法、
主に、圧延後脱水素処理を施すことにより水素性欠陥の
発生を防止する必要がある。本発明鋼ではこのような脱
水素処理を施す必要がなく、工程省略上のメリットが大
きい。
The presence or absence of hydrogen-based defects in the steel sheet was measured by an ultrasonic flaw detection test (according to JIS G 0801). In the invention steels 1 to 8, there is no defect, or even if there is a defect, it is a minor defect. On the other hand, in the comparative steel, a defect having a large size is generated because there is no oxide that occludes diffusible hydrogen. For these steels, the method shown in the prior art,
It is mainly necessary to prevent the occurrence of hydrogen defects by performing dehydrogenation treatment after rolling. The steel of the present invention does not require such a dehydrogenation treatment, and has a great advantage in omitting the steps.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【発明の効果】以上説明したとおり、本発明鋼では鋳片
中に不可避的に存在するする水素を微細に分散したTi
・Mg主体酸化物で吸蔵し、地鉄の拡散性水素濃度を低
下させることにより、脱水素熱処理などを施さなくても
鋼板の水素性欠陥の発生を防止することができ、工業上
極めて効果が大きい。
As described above, in the steel of the present invention, Ti in which hydrogen inevitably present in the slab is finely dispersed.
・ By storing with Mg-based oxides and reducing the diffusible hydrogen concentration of the base iron, it is possible to prevent the occurrence of hydrogen defects in the steel sheet without performing dehydrogenation heat treatment, etc. large.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 酸化物を構成する元素(ただしOを除
く)の割合が原子%で、 (Ti+Mg)≧60% を満足し、粒子径が0.05〜5.0μmの酸化物を1
平方mmあたり10〜500個含有する鋼であることを
特徴とする水素性欠陥の少ない厚鋼板。
1. An oxide having an atomic percentage of atomic percentage (excluding O), which satisfies (Ti + Mg) ≧ 60%, and an oxide having a particle diameter of 0.05 to 5.0 μm.
A thick steel plate with few hydrogen defects, wherein the steel plate contains 10 to 500 steels per square mm.
【請求項2】 重量%で、 0.04≦C≦0.2、 0.02≦Si≦0.5、 0.6≦Mn≦2、 P≦0.02、 S≦0.02、 0.005≦Ti≦0.025、 0.0002≦Mg≦0.005、 Al≦0.01、 0.001≦N≦0.006、 0.0005≦O≦0.008 を含有し、残部Feおよび不可避的不純物よりなる鋼で
あることを特徴とする請求項1に記載の水素性欠陥の少
ない厚鋼板。
2. In% by weight, 0.04 ≦ C ≦ 0.2, 0.02 ≦ Si ≦ 0.5, 0.6 ≦ Mn ≦ 2, P ≦ 0.02, S ≦ 0.02, 0 0.005 ≦ Ti ≦ 0.025, 0.0002 ≦ Mg ≦ 0.005, Al ≦ 0.01, 0.001 ≦ N ≦ 0.006, 0.0005 ≦ O ≦ 0.008 and the balance Fe The steel plate according to claim 1, wherein the steel plate is made of steel comprising unavoidable impurities.
【請求項3】 鋼に、更に母材強度上昇元素群を、重量
%で、 0.05≦Cu≦1.5、 0.05≦Ni≦2、 0.02≦Cr≦1、 0.02≦Mo≦1、 0.005≦Nb≦0.05、 0.005≦V≦0.1、 0.0004≦B≦0.004 の1種または2種以上を含有することを特徴とする請求
項2に記載の水素性欠陥の少ない厚鋼板。
3. The steel further contains a base metal strength increasing element group in terms of% by weight: 0.05 ≦ Cu ≦ 1.5, 0.05 ≦ Ni ≦ 2, 0.02 ≦ Cr ≦ 1, 0.02 ≦ Mo ≦ 1, 0.005 ≦ Nb ≦ 0.05, 0.005 ≦ V ≦ 0.1, 0.0004 ≦ B ≦ 0.004. Item 4. A thick steel sheet having a small number of hydrogen defects according to Item 2.
