JP2007262553A - Hot dip galvanized steel sheet and its production method - Google Patents
Hot dip galvanized steel sheet and its production method Download PDFInfo
- Publication number
- JP2007262553A JP2007262553A JP2006093002A JP2006093002A JP2007262553A JP 2007262553 A JP2007262553 A JP 2007262553A JP 2006093002 A JP2006093002 A JP 2006093002A JP 2006093002 A JP2006093002 A JP 2006093002A JP 2007262553 A JP2007262553 A JP 2007262553A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- dip galvanized
- galvanized steel
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 38
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 54
- 239000010959 steel Substances 0.000 claims abstract description 54
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 36
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 32
- 230000000717 retained effect Effects 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 11
- 238000005246 galvanizing Methods 0.000 claims description 10
- 238000007747 plating Methods 0.000 claims description 9
- 239000010960 cold rolled steel Substances 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 238000005098 hot rolling Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 21
- 239000000047 product Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000004080 punching Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000219307 Atriplex rosea Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車、電気等の産業分野で使用される溶融亜鉛めっき鋼板及びその製造方法に係り、特に引張強度(TS)が590MPa以上、打ち抜き破面を有する状態での疲労強度(FL)(以下「打ち抜きまま疲労強度」という)が200MPa以上の高強度、高疲労強度を有する溶融亜鉛めっき鋼板及びその製造方法に関する。本発明は、さらに、上記特性に加えて成形性指数、すなわち、強度(TS)と全伸び(El)の積、(TS)×(El)が21000MPa・%以上である高強度、高疲労強度を有し、さらに高成形性を有する溶融亜鉛めっき鋼板及びその製造方法に関する。 The present invention relates to a hot-dip galvanized steel sheet used in industrial fields such as automobiles and electricity and a method for producing the same, and in particular, fatigue strength (FL) in a state where a tensile strength (TS) is 590 MPa or more and a punched fracture surface is present ( The present invention relates to a hot-dip galvanized steel sheet having a high strength of 200 MPa or more and a manufacturing method thereof. In addition to the above properties, the present invention further provides a high strength and high fatigue strength in which the formability index, ie, the product of strength (TS) and total elongation (El), (TS) × (El) is 21000 MPa ·% or more Further, the present invention relates to a hot-dip galvanized steel sheet having high formability and a method for producing the same.
近年、自動車の燃費向上と自動車の衝突時の安全性向上との両立を図るため、車体材料の高強度化と薄肉化が図られている。このような目的のために、高張力鋼板が車体材料として用いられるが、自動車には走行に伴い繰り返し振動が掛かるため、車体材料には高強度であることに加えて疲労強度が高いことが求められている。特に、最近、モータリゼーションの活発な中国、インド、ロシア等では、未舗装の道路が多く残っており、自動車走行時に掛かる振動も大きいため、これら地域用には、従来に比べてより疲労強度の高い高張力鋼板が求められている。 In recent years, in order to achieve both improvement in fuel efficiency of automobiles and improvement in safety at the time of automobile collision, the strength and thinning of body materials have been attempted. For this purpose, high-strength steel plates are used as car body materials, but automobiles are subject to repeated vibrations as they travel, so car body materials are required to have high fatigue strength in addition to high strength. It has been. Especially in China, India, Russia, etc., where motorization has been active recently, there are still many unpaved roads, and the vibration applied when driving a car is large, so the fatigue strength for these areas is higher than before. There is a need for high strength steel sheets.
また、自動車用の製造工程においては、鋼板を打ち抜きままで成形し、打ち抜き端面を有する状態で組み立てられることが多いが、このような打ち抜き端面を有する状態では、打ち抜き端面に必然的に発生し、あるいは残存する割れなどのため、疲労強度が低下する。そのため、自動車用鋼板、特に車体の下部の部品には、高強度とともに打ち抜き端面を有する状態での疲労強度、すなわち、打ち抜きまま疲労強度が高いことが求められる。この打ち抜きまま疲労強度は、すでに存在している微少亀裂の伝播抑制力によって支配されるものであり、従来の機械加工され、表面に微少亀裂の存在しない試験片を用いて評価された疲労強度(以下「機械加工疲労強度」という)が疲労亀裂発生に対する抵抗力に大きく支配されるのと根本的に異なる。ちなみに、代表的な溶融亜鉛めっき鋼板では、機械加工疲労強度が500MPa程度であるのに対し、打ち抜きまま疲労強度が150MPa程度となる場合もある。 Further, in the manufacturing process for automobiles, the steel sheet is formed while being punched, and often assembled with a punched end face, but in a state having such a punched end face, it inevitably occurs on the punched end face, Alternatively, fatigue strength decreases due to remaining cracks and the like. For this reason, automobile steel plates, particularly parts in the lower part of the vehicle body, are required to have high strength and fatigue strength in a state having a punched end face, that is, high fatigue strength while being punched. This punched fatigue strength is governed by the propagation suppression force of microcracks that already exist. Fatigue strength evaluated using conventional machined specimens with no microcracks on the surface ( This is fundamentally different from the fact that "machining fatigue strength" is largely governed by resistance to fatigue crack initiation. Incidentally, a typical hot dip galvanized steel sheet has a machining fatigue strength of about 500 MPa, while the punched fatigue strength may be about 150 MPa.
さらに、車体下部は雨水や冬季融雪用の塩分等を含んだ腐食環境に曝されるため、上記に加えて耐腐食性が要求され、併せて車体重量軽減のため薄肉化も要求されるため、例えば板厚2.3mm以下の溶融亜鉛めっき鋼板が使用されることが多い。このような溶融亜鉛めっき鋼板にも、前記自動車用鋼板と同様に高強度とともに打ち抜きまま疲労強度が高いことが求められる。 Furthermore, because the lower part of the car body is exposed to corrosive environments containing rainwater and salt for winter snow melting, etc., in addition to the above, corrosion resistance is required, and at the same time, thinning is required to reduce the car body weight. For example, a hot dip galvanized steel sheet having a thickness of 2.3 mm or less is often used. Such a hot dip galvanized steel sheet is also required to have a high fatigue strength while being punched as well as a high strength steel sheet.
なお、当然のことであるが、前記高強度で打ち抜きまま疲労強度が高い鋼板にも、高成形性、高加工性を具備することが望まれる。 Needless to say, it is desired that the steel plate having high fatigue strength while being punched with high strength also has high formability and high workability.
特許文献1には、ミクロ組織としてフェライト、マルテンサイト、残留オーステナイトの3相で構成され、かつマルテンサイト占積率が1%以上20%以下で、5μm以下の残留オーステナイト占積率が1%以上10%以下とした疲労耐久性に優れた加工用高強度熱延鋼板が開示されている。 In Patent Document 1, the microstructure is composed of three phases of ferrite, martensite, and retained austenite, and the martensite space factor is 1% or more and 20% or less, and the residual austenite space rate of 5 μm or less is 1% or more. A high-strength hot-rolled steel sheet for processing excellent in fatigue durability of 10% or less is disclosed.
特許文献2には、鋼板組織が、主相であるフェライト、体積率で3%以上の残留オーステナイト、および低温変態相とからなる複合組織で構成され、かつ前記残留オーステナイトはその70%以上がアスペクト比:0.2〜0.4のものである鋼の表面に、溶融亜鉛めっき層が形成されてなる強度−伸びバランスおよび疲労特性に優れる高張力溶融亜鉛めっき鋼板が開示されている。 In Patent Document 2, the steel sheet structure is composed of a composite structure composed of ferrite as a main phase, retained austenite with a volume ratio of 3% or more, and a low-temperature transformation phase, and 70% or more of the retained austenite has an aspect ratio. A high-tensile hot-dip galvanized steel sheet that is excellent in strength-elongation balance and fatigue properties in which a hot-dip galvanized layer is formed on the surface of steel having a ratio of 0.2 to 0.4 is disclosed.
特許文献3には、鋼板組織が、フェライト、焼戻マルテンサイト、残留オーステナイトおよび低温変態相からなる複合組織を有し、かつ、前記フェライトを体積率で30%以上、前記焼戻マルテンサイトを体積率で20%以上、前記残留オーステナイトを体積率で2%以上含み、さらに、前記フェライトおよび焼戻マルテンサイトの平均結晶粒径が10μm以下である延性および伸びフランジ性に優れる高張力溶融亜鉛めっき鋼板が開示されている。 In Patent Document 3, the steel sheet structure has a composite structure composed of ferrite, tempered martensite, retained austenite, and low-temperature transformation phase, and the ferrite is in a volume ratio of 30% or more, and the tempered martensite is in volume. High-tensile galvanized steel sheet having excellent ductility and stretch flangeability, including 20% or more in terms of percentage, 2% or more of the retained austenite in terms of volume percentage, and having an average crystal grain size of the ferrite and tempered martensite of 10 μm or less Is disclosed.
特許文献4には、フェライトの主相および第2相からなる複合組織とを有し、第2相はベイナイト:80vol%以上を含み残部がマルテンサイト、残留オーステナイトおよびパーライトのいずれか1種または2種以上からなり、該第2相の圧延方向の平均長さに対する板厚方向の平均長さの比が0.7以上である、熱延板を素材として、該熱延板を冷間圧延し、次いでAc1変態点以上の温度域にて5s以上保持する、一次加熱処理を施した後、10℃/s以上の冷却速度でMs点以下の温度まで冷却し、さらに、Ac1変態点ないし一次加熱温度の温度域にて5〜120秒間保持する二次加熱処理を施した後、5℃/s以上の冷却速度で500℃以下の温度まで冷却し、その後溶融亜鉛めっき処理を施してから、5℃/s以上の冷却速度で300℃まで冷却する延性および耐疲労特性に優れた高張力溶融亜鉛めっき鋼板の製造方法が開示されている。 Patent Document 4 has a composite structure composed of a main phase of ferrite and a second phase, and the second phase includes bainite: 80 vol% or more, and the balance is martensite, residual austenite, and pearlite. The ratio of the average length in the sheet thickness direction to the average length in the rolling direction of the second phase is 0.7 or more, using the hot rolled sheet as a raw material, cold rolling the hot rolled sheet, Hold the primary heat treatment for 5s or more in the temperature range above the Ac 1 transformation point, then cool to a temperature below the Ms point at a cooling rate of 10 ° C / s or more, and further, the Ac 1 transformation point or primary heating After performing the secondary heat treatment that is held for 5 to 120 seconds in the temperature range of the temperature, it is cooled to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or more, and then subjected to hot dip galvanizing treatment. Excellent ductility and fatigue resistance for cooling to 300 ° C at a cooling rate of ℃ / s or more Method for producing a high-tensile galvanized steel sheet has been disclosed.
特許文献5には、鋼板組織が、主相であるフェライト、体積率で3%以上の残留オーステナイトおよび低温変態相とからなる複合組織で構成され、さらに前記低温変態相中に占めるマルテンサイトの比率が20%以下でかつ低温変態相中のベイナイトと主相であるフェライトの硬度比が2.6以下であり、前記残留オーステナイトはその70%以上がアスペクト比:0.2〜0.4のものである鋼板の表面に、溶融亜鉛めっき層が形成されてなる疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板が開示されている。 In Patent Document 5, the steel sheet structure is composed of a composite structure composed of ferrite as a main phase, retained austenite with a volume ratio of 3% or more, and a low-temperature transformation phase, and the ratio of martensite in the low-temperature transformation phase. Is 20% or less and the hardness ratio of bainite in the low-temperature transformation phase and ferrite as the main phase is 2.6 or less, and 70% or more of the retained austenite has an aspect ratio of 0.2 to 0.4 on the surface of the steel sheet. A high-tensile hot-dip galvanized steel sheet having excellent fatigue characteristics and hole expansibility formed by forming a hot-dip galvanized layer is disclosed.
特許文献6には、質量%で、Al:0.1%以上3%未満を含有する鋼組成で、表層部にAlN析出相を有してなる表面処理用鋼板が開示されている。 Patent Document 6 discloses a steel sheet for surface treatment having a steel composition containing Al: 0.1% or more and less than 3% by mass% and having an AlN precipitated phase in the surface layer portion.
上記特許文献1〜5には、高強度で疲労耐久性に優れた鋼板の組成及び組織条件が開示されているが、対象となる疲労耐久性は前記機械加工疲労強度であり、本発明が目的とする打ち抜きまま疲労強度について示していない。一方、特許文献6は、表層部にAlN析出相を有してなる表面処理用鋼板について開示しているが、打ち抜きまま疲労強度の向上について開示するところがない。 The above Patent Documents 1 to 5 disclose the composition and structure condition of a steel plate having high strength and excellent fatigue durability, but the target fatigue durability is the machining fatigue strength, and the present invention is intended. The fatigue strength is not shown as punched. On the other hand, Patent Document 6 discloses a steel sheet for surface treatment having an AlN precipitated phase in the surface layer portion, but does not disclose improvement in fatigue strength while being punched.
したがって、本発明の第1の目的は、具体的には、引張強度(TS)が590MPa以上、打ち抜き破面を有する状態での疲労強度(打ち抜きまま疲労強度)(FL)が200MPa以上の高強度で打ち抜き端面を有する状態での疲労強度が高い溶融亜鉛めっき鋼板を提供することにある。第2の目的は、上記特性に加えて、さらに、高成形性、高加工性の、いい換えれば、強度(TS)と全伸び(El)の積で表される加工性指数、(TS)×(El)が21000MPa・%以上の溶融亜鉛めっき鋼板を提供することにある。さらに、本発明の第3の目的は、上記各特性を有する溶融亜鉛めっき鋼板の製造方法を提供することにある。 Therefore, the first object of the present invention is specifically a high strength with a tensile strength (TS) of 590 MPa or more and a fatigue strength (fatigue strength without punching) (FL) in a state having a punched fracture surface of 200 MPa or more. An object of the present invention is to provide a hot-dip galvanized steel sheet having high fatigue strength in a state having a punched end face. In addition to the above characteristics, the second purpose is to provide a high formability and high workability, in other words, a workability index expressed by the product of strength (TS) and total elongation (El), (TS) X (El) is to provide a hot-dip galvanized steel sheet of 21000 MPa ·% or more. Furthermore, the third object of the present invention is to provide a method for producing a hot dip galvanized steel sheet having the above characteristics.
本発明者らは、種々の鋼板について、打ち抜きまま疲労強度と鋼板中に析出しているAlNの析出状態の関係について精査した結果、めっき層を除く鋼板表面から少なくとも1μmにわたってAlNが析出していることが、打ち抜きまま疲労強度の向上に寄与することを発見し、本発明を完成した。 As a result of scrutinizing the relationship between the fatigue strength as punched and the precipitation state of AlN precipitated in the steel sheet, the present inventors have precipitated AlN over at least 1 μm from the steel sheet surface excluding the plating layer. Was found to contribute to the improvement of fatigue strength while being punched, and the present invention was completed.