【請求項4】 鋼に、更に、重量%で、 0.0005≦Ca≦0.003、 0.0005≦REM≦0.003 の1種または2種を含有することを特徴とする請求項2
または3に記載の水素性欠陥の少ない厚鋼板。
4. The steel further comprises one or two of 0.0005 ≦ Ca ≦ 0.003 and 0.0005 ≦ REM ≦ 0.003 by weight%.
Or a thick steel sheet having few hydrogen-induced defects according to 3.
【請求項5】 請求項2ないし4のいずれかに記載の組
成からなる鋳片を連続鋳造により製造し、Ar1変態点
以下まで冷却後、Ac3変態点以上且つ1350℃以下
に加熱し、700℃以上で圧下比が1.5以上となる熱
間圧延を行った後、大気中放冷により常温まで冷却する
ことを特徴とする水素性欠陥の少ない厚鋼板の製造方
法。
5. A slab having the composition according to claim 2 manufactured by continuous casting, cooled to an Ar 1 transformation point or lower, and then heated to an Ac 3 transformation point or more and 1350 ° C. or less, A method for producing a thick steel plate with few hydrogen defects, comprising: performing hot rolling at a temperature of 700 ° C. or more and a reduction ratio of 1.5 or more, and then cooling to room temperature by cooling in the air.
【請求項6】 請求項2ないし4のいずれかに記載の組
成からなる鋳片を連続鋳造により製造し、Ar1変態点
以下まで冷却後、Ac3変態点以上且つ1350℃以下
に加熱し、700℃以上で圧下比が1.5以上となる熱
間圧延を行った後、変態終了温度以下まで冷却し、さら
に、Ac3変態点以上且つ1000℃以下に再加熱後冷
却することを特徴とする水素性欠陥の少ない厚鋼板の製
造方法。
6. A slab having the composition according to claim 2 manufactured by continuous casting, cooled to an Ar 1 transformation point or lower, and then heated to an Ac 3 transformation point or more and 1350 ° C. or less. After performing hot rolling at a reduction ratio of 1.5 or more at 700 ° C. or more, cooling to a transformation end temperature or less, and further cooling after reheating to an Ac 3 transformation point or more and 1000 ° C. or less. Method for producing thick steel sheets with few hydrogen defects.
【請求項7】 請求項2ないし4のいずれかに記載の組
成からなる鋳片を連続鋳造により製造し、Ar1変態点
以下まで冷却後、Ac3変態点以上且つ1350℃以下
に加熱し、700℃以上で圧下比が1.5以上となる熱
間圧延を行った後、変態終了温度以下まで冷却し、さら
に、Ac1変態点以上且つ1000℃以下に再加熱後焼
入れ処理を行って変態終了温度以下に冷却した後、50
0℃以上かつAc1変態点以下に焼き戻すことを特徴と
する水素性欠陥の少ない厚鋼板の製造方法。
7. A slab having the composition according to any one of claims 2 to 4 is produced by continuous casting, cooled to an Ar 1 transformation point or lower, and heated to an Ac 3 transformation point or more and 1350 ° C. or less. After hot rolling at a reduction ratio of 1.5 or more at 700 ° C. or more, the material is cooled to the transformation end temperature or less, and further quenched after reheating to an Ac 1 transformation point or more and 1000 ° C. or less. After cooling below the end temperature, 50
A method for producing a thick steel sheet having a small number of hydrogen defects, wherein the steel sheet is tempered at a temperature of 0 ° C. or more and an Ac 1 transformation point or less.
【請求項8】 請求項2ないし4のいずれかに記載の組
成からなる鋳片を連続鋳造により製造し、Ar1変態点
以下まで冷却後、Ac3変態点以上且つ1350℃以下
に加熱し、700℃以上で圧下比が1.5以上となる熱
間圧延を行った後、直接焼入れまたは加速冷却により8
00〜500℃における平均冷却速度が2〜100℃/
秒で室温まで冷却し、さらに、500℃以上かつAc1
変態点以下に焼き戻すことを特徴とする水素性欠陥の少
ない厚鋼板の製造方法。