本発明に係る溶融亜鉛めつき鋼板は、質量比で、C:0.05〜0.30%、Mn:0.8〜3.00%、P:0.003〜0.100%、S:0.010%以下、Al:0.10〜2.50%、Cr:0.03〜0.50%、N:0.007%以下、残部実質的にFeおよび不可避不純物からなる組成を有し、フェライト相、残留オーステナイト相及び低温変態相を含み、前記フェライト相分率が体積比で97%以下であり、かつ、めっき層を除く鋼表面から1μmまでの領域にAlNが析出している組織を有し、かつ、引張強度(TS)が590MPa以上、打ち抜き破面まま疲労強度(FL)が200MPa以上の特性を有する。 The hot dip galvanized steel sheet according to the present invention is, by mass ratio, C: 0.05 to 0.30%, Mn: 0.8 to 3.00%, P: 0.003 to 0.100%, S: 0.010% or less, Al: 0.10 to 2.50%, Cr : 0.03-0.50%, N: 0.007% or less, the balance being substantially composed of Fe and inevitable impurities, including ferrite phase, residual austenite phase and low-temperature transformation phase, the ferrite phase fraction is 97 by volume %, And has a structure in which AlN is deposited in the region from the steel surface excluding the plating layer to 1 μm, and the tensile strength (TS) is 590 MPa or more. Has characteristics of 200 MPa or more.
上記発明において、Siを1.40%以下の範囲で含有させることができるほか、V:0.005〜2.0%、Mo:0.005〜2.0%、Ni:0.0O5〜2.0%、Cu:0.005〜2.0%から選ばれた1又は2種以上の元素、Ti:0.01〜0.20%、Nb:0.005〜0.10%から選ばれた1種または2種以上の元素、さらに、B:0.0002〜0.005%を含有させることができる。 In the above invention, Si can be contained in the range of 1.40% or less, V: 0.005-2.0%, Mo: 0.005-2.0%, Ni: 0.0O5-2.0%, Cu: 0.005-2.0% Furthermore, one or more elements selected from one or more elements, Ti: 0.01 to 0.20%, Nb: 0.005 to 0.10%, and B: 0.0002 to 0.005% can be contained.
また、上記各発明において、Ca:0.001〜0.005%、REM:0.001〜0.005%から選ばれた1種または2種の元素を含有させることができる。 In the above inventions, one or two elements selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% can be contained.
本発明に係る溶融亜鉛めっき鋼板は、体積比で残留オーステナイト相分率が3%以上であるものとすることが望ましい。 The hot dip galvanized steel sheet according to the present invention preferably has a retained austenite phase fraction of 3% or more by volume ratio.
また、本発明に係る溶融亜鉛めっき鋼板は、引張強度(TS)と全伸び値(El)の積、(TS)×(El)が21000MPa・%以上であることが望ましい。 In addition, the hot-dip galvanized steel sheet according to the present invention desirably has a product of tensile strength (TS) and total elongation value (El), (TS) × (El) of 21000 MPa ·% or more.
上記発明に係る溶融亜鉛めっき鋼板は、上記いずれかに記載の組成を有するスラブに対して熱間圧延及び冷間圧延を行って冷延鋼板を得、
得られた冷延鋼板に対し、空気比1.0以上2.0以下の雰囲気下において300℃以上570℃未満まで加熱する第1次加熱を施し、さらに900℃以下の最高加熱温度まで加熱する第2次加熱を施して、該最高加熱温度領域において15s以上600s以下保持した後、溶融亜鉛めっき温度まで冷却し、溶融亜鉛めっき処理を行うことによって製造することができる。
The hot-dip galvanized steel sheet according to the invention is a hot-rolled and cold-rolled slab having any one of the compositions described above to obtain a cold-rolled steel sheet,
The obtained cold-rolled steel sheet is subjected to primary heating to be heated to 300 ° C. or higher and lower than 570 ° C. in an atmosphere having an air ratio of 1.0 to 2.0, and further heated to a maximum heating temperature of 900 ° C. or lower. And after maintaining in the maximum heating temperature region for 15 s or more and 600 s or less, the product is cooled to a hot dip galvanizing temperature and subjected to a hot dip galvanizing process.
上記製造方法において、最高加熱温度を750℃〜900℃とすることが好ましく、また、最高加熱温度領域からの冷却を、冷却速度5℃/s以上の急冷とするとともに、該急冷の冷却停止温度を550℃以下、溶融亜鉛めっき温度までとすることが好ましい。また、前記第2次加熱の空気比を0.8〜1.1とするのが好ましい。 In the above production method, the maximum heating temperature is preferably 750 ° C. to 900 ° C., and cooling from the maximum heating temperature region is rapid cooling at a cooling rate of 5 ° C./s or more, and the rapid cooling stop temperature Is preferably set to 550 ° C. or lower and up to a hot dip galvanizing temperature. Moreover, it is preferable that the air ratio of the said secondary heating shall be 0.8-1.1.
本発明にかかる溶融亜鉛めっき鋼板は、引張強度(TS)が590MPa以上、打ち抜きまま疲労強度が200MPa以上の特性を有し、たとえば、未舗装の道路を走行する自動車の使用寿命を延長させることに寄与する。また、本発明に係る溶融亜鉛めっき鋼板は、加工性に優れているので、複雑な自動車部品を成形素材として適している。 The hot-dip galvanized steel sheet according to the present invention has the characteristics that the tensile strength (TS) is 590 MPa or more, and the fatigue strength is 200 MPa or more while being punched.For example, to extend the service life of an automobile traveling on an unpaved road. Contribute. Moreover, since the hot dip galvanized steel sheet according to the present invention is excellent in workability, a complicated automobile part is suitable as a forming material.
以下、本発明に係る溶融亜鉛めっき鋼板の組成、鋼組織及びその特性値について説明する。 Hereinafter, the composition, steel structure and characteristic values of the hot dip galvanized steel sheet according to the present invention will be described.
(組成)
C:0.05〜0.30%(mass%、以下、特に断らない限り同様)
Cはオーステナイトを安定化させる元素であり、フェライト以外の相を生成により鋼板の強度を上昇させるため必要な元素である。また、残留オーステナイト中にCが一定量以上濃化すると、TRIP効果により鋼板の成形性が向上する。C量が0.05%未満では、強度の確保が難しく、C量が0.30%を超えると、溶接部および熱影響部の硬化が著しく、溶接性が劣化する。したがって、C量を0.05〜0.30%の範囲内、好ましくは、0.08%〜0.20%とする。
(composition)
C: 0.05 to 0.30% (mass%, hereinafter the same unless otherwise specified)
C is an element that stabilizes austenite, and is an element necessary for increasing the strength of the steel sheet by generating phases other than ferrite. Further, when C is concentrated in the retained austenite by a certain amount or more, the formability of the steel sheet is improved by the TRIP effect. If the C content is less than 0.05%, it is difficult to ensure the strength. If the C content exceeds 0.30%, the welded part and the heat-affected zone are significantly hardened and the weldability deteriorates. Therefore, the C content is in the range of 0.05 to 0.30%, preferably 0.08% to 0.20%.
Mn:0.8〜3.00%
Mnは、鋼の強化に有効な元素である。また、オーステナイトを安定化させる元素であり、フェライト以外の相の体積を増加して、TSを590MPa以上とするために必要な元素である。この効果は、Mnが0.8%以上で得られる。しかし、Mnが3.00%を超えると、第二相分率が過大になり、また、固溶硬化による強度上昇が著しくなり、成形性が低下する。
Mn: 0.8 ~ 3.00%
Mn is an element effective for strengthening steel. Further, it is an element that stabilizes austenite, and is an element that is necessary for increasing the volume of phases other than ferrite to increase TS to 590 MPa or more. This effect is obtained when Mn is 0.8% or more. However, if Mn exceeds 3.00%, the second phase fraction becomes excessive, the strength increases due to solid solution hardening, and the moldability decreases.