8. A slab having a composition according to any one of claims 2 to 4 manufactured by continuous casting, cooled to an Ar 1 transformation point or lower, and heated to an Ac 3 transformation point or higher and 1350 ° C. or lower, After hot rolling at a temperature of 700 ° C. or more and a reduction ratio of 1.5 or more, 8% by direct quenching or accelerated cooling.
The average cooling rate at 00 to 500 ° C is 2 to 100 ° C /
Cooled to room temperature in seconds, further, 500 ° C. or higher and Ac 1
A method for producing a thick steel sheet having few hydrogen-induced defects, characterized by tempering to below the transformation point.
【請求項9】 請求項2ないし4のいずれかに記載の組
成からなる鋳片を連続鋳造により製造し、Ar1変態点
以下まで冷却後、Ac3変態点以上且つ1350℃以下
に加熱し、700℃以上で圧下比が1.5以上となる熱
間圧延を行った後、加速冷却により800〜500℃に
おける平均冷却速度が2〜100℃/秒で冷却して70
0℃以下且つ500℃以上で冷却を停止し、室温まで放
冷することを特徴とする水素性欠陥の少ない厚鋼板の製
造方法。
9. A slab having the composition according to claim 2 manufactured by continuous casting, cooled to an Ar 1 transformation point or lower, and then heated to an Ac 3 transformation point or more and 1350 ° C. or less, After hot rolling at 700 ° C. or more and a reduction ratio of 1.5 or more, the average cooling rate at 800 to 500 ° C. is 2 to 100 ° C./sec.
A method for producing a thick steel plate having a small number of hydrogen defects, wherein cooling is stopped at a temperature of 0 ° C. or less and 500 ° C. or more, and the mixture is allowed to cool to room temperature.
【請求項10】 請求項2ないし4のいずれかに記載の
組成からなる鋳片を連続鋳造により製造し、Ar1変態
点以下まで冷却後、Ac3変態点以上且つ1350℃以
下に加熱し、700℃以上で圧下比が1.5以上となる
熱間圧延を行った後、直接焼入れまたは加速冷却により
800〜500℃における平均冷却速度が2〜100℃
/秒で室温まで冷却し、Ac1変態点以上Ac3変態点以
下に再加熱後焼き入れにより室温まで冷却し、さらに、
500℃以上かつAc1変態点以下に焼き戻すことを特
徴とする水素性欠陥の少ない厚鋼板の製造方法。
10. A slab having the composition according to claim 2 manufactured by continuous casting, cooled to an Ar 1 transformation point or lower, and then heated to an Ac 3 transformation point or more and 1350 ° C. or less, After performing hot rolling at a reduction ratio of 1.5 or more at 700 ° C. or more, the average cooling rate at 800 to 500 ° C. is 2 to 100 ° C. by direct quenching or accelerated cooling.
/ Second, cooled to room temperature by re-heating after cooling from Ac 1 transformation point to Ac 3 transformation point or less, and then quenching.
A method for producing a thick steel sheet having few hydrogen defects, wherein the steel sheet is tempered at a temperature of 500 ° C. or more and an Ac 1 transformation point or less.
JP11285998A 1998-04-09 1998-04-09 Thick steel plate minimal in hydrogen induced defect, and its production Withdrawn JPH11293383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11285998A JPH11293383A (en) 1998-04-09 1998-04-09 Thick steel plate minimal in hydrogen induced defect, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11285998A JPH11293383A (en) 1998-04-09 1998-04-09 Thick steel plate minimal in hydrogen induced defect, and its production