P:0.003〜0.100%
Pは、鋼の強化に有効な元素であり、この効果は0.003%以上で得られる。しかし、0.100%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。そのため、P含有量は0.003%〜0.100%に制限する。
P: 0.003-0.100%
P is an element effective for strengthening steel, and this effect is obtained at 0.003% or more. However, if it exceeds 0.100% and is added excessively, it causes embrittlement due to grain boundary segregation and degrades impact resistance. Therefore, the P content is limited to 0.003% to 0.100%.
S:0.010%以下
Sは、MnSなどの非金属介在物の生成元素であり、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよいが、製造コストの面から0.010%以下とする。
S: 0.010% or less
S is a product element of non-metallic inclusions such as MnS, and it is better to be as low as possible because it causes deterioration of impact resistance and cracks along the metal flow of the weld. However, it is 0.010% from the viewpoint of manufacturing cost. The following.
Al:0.10〜2.50%
Alは、AlNを生成させるために必要不可欠な成分元素である。A1が0.10%未満では、後に記載する焼鈍工程においてAlNの生成量が不足して本発明の目的である打ちぬきまま疲労強度を向上させることができない。一方、Al含有量が2.50%超であると、鋼板中の介在物、たとえばAl2O3が多くなり、延性を劣化させる。したがって、Alの含有量は、0.10以上、2.50%以下とする。なお、Alは、Siによるめっき性およびめっき表面性状の劣化を抑制する作用があり、この効果は0.30%で得られ、1.2%で飽和する。かかる見地からAlの添加量は、0.3〜1.20%とするのがよい。
Al: 0.10-2.50%
Al is a component element indispensable for generating AlN. If A1 is less than 0.10%, the amount of AlN produced is insufficient in the annealing process described later, and the fatigue strength cannot be improved as it is, which is the object of the present invention. On the other hand, when the Al content is more than 2.50%, inclusions in the steel sheet, for example, Al 2 O 3 increases, and ductility is deteriorated. Therefore, the Al content is set to 0.10 or more and 2.50% or less. In addition, Al has the effect | action which suppresses deterioration of the plating property and plating surface property by Si, and this effect is acquired at 0.30% and is saturated at 1.2%. From this standpoint, the amount of Al added is preferably 0.3 to 1.20%.
Cr:0.03〜0.50%
Crは焼鈍後の冷却および亜鉛めっき処理中にオーステナイトを安定化することにより、フェライト以外の相を安定的に生成するのに有効な元素であり、効率的に鋼板の強度を590MPa以上に上昇させるのに効果がある。その効果は0.03%以上で発現し、0.1%以上では、後述する製造過程における熱処理時の強度に及ぼす冷却速度の影響を小さくし、製品特性値の安定に大きく寄与する。したがって、0.10%以上含有させるのが好ましい。しかしながら、0.50%を超えると、亜鉛めっき性が劣化する。したがって、Crの含有量は、0.03〜0.50%、好ましくは0.1%〜0.5%とする。
Cr: 0.03-0.50%
Cr is an effective element to stably produce phases other than ferrite by stabilizing austenite during cooling after annealing and galvanizing treatment, and efficiently increases the strength of steel sheet to 590 MPa or more. Is effective. The effect is manifested at 0.03% or more, and at 0.1% or more, the effect of the cooling rate on the strength during heat treatment in the manufacturing process described later is reduced, and it greatly contributes to the stability of product characteristic values. Therefore, it is preferable to contain 0.10% or more. However, if it exceeds 0.50%, the galvanizing property deteriorates. Therefore, the Cr content is 0.03-0.50%, preferably 0.1-0.5%.
N:0.007%以下
Nの含有量が0.007%を超えると鋼板内部の粗大なAlNが増加し、疲労特性が急激に劣化する。そのため、Nの含有量は0.007%以下とする。
N: 0.007% or less
When the N content exceeds 0.007%, coarse AlN inside the steel sheet increases, and the fatigue characteristics deteriorate rapidly. Therefore, the N content is 0.007% or less.
上記組成成分を除く残部組成は、実質的にFeおよび不可避不純物からなる。しかしながら、強度の向上等、鋼の要求特性に応じて下記の元素を含有させることが可能である。 The balance composition excluding the above composition components substantially consists of Fe and inevitable impurities. However, it is possible to contain the following elements according to the required characteristics of steel, such as strength improvement.
Si:1.40%以下
Siは、鋼のマトリックスを固溶強化する作用があり、また、フェライト生成元素であり、オーステナイト中へのCの濃化促進および炭化物の生成を抑制して残留オーステナイトの生成を促進する作用があり、残留オーステナイトを含有する高強度鋼の製造にとって好ましい添加元素である。その鋼のマトリックスを固溶強化作用及び残留オーステナイトの生成作用はAlより強く、Alの一部をSiに置換することができ、また、Al+Siの合計量を0.3%以上とすることにより良好な伸び特性が得られるようになる。しかしながら、Si含有量が過剰になると、フェライト中への固溶量の増加により成形性及び靭性が劣化し、また赤スケールの発生による表面性状が劣化する。また、溶融めっきを施す場合はめっき付着・密着性の劣化を引き起こす。したがって、Siは上限を1.40%とし、好ましくは、0.2〜1.00%の範囲で添加・含有させることができる。
Si: 1.40% or less
Si has the effect of solid-solution strengthening the steel matrix, and is a ferrite-forming element, and has the effect of promoting the formation of retained austenite by suppressing the concentration of C in the austenite and the formation of carbides. It is a preferred additive element for the production of high-strength steel containing residual austenite. The solid solution strengthening action and residual austenite formation action of the steel matrix is stronger than Al, and a part of Al can be replaced with Si, and the total amount of Al + Si is 0.3% or more, so good elongation is achieved. Characteristics can be obtained. However, when the Si content is excessive, the formability and toughness deteriorate due to an increase in the amount of solid solution in ferrite, and the surface properties due to the occurrence of red scale deteriorate. In addition, when hot-dip plating is performed, plating adhesion and adhesion are deteriorated. Therefore, the upper limit of Si is 1.40%, and preferably 0.2 to 1.00% can be added and contained.
V:0.005〜2.0%、Mo:0.005〜2.0%、Ni:0.005〜2.0%及びCu:0.005〜2.0%
これらの元素は、焼鈍温度からの冷却時にパーライトの生成を抑制し、フェライト以外の相を生成しやすくする作用を有する。その効果は、いずれも0.005%以上で得られるが、2.0%を超えると効果が飽和し、コストアップの要因となる。したがって、これら元素は、それぞれ単独で、又は複合して上記範囲内で添加・含有させることができる。
V: 0.005-2.0%, Mo: 0.005-2.0%, Ni: 0.005-2.0% and Cu: 0.005-2.0%
These elements have the effect of suppressing the formation of pearlite during cooling from the annealing temperature and facilitating the formation of phases other than ferrite. The effect can be obtained at 0.005% or more, but if it exceeds 2.0%, the effect is saturated, which causes a cost increase. Accordingly, these elements can be added or contained within the above ranges alone or in combination.
Ti:0.01〜0.20%及びNb:0.005〜0.10%
これらの元素は、主として析出効果により鋼の強化に有効である。Tiの場合、その効果は0.01%以上で得られ、Nbの場合0.005%以上で得られる。しかし、その効果は、Tiの場合0.2%、Nbの場合0.1%で飽和し、それを超える添加はコストアップの要因となる。したがって、これら元素は、それぞれ単独で、又は複合して上記範囲内で添加・含有させることができる。
Ti: 0.01-0.20% and Nb: 0.005-0.10%
These elements are effective for strengthening steel mainly by precipitation effects. In the case of Ti, the effect is obtained at 0.01% or more, and in the case of Nb, it is obtained at 0.005% or more. However, the effect is saturated at 0.2% in the case of Ti and 0.1% in the case of Nb, and addition exceeding this causes a cost increase. Accordingly, these elements can be added or contained within the above ranges alone or in combination.