Publications (1)

Publication Number Publication Date
JPH11293383A true JPH11293383A (en) 1999-10-26

Family

ID=14597329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11285998A Withdrawn JPH11293383A (en) 1998-04-09 1998-04-09 Thick steel plate minimal in hydrogen induced defect, and its production

Country Status (1)

Country Link
JP (1) JPH11293383A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086013A1 (en) * 2000-05-09 2001-11-15 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
EP1676933A1 (en) 2004-12-28 2006-07-05 Kabushiki Kaisha Kobe Seiko Sho High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
EP1676932A1 (en) 2004-12-28 2006-07-05 Kabushiki Kaisha Kobe Seiko Sho High strength thin steel sheet having high hydrogen embrittlement resisting property
EP1736562A1 (en) * 2004-04-07 2006-12-27 Nippon Steel Corporation Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP2007154289A (en) * 2005-12-08 2007-06-21 Nippon Steel Corp METHOD FOR PRODUCING HIGH IMPACT RESISTANT STEEL PIPE EXCELLENT IN DELAYED FRACTURING CHARACTERISTIC OF 1,700 MPa OR MORE OF TENSILE STRENGTH
CN100410409C (en) * 2004-12-28 2008-08-13 株式会社神户制钢所 High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
US7887648B2 (en) 2005-12-28 2011-02-15 Kobe Steel, Ltd. Ultrahigh-strength thin steel sheet
WO2011065591A1 (en) 2009-11-30 2011-06-03 新日本製鐵株式会社 HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF
WO2013047836A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 Galvanized steel sheet and method of manufacturing same
WO2013047820A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 Hot-dip galvanized steel sheet and process for producing same
JP2017193759A (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 Thick steel sheet and manufacturing method therefor
KR20190007055A (en) 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
US10822672B2 (en) 2015-07-13 2020-11-03 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086013A1 (en) * 2000-05-09 2001-11-15 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
EP1736562A1 (en) * 2004-04-07 2006-12-27 Nippon Steel Corporation Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
EP1736562A4 (en) * 2004-04-07 2007-10-10 Nippon Steel Corp Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
EP1676933A1 (en) 2004-12-28 2006-07-05 Kabushiki Kaisha Kobe Seiko Sho High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
EP1676932A1 (en) 2004-12-28 2006-07-05 Kabushiki Kaisha Kobe Seiko Sho High strength thin steel sheet having high hydrogen embrittlement resisting property
CN100410409C (en) * 2004-12-28 2008-08-13 株式会社神户制钢所 High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
JP2007154289A (en) * 2005-12-08 2007-06-21 Nippon Steel Corp METHOD FOR PRODUCING HIGH IMPACT RESISTANT STEEL PIPE EXCELLENT IN DELAYED FRACTURING CHARACTERISTIC OF 1,700 MPa OR MORE OF TENSILE STRENGTH
US7887648B2 (en) 2005-12-28 2011-02-15 Kobe Steel, Ltd. Ultrahigh-strength thin steel sheet
WO2011065591A1 (en) 2009-11-30 2011-06-03 新日本製鐵株式会社 HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF
US10023947B2 (en) 2009-11-30 2018-07-17 Nippon Steel & Sumitomo Metal Corporation High strength steel plate with ultimate tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and method of production of same
WO2013047820A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 Hot-dip galvanized steel sheet and process for producing same
JP5569647B2 (en) * 2011-09-30 2014-08-13 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JPWO2013047820A1 (en) * 2011-09-30 2015-03-30 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
KR20160075850A (en) 2011-09-30 2016-06-29 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet and process for producing same
KR20160075849A (en) 2011-09-30 2016-06-29 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet and process for producing same
US9970092B2 (en) 2011-09-30 2018-05-15 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method of manufacturing the same
WO2013047836A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 Galvanized steel sheet and method of manufacturing same
US10407760B2 (en) 2011-09-30 2019-09-10 Nippon Steel Corporation Hot-dip galvanized steel sheet and manufacturing method thereof
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
US10822672B2 (en) 2015-07-13 2020-11-03 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor
JP2017193759A (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 Thick steel sheet and manufacturing method therefor
KR20190007055A (en) 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate
US10787727B2 (en) 2016-09-21 2020-09-29 Nippon Steel Corporation Steel sheet

Similar Documents

Publication Publication Date Title
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
KR940007374B1 (en) Method of manufacturing austenite stainless steel
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP6689384B2 (en) Ultra high strength steel sheet excellent in chemical conversion treatment property and hole expandability, and method for producing the same
WO2008126910A1 (en) Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
JP5157066B2 (en) A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics.
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5402560B2 (en) Manufacturing method of steel and rolled steel
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JPH11293383A (en) Thick steel plate minimal in hydrogen induced defect, and its production
JP2007262553A (en) Hot dip galvanized steel sheet and its production method
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP3256118B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
KR20230024905A (en) Ultra-high strength steel with excellent plasticity and manufacturing method thereof
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP5505487B2 (en) High-strength, high-tough steel plate with excellent cut crack resistance and DWTT properties
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2011038121A (en) High tensile cold-rolled steel sheet and method of producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705