B:0.0002〜0.0050%
Bはオーステナイト粒界からのフェライトの生成を抑制し強度を上昇させる作用を有する。その効果は0.0002%以上で得られる。しかし、0.0050%を超え添加はコストアップの要因となる。したがって、これらBは、0.0002〜0.0050%の範囲内で添加・含有させることができる。
B: 0.0002 to 0.0050%
B has the effect of suppressing the formation of ferrite from the austenite grain boundaries and increasing the strength. The effect is obtained at 0.0002% or more. However, addition exceeding 0.0050% causes a cost increase. Therefore, these B can be added and contained within a range of 0.0002 to 0.0050%.
Ca:0.001〜0.005%及びREM:0.001〜0.005%
これらの元素は、局部延性を向上させることにより伸び向上すなわち成形性向上に寄与する作用を有する。その効果は、Caの場合、0.001%以上で得られ、0.005%で飽和する。一方REMの場合、0.001%以上で得られ、0.005%で飽和する。したがって、これら元素は、それぞれ単独で、又は複合して上記範囲内で添加・含有させることができる。
Ca: 0.001 to 0.005% and REM: 0.001 to 0.005%
These elements have an effect of contributing to improvement of elongation, that is, improvement of moldability by improving local ductility. In the case of Ca, the effect is obtained at 0.001% or more, and is saturated at 0.005%. On the other hand, REM is obtained at 0.001% or more and saturates at 0.005%. Accordingly, these elements can be added or contained within the above ranges alone or in combination.
(鋼組織)
本発明の鋼は、フェライト相、残留オーステナイト相及び低温変態相を含む複合組織鋼であり、このうち、フェライト相の構成比率(フェライト相分率)が97%以下に制限される。フェライト相分率が97%を超えると、引張強度(TS)を590MPa以上とすることができなくなる。一方、フェライト相分率が20%未満であると、全伸び(El)が10%以下となるなど十分な加工性が得られなくなるので、フェライト相分率は20%以上とするのが好ましい。
(Steel structure)
The steel of the present invention is a composite structure steel containing a ferrite phase, a retained austenite phase, and a low-temperature transformation phase. Among these, the constituent ratio (ferrite phase fraction) of the ferrite phase is limited to 97% or less. If the ferrite phase fraction exceeds 97%, the tensile strength (TS) cannot be increased to 590 MPa or more. On the other hand, if the ferrite phase fraction is less than 20%, sufficient workability cannot be obtained, for example, the total elongation (El) is 10% or less. Therefore, the ferrite phase fraction is preferably 20% or more.
フェライト相分率の上限値を97%以下に制限することにより、引張強度(TS)を590MPa以上とすることができるが、成形性指数(TS)×(El)が18000MPa・%以上の高い加工性を得るためには、残留オーステナイト相分率を3%以上とすることが必要である。なお、より高い加工性、たとえば、成形性指数21000MPa・%以上を得るためには、残留オーステナイト相分率を5%以上とするのが好ましが、さらに、製造コストを考慮して20%以下とするのが好ましい。 By limiting the upper limit of the ferrite phase fraction to 97% or less, the tensile strength (TS) can be increased to 590 MPa or higher, but the high formability index (TS) x (El) is 18000 MPa ·% or higher. In order to obtain the properties, the retained austenite phase fraction needs to be 3% or more. In order to obtain higher workability, for example, a formability index of 21000 MPa ·% or more, it is preferable to set the retained austenite phase fraction to 5% or more. Is preferable.
なお、フェライト相分率は、製品溶融亜鉛めっき鋼板の板厚1/4の位置についてSEMを用いて1000倍像を撮影し、画像処理により測定したものであり、残留オーステナイト相分率とは、製品を表面から板厚1/4位置まで研削した後さらに化学研磨により0.1mm研磨して得られた面について、X繰回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)面、(211)面、(220)面の積分強度を測定し、これらを基に残留オーステナイト相分率を求めたものである。 In addition, the ferrite phase fraction is a 1000 times image taken using SEM for the position of the thickness of the product galvanized steel sheet 1/4, and measured by image processing, the residual austenite phase fraction is The surface obtained by grinding the product from the surface to a 1/4 position of the plate thickness and then polishing by 0.1 mm by chemical polishing, using Mo Kα ray with an X diffraction diffractometer, (200), ( 220), (311) plane, and (200) plane, (211) plane, and (220) plane integral strength of bcc iron were measured, and based on these, the retained austenite phase fraction was obtained.
本発明では、かかる高強度の鋼において高い打ち抜きまま疲労強度を付与するために、少なくとも鋼表面直下から1μmまでの領域(深さ)に亘ってAlNが析出したものとする。ここに、AlNとは、溶融亜鉛めっき鋼板の板幅1/4の位置において、鋼板の断面をEPMAにより5視野について観察してN及びAlがともに検出された析出物をいい、その最大析出深さを「AlN析出深さ」と定義する。AlNは、鋼板表面直下から存在するので、「AlN析出深さ」とは、鋼板表面直下からその深さまでAlNが析出していることを意味する。本発明においては、このようにして定義したAlNが鋼板表面から少なくとも1μmの範囲に析出していること、いい換えれば、AlN析出深さが1μm以上であることが必要である。なお、鋼板表面とは、本発明の適用対象である溶融亜鉛めっき鋼板のめっき層を除いた鋼板の表面、いい換えれば、溶融亜鉛めっき鋼板のめっき層と母板との境界面をいう。 In the present invention, in order to impart fatigue strength with high punching in such high-strength steel, it is assumed that AlN is precipitated over at least a region (depth) from directly below the steel surface to 1 μm. Here, AlN refers to a precipitate in which both N and Al are detected by observing the cross section of the steel sheet with EPMA at five positions at a width of 1/4 of the hot-dip galvanized steel sheet, and its maximum precipitation depth. This is defined as “AlN precipitation depth”. Since AlN exists from directly under the steel sheet surface, the “AlN precipitation depth” means that AlN is precipitated from directly under the steel sheet surface to that depth. In the present invention, it is necessary that the AlN defined as described above is deposited in the range of at least 1 μm from the steel sheet surface, in other words, the AlN deposition depth is 1 μm or more. The steel sheet surface refers to the surface of the steel sheet excluding the plated layer of the hot dip galvanized steel sheet to which the present invention is applied, in other words, the boundary surface between the plated layer of the hot dip galvanized steel sheet and the base plate.
図1は、上記方法によって測定されたAlN析出深さと打ち抜きまま疲労強度の関係を示すグラフである。図1に示すように、AlN析出深さが1μm以上のときには打ち抜きまま疲労強度が200MPa以上となる。 FIG. 1 is a graph showing the relationship between the AlN precipitation depth measured by the above method and the fatigue strength as punched. As shown in FIG. 1, when the AlN precipitation depth is 1 μm or more, the fatigue strength is 200 MPa or more while being punched.
上記本発明に係る溶融亜鉛めっき鋼板は、前記組成を有するスラブを、たとえば、連続鋳造によって製造し、これに対して熱間圧延及び冷間圧延を行って冷延鋼板を得、得られた冷延鋼板に対し、空気比1.0以上2.0以下の雰囲気下において300℃以上570℃未満までの第1次加熱を施した後、さらに加熱を継続して、750℃〜900℃以下の最高加熱温度までの第2次加熱を施し、該第2次加熱の最高加熱温度領域において15s以上、600s以下保持し、しかる後、溶融亜鉛めっき温度まで冷却して溶融亜鉛めっき処理を行うことによって製造することができる。ここに、空気比とは、直火式加熱炉を使用して鋼板を連続加熱する際の気体燃料を完全燃焼させるに足る空気量(Vt)に対する操業時の消費空気量(Vc)の比(Vc/Vt(容積比))をいう。 The hot-dip galvanized steel sheet according to the present invention is a slab having the above-described composition, for example, manufactured by continuous casting, hot-cold and cold-rolled to obtain a cold-rolled steel sheet, After subjecting the rolled steel sheet to primary heating from 300 ° C to less than 570 ° C in an atmosphere with an air ratio of 1.0 or more and 2.0 or less, heating is continued until the maximum heating temperature of 750 ° C to 900 ° C or less. The secondary heating is performed, and is maintained at 15 to 600 s in the maximum heating temperature range of the secondary heating, and then cooled to a hot dip galvanizing temperature and then hot dip galvanized. it can. Here, the air ratio is the ratio of the amount of air consumed (Vc) during operation to the amount of air (Vt) sufficient to completely burn the gaseous fuel when continuously heating the steel sheet using a direct-fired heating furnace ( Vc / Vt (volume ratio)).
上記において、空気比1.0以上2.0以下の雰囲気下において300℃以上570℃未満まで加熱することとするのは、AlNが鋼板表面から1μmまでの領域、いわば表面直下から極めて近い領域に生成するようにするためである。また、空気比1.0以上の雰囲気下での加熱温度を300℃以上570℃未満とするのは、570℃以上の温度では、酸化性の雰囲気のため、鋼板表面が酸化して、生成した酸化物がロールにピックアップされて表面欠陥が発生するおそれがあるからである。かかる観点から第1次加熱の加熱温度は570℃未満、好ましくは500℃未満とする。 In the above, heating to 300 ° C or more and less than 570 ° C in an atmosphere with an air ratio of 1.0 or more and 2.0 or less is so that AlN is generated in a region from the steel plate surface to 1 µm, in other words, a region very close to just below the surface. It is to do. In addition, the heating temperature in an atmosphere with an air ratio of 1.0 or higher is set to 300 ° C. or higher and lower than 570 ° C. The oxide generated by oxidation of the steel sheet surface due to the oxidizing atmosphere at temperatures of 570 ° C. or higher. This is because there is a possibility that surface defects may occur due to being picked up by the roll. From this point of view, the heating temperature of the primary heating is less than 570 ° C, preferably less than 500 ° C.
上記のようにしてAlNの生成が行なわれた鋼板は、次いで、750℃〜900℃の温度域まで加熱され(第2次加熱)、その温度に15s以上600s以下の時間に亘って保持される。第2次加熱の加熱温度を、750℃〜900℃とするのは、高強度を得るためにフェライト相を減少させ、冷間圧延組織を再結晶させ、オーステナイトを析出させて伸び特性のよい複合組織を形成させるためである。加熱温度が高いほどフェライト相を低減させ、それによって高強度化することが可能になるが、その効果は900℃で飽和するため、第2次加熱の加熱温度の上限は900℃とする。一方、その下限は、残留オーステナイトを存在させ、伸び特性を良好にするために750℃以上とする必要である。なお、上記第2次加熱に際し、空気空気比を0.8以上とすれば、AlNの生成がさらに促進されるので好ましい。しかしながら、空気比が1.1を超えると鋼板表面のFe酸化物の還元が十分に行われないため、めっき性が劣化する。したがって、上記750℃〜900℃の温度域までの加熱に当たっては、その焼鈍雰囲気を空気比0.8〜1.1とするのが好ましい。 The steel sheet on which AlN has been generated as described above is then heated to a temperature range of 750 ° C. to 900 ° C. (secondary heating) and held at that temperature for a period of 15 s to 600 s. . The heating temperature of the secondary heating is set to 750 ° C. to 900 ° C. A composite having good elongation characteristics by reducing the ferrite phase in order to obtain high strength, recrystallizing the cold rolled structure, and precipitating austenite. This is to form an organization. The higher the heating temperature, the lower the ferrite phase and thereby the higher the strength. However, since the effect is saturated at 900 ° C., the upper limit of the heating temperature of the secondary heating is 900 ° C. On the other hand, the lower limit is required to be 750 ° C. or higher in order to make residual austenite exist and to improve the elongation characteristics. In the secondary heating, it is preferable to set the air-air ratio to 0.8 or more because the generation of AlN is further promoted. However, when the air ratio exceeds 1.1, the reduction of Fe oxide on the steel sheet surface is not sufficiently performed, so that the plating property is deteriorated. Therefore, when heating to the temperature range of 750 ° C. to 900 ° C., it is preferable that the annealing atmosphere has an air ratio of 0.8 to 1.1.
上記加熱温度における保持時間は、15s以上、600s以下とする。保持時間が15s未満では、オーステナイト相へのCの濃縮が不十分であり、安定な残留オーステナイトの生成が行われがたく、十分な全伸びが得られない。一方、保持時間が600sを超えてもフェライト相分率を低下させる効果が飽和する。 The holding time at the heating temperature is 15 s or more and 600 s or less. If the holding time is less than 15 s, the concentration of C into the austenite phase is insufficient, and stable residual austenite is hardly generated, and sufficient total elongation cannot be obtained. On the other hand, the effect of lowering the ferrite phase fraction is saturated even if the holding time exceeds 600 s.
上記の加熱によって、必要なオーステナイト相の生成がなされた鋼板は、次いで急冷され、溶融亜鉛めっきが行われる。この急冷は、少なくとも最高加熱温度領域から550℃の温度領域を5℃/s以上の冷却速度をすることによって行われる。急冷の冷却停止温度の上限温度を550℃とするのは、パーライト変態が進行するのを防止して、残留オーステナイト相及び硬質相を含む組織として高い全伸びが得られるようにするためである。したがって、急冷停止温度は、必要な強度を全伸びが得られるように、周知の手段によって決定される。 The steel plate on which the necessary austenite phase has been generated by the above heating is then rapidly cooled and hot dip galvanized. This rapid cooling is performed by setting a cooling rate of 5 ° C./s or more in a temperature range of at least 550 ° C. from the maximum heating temperature range. The upper limit of the quenching stop temperature for quenching is set to 550 ° C. in order to prevent the pearlite transformation from proceeding and to obtain a high total elongation as a structure including a residual austenite phase and a hard phase. Therefore, the quench stop temperature is determined by well-known means so as to obtain the necessary strength and total elongation.
溶融亜鉛めっきは、周知の手段によって行われ、必要に応じていわゆる合金化処理が行われる。 Hot dip galvanization is performed by a well-known means, and what is called an alloying process is performed as needed.
表1に示す組成を有するスラブを連続鋳造によって製造し、これに対して熱間圧延及び冷間圧延を施して、厚さ1.6mmの冷延板を得、得られた冷延板に表2に示す条件で焼鈍及び溶融亜鉛めっきを施して製品とした。 A slab having the composition shown in Table 1 is produced by continuous casting, and hot rolling and cold rolling are performed on the slab to obtain a 1.6 mm thick cold rolled sheet. Table 2 shows the obtained cold rolled sheet. The product was annealed and hot dip galvanized under the conditions shown in.
得られた製品について以下の試験を行って、諸特性を測定した。
(1)フェライト相分率:板厚1/4の位置についてSEMを用いて1000倍像を撮影し、画像処理により測定した。
(2)残留オーステナイト相の分率:製品を表面から板厚1/4位置まで研削した後さらに化学研磨により0.1mm研磨して選られた面について、X繰回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)面、(211)面及び(220)面の積分強度を測定し、これらを基に残留オーステナイト相分率を求めた。
(3)AlN析出深さ:製品の断面(C方向断面)を3%ナイタール溶液でエッチングして組織を現出し、板厚表層部を走査型電子顕微鏡(SEM)を用いて10000倍で5視野観察し、EPMAによりAlNの同定を行ってその析出深さを決定した。
(4)引張強度(TS)、全伸び(EL)及び(TS)×(EL):JIS 5号試験片を板幅1/4の位置でC方向に切り出し、JIS Z 2241に準拠した方法で引張試験を行い、TS(引張り強さ)、El(全伸び)を測定し、これらの積として強度−伸びバランスの値である(TS)×(EL)を求めた。
(5)打ち抜きまま疲労強度:図2に示す形状の打ち抜きまま疲労強度試験片を板幅1/4の位置でC方向に切り出した。打ち抜き穴は直径10mmとし、クリアランス6.25%の条件で打ち抜いた。ここにクリアランスCは下記によって定義される。
C={(ダイス径−穴径)/2}×100/板厚
={(ダイス径−10)/2}×100/板厚(%)
なお、他の板厚の場合にはクリアランスCを7.25±2.5%として打ち抜く。
(6)引張疲労試験は、片振りの荷重一定制御(0テンション)で行い、応力振幅周波数は15kHz、応力比0.05とした。繰返し数107で破断しなかったときの最大応力を打ち抜きまま疲労強度とした。
The obtained product was subjected to the following tests to measure various characteristics.
(1) Ferrite phase fraction: A 1000-magnification image was taken using a SEM at a position where the plate thickness was 1/4 and measured by image processing.
(2) The fraction of retained austenite phase: The surface selected by grinding the product from the surface to a thickness of 1/4 position and then polishing by 0.1 mm by chemical polishing, using Mo Kα rays with an X-refraction diffractometer Measure the integrated intensity of the (200), (220), (311) face of fcc iron and the (200), (211) face and (220) face of bcc iron, and based on these, measure the residual austenite phase The rate was determined.
(3) Deposition depth of AlN: The cross section of the product (C direction cross section) is etched with 3% nital solution to reveal the structure, and the surface thickness of the plate thickness is 10000 times using a scanning electron microscope (SEM), 5 fields of view Observed and identified AlN by EPMA to determine its precipitation depth.
(4) Tensile strength (TS), total elongation (EL) and (TS) x (EL): Cut a JIS No. 5 test piece in the C direction at a position of 1/4 the plate width, and in accordance with JIS Z 2241 A tensile test was performed, TS (tensile strength) and El (total elongation) were measured, and (TS) × (EL) which is a value of strength-elongation balance was obtained as a product of these.
(5) Fatigue strength with punching: A fatigue strength test piece with the shape shown in FIG. 2 was cut in the C direction at a position of 1/4 the plate width. The punched hole had a diameter of 10 mm and was punched with a clearance of 6.25%. Here clearance C is defined by:
C = {(die diameter-hole diameter) / 2} × 100 / plate thickness
= {(Die diameter-10) / 2} x 100 / plate thickness (%)
For other plate thicknesses, punching is performed with a clearance C of 7.25 ± 2.5%.
(6) The tensile fatigue test was performed with a single swing constant load control (0 tension), the stress amplitude frequency was 15 kHz, and the stress ratio was 0.05. The maximum stress when the fracture was not repeated at the number of repetitions of 10 7 was regarded as the fatigue strength while being punched.
測定結果は表2にまとめて記した。これらの結果から明らかなように、本発明で規定する要件を満足する鋼板は、打ち抜きまま疲労強度および強度−伸びバランスの値である(TS)×(EL)が高いことがわかる。 The measurement results are summarized in Table 2. As is clear from these results, it can be seen that a steel sheet that satisfies the requirements defined in the present invention has a high value of fatigue strength and strength-elongation balance (TS) × (EL) while being punched.
Claims (11)
フェライト相、残留オーステナイト相及び低温変態相を含み、前記フェライト相分率が体積比で97%以下であり、かつ、めっき層を除く鋼板表面から1μmまでの領域にAlNが析出している組織を有し、かつ、
引張強度(TS)が590MPa以上、打ち抜き破面を有する状態での疲労強度(FL)が200MPa以上の特性を有することを特徴とする溶融亜鉛めっき鋼板。 By mass ratio, C: 0.05 to 0.30%, Mn: 0.8 to 3.00%, P: 0.003 to 0.100%, S: 0.010% or less, Al: 0.10 to 2.50%, Cr: 0.03 to 0.50%, N: 0.007% or less The balance substantially consists of Fe and inevitable impurities,
A structure including a ferrite phase, a residual austenite phase, and a low-temperature transformation phase, wherein the ferrite phase fraction is 97% or less by volume, and AlN is precipitated in a region from the steel plate surface excluding the plating layer to 1 μm. Have and
A hot-dip galvanized steel sheet characterized by a tensile strength (TS) of 590 MPa or more and a fatigue strength (FL) of 200 MPa or more with a punched fracture surface.
得られた冷延鋼板に対し、空気比1.0以上2.0以下の雰囲気下において300℃以上570℃未満まで加熱した後、さらに加熱を継続して、900℃以下の最高加熱温度まで加熱し、該最高加熱温度領域において15s以上、600s以下保持した後、溶融亜鉛めっき温度まで冷却し、溶融亜鉛めっき処理を行うことを特徴とする浴融亜鉛めっき鋼板の製造方法。 Hot rolling and cold rolling are performed on the slab having the composition according to any one of claims 1 to 6 to obtain a cold rolled steel sheet,
The obtained cold-rolled steel sheet is heated to 300 ° C. or more and lower than 570 ° C. in an atmosphere with an air ratio of 1.0 or more and 2.0 or less, and then further heated to a maximum heating temperature of 900 ° C. or less. A method for producing a bath-dip galvanized steel sheet, which is held in a heating temperature region for 15 s or more and 600 s or less, then cooled to a hot dip galvanizing temperature and subjected to a hot dip galvanizing treatment.
The method for producing a hot dip galvanized steel sheet according to claim 10, wherein the cooling rate from the maximum heating temperature region to 550 ° C or lower and the hot dip galvanizing temperature is 5 ° C / s or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093002A JP5114860B2 (en) | 2006-03-30 | 2006-03-30 | Hot-dip galvanized steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006093002A JP5114860B2 (en) | 2006-03-30 | 2006-03-30 | Hot-dip galvanized steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007262553A true JP2007262553A (en) | 2007-10-11 |
JP5114860B2 JP5114860B2 (en) | 2013-01-09 |
Family
ID=38635809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006093002A Active JP5114860B2 (en) | 2006-03-30 | 2006-03-30 | Hot-dip galvanized steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5114860B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010121157A (en) * | 2008-11-18 | 2010-06-03 | Jfe Steel Corp | Electric resistance welded steel pipe for high strength hollow member having excellent corrosion fatigue resistance |
WO2011076383A1 (en) * | 2009-12-21 | 2011-06-30 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
WO2012063969A1 (en) * | 2010-11-12 | 2012-05-18 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet having excellent uniform elongation and plating properties, and method for manufacturing same |
JP4943558B2 (en) * | 2009-08-31 | 2012-05-30 | 新日本製鐵株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
KR20150023566A (en) * | 2012-06-05 | 2015-03-05 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | Steel, sheet steel product and process for producing a sheet steel product |
JP2015516510A (en) * | 2012-03-30 | 2015-06-11 | フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテルハフツングVoestalpinestahl Gmbh | High-strength cold-rolled steel sheet and method for producing such a steel sheet |
KR20180119638A (en) | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | A method of manufacturing a cold-rolled hard steel sheet, a method of manufacturing a heat-treated sheet, a method of manufacturing a thin steel sheet, and a method of manufacturing a coated steel sheet |
EP2831292B1 (en) | 2012-03-30 | 2019-06-19 | voestalpine Stahl GmbH | High strength cold rolled steel sheet and method of producing such steel sheet |
JPWO2021125283A1 (en) * | 2019-12-19 | 2021-06-24 | ||
WO2022071305A1 (en) | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002322533A (en) * | 2001-02-23 | 2002-11-08 | Nippon Steel Corp | Thin steel sheet for automobile excellent in notch fatigue strength and production method therefor |
JP2004162163A (en) * | 2002-03-01 | 2004-06-10 | Jfe Steel Kk | Steel plate for surface treatment, surface-treated steel plate, and method for production thereof |
-
2006
- 2006-03-30 JP JP2006093002A patent/JP5114860B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002322533A (en) * | 2001-02-23 | 2002-11-08 | Nippon Steel Corp | Thin steel sheet for automobile excellent in notch fatigue strength and production method therefor |
JP2004162163A (en) * | 2002-03-01 | 2004-06-10 | Jfe Steel Kk | Steel plate for surface treatment, surface-treated steel plate, and method for production thereof |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010121157A (en) * | 2008-11-18 | 2010-06-03 | Jfe Steel Corp | Electric resistance welded steel pipe for high strength hollow member having excellent corrosion fatigue resistance |
US9109275B2 (en) | 2009-08-31 | 2015-08-18 | Nippon Steel & Sumitomo Metal Corporation | High-strength galvanized steel sheet and method of manufacturing the same |
JP4943558B2 (en) * | 2009-08-31 | 2012-05-30 | 新日本製鐵株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
CN102482753A (en) * | 2009-08-31 | 2012-05-30 | 新日本制铁株式会社 | High-strength hot-dip galvanized steel sheet and process for producing same |
KR101402503B1 (en) | 2009-08-31 | 2014-06-03 | 신닛테츠스미킨 카부시키카이샤 | High-strength hot-dip galvanized steel sheet and process for producing same |
WO2011076383A1 (en) * | 2009-12-21 | 2011-06-30 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
US9677150B2 (en) | 2009-12-21 | 2017-06-13 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
CN102712171A (en) * | 2009-12-21 | 2012-10-03 | 塔塔钢铁艾默伊登有限责任公司 | High strength hot dip galvanised steel strip |
JP2013515167A (en) * | 2009-12-21 | 2013-05-02 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ | High-strength hot-dip galvanized steel strip |
US8882938B2 (en) | 2009-12-21 | 2014-11-11 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
KR101553757B1 (en) * | 2010-11-12 | 2015-09-16 | 제이에프이 스틸 가부시키가이샤 | High strength galvanized steel sheet having excellent uniform elongation and zinc coatability and method for manufacturing the same |
US9028973B2 (en) | 2010-11-12 | 2015-05-12 | Jfe Steel Corporation | High strength galvanized steel sheet having excellent uniform elongation and zinc coatability |
JP2012117148A (en) * | 2010-11-12 | 2012-06-21 | Jfe Steel Corp | High strength hot-dip galvanized steel sheet having excellent uniform elongation and plating properties, and method for manufacturing same |
WO2012063969A1 (en) * | 2010-11-12 | 2012-05-18 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet having excellent uniform elongation and plating properties, and method for manufacturing same |
US10227683B2 (en) | 2012-03-30 | 2019-03-12 | Voestalpine Stahl Gmbh | High strength cold rolled steel sheet |
JP2015516510A (en) * | 2012-03-30 | 2015-06-11 | フォエスタルピネ スタール ゲゼルシャフト ミット ベシュレンクテルハフツングVoestalpinestahl Gmbh | High-strength cold-rolled steel sheet and method for producing such a steel sheet |
EP2831292B2 (en) † | 2012-03-30 | 2022-08-10 | voestalpine Stahl GmbH | High strength cold rolled steel sheet and method of producing such steel sheet |
EP2831292B1 (en) | 2012-03-30 | 2019-06-19 | voestalpine Stahl GmbH | High strength cold rolled steel sheet and method of producing such steel sheet |
KR102073441B1 (en) | 2012-06-05 | 2020-02-04 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | Steel, sheet steel product and process for producing a sheet steel product |
JP2015525292A (en) * | 2012-06-05 | 2015-09-03 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | Steel, flat steel material and method for producing flat steel material |
KR20150028267A (en) * | 2012-06-05 | 2015-03-13 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | Steel, sheet steel product and process for producing a sheet steel product |
KR102073442B1 (en) | 2012-06-05 | 2020-02-04 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | Steel, sheet steel product and process for producing a sheet steel product |
KR20150023566A (en) * | 2012-06-05 | 2015-03-05 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | Steel, sheet steel product and process for producing a sheet steel product |
KR20180119638A (en) | 2016-03-31 | 2018-11-02 | 제이에프이 스틸 가부시키가이샤 | A method of manufacturing a cold-rolled hard steel sheet, a method of manufacturing a heat-treated sheet, a method of manufacturing a thin steel sheet, and a method of manufacturing a coated steel sheet |
US10920294B2 (en) | 2016-03-31 | 2021-02-16 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full-hard cold-rolled steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet |
WO2021125283A1 (en) * | 2019-12-19 | 2021-06-24 | 日本製鉄株式会社 | Steel sheet and method for manufacturing same |
JPWO2021125283A1 (en) * | 2019-12-19 | 2021-06-24 | ||
US20230002846A1 (en) * | 2019-12-19 | 2023-01-05 | Nippon Steel Corporation | Steel sheet and manufacturing method thereof |
JP7311808B2 (en) | 2019-12-19 | 2023-07-20 | 日本製鉄株式会社 | Steel plate and its manufacturing method |
WO2022071305A1 (en) | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet |
KR20230056040A (en) | 2020-09-30 | 2023-04-26 | 닛폰세이테츠 가부시키가이샤 | steel plate |
US12077832B2 (en) | 2020-09-30 | 2024-09-03 | Nippon Steel Corporation | Steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP5114860B2 (en) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101218530B1 (en) | High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof | |
TWI412605B (en) | High strength steel sheet and method for manufacturing the same | |
JP5114860B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
TWI412609B (en) | High strength steel sheet and method for manufacturing the same | |
JP5365217B2 (en) | High strength steel plate and manufacturing method thereof | |
US8840834B2 (en) | High-strength steel sheet and method for manufacturing the same | |
JP5765092B2 (en) | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same | |
JP5251208B2 (en) | High-strength steel sheet and its manufacturing method | |
CN100471972C (en) | High strength steel plate excellent in formability and method for production thereof | |
KR20180095671A (en) | High Strength Steel Sheet with Excellent Formability and Manufacturing Method Thereof | |
US20120175028A1 (en) | High strength steel sheet and method for manufacturing the same | |
JP5786318B2 (en) | High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same | |
KR20180095710A (en) | High strength galvanized steel sheet and manufacturing method thereof | |
JP5942841B2 (en) | Hot stamping molded body excellent in strength and hydrogen embrittlement resistance and method for producing hot stamping molded body | |
KR101626233B1 (en) | High strength cold rolled steel sheet with high yield ratio and method for producing the same | |
KR101445465B1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same | |
JP2010065272A (en) | High-strength steel sheet and method for manufacturing the same | |
KR20100046057A (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
JP5326362B2 (en) | High strength steel plate and manufacturing method thereof | |
JP2013044022A (en) | Hot-dip galvanized steel sheet and manufacturing method therefor | |
JP4501716B2 (en) | High-strength steel sheet with excellent workability and method for producing the same | |
JP4288146B2 (en) | Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone | |
JP6460238B2 (en) | Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them | |
CN113544299A (en) | High-strength steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100715 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5114860 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |