JPH1157475A - Exhaust gas cleaning catalyst material - Google Patents

Exhaust gas cleaning catalyst material

Info

Publication number
JPH1157475A
JPH1157475A JP9217443A JP21744397A JPH1157475A JP H1157475 A JPH1157475 A JP H1157475A JP 9217443 A JP9217443 A JP 9217443A JP 21744397 A JP21744397 A JP 21744397A JP H1157475 A JPH1157475 A JP H1157475A
Authority
JP
Japan
Prior art keywords
exhaust gas
composite oxide
iron
nox
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9217443A
Other languages
Japanese (ja)
Inventor
Fumio Munakata
文男 宗像
Yoshio Akimune
淑雄 秋宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9217443A priority Critical patent/JPH1157475A/en
Publication of JPH1157475A publication Critical patent/JPH1157475A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst material having a high NOx purification capacity under an oxidizing atmosphere at a temperature not lower than 300 deg.C and a thermal resistance. SOLUTION: This material comprises a complex oxide having a bedded perovskite structure represented by the formula: A3 B2 O7 (wherein A represents at least one kind selected from the group consisting of alkali elements, alkaline earth elements, rare earth elements and lead and B represents at least one kind selected from the group consisting of copper, cobalt and iron, and the complex oxide is represented by the formula: La2-x Bax SrCu2-y B'y O7 (wherein B' represents cobalt and/or iron, and 0<x<2, 0<y<0.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒材料に関し、特に、内燃機関から排出される排気ガス
や、天然ガス等の燃焼における排気ガス及び工場等にお
ける化学工程で発生する窒素酸化物の吸収浄化及び脱硝
工程に有効に利用することができるNOx浄化用触媒材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst material for purifying exhaust gas, and more particularly to an exhaust gas discharged from an internal combustion engine, an exhaust gas in the combustion of natural gas and the like, and a nitrogen oxide generated in a chemical process in a factory or the like. The present invention relates to a catalyst material for NOx purification that can be effectively used in a process of absorbing and purifying substances and a denitration process.

【0002】[0002]

【従来の技術】従来、内燃機関の排気ガスを浄化する触
媒としては自動車用排気ガス浄化触媒に代表されるよう
に、例えばコージェライト等の耐熱性担体にγ−アルミ
ナスラリーを塗布後焼成し、Pt、Pd、Rhなどの貴
金属を担持した三元触媒がある。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas of an internal combustion engine, a γ-alumina slurry is applied to a heat-resistant carrier such as cordierite and baked, as represented by an exhaust gas purifying catalyst for automobiles. There are three-way catalysts supporting noble metals such as Pt, Pd, and Rh.

【0003】近年、地球規模での環境に対する意識の高
まりから、内燃機関の燃焼効率の改善や燃費向上、排気
ガスの浄化等に対し、質、量ともに要求水準が上昇して
きている。この様な状況から、特に内燃機関の燃費を改
善することが研究され、酸素過剰の混合割合で燃焼させ
る希薄燃焼(リーン)領域での運転が現在行なわれ、こ
のリーン領域においても十分にNOxを浄化できてる触
媒が望まれている。
[0003] In recent years, with increasing awareness of the environment on a global scale, demands for both quality and quantity have been increasing with respect to improvement of combustion efficiency and fuel efficiency of internal combustion engines, purification of exhaust gas, and the like. Under such circumstances, it has been studied to improve the fuel efficiency of the internal combustion engine, in particular, and operation is currently performed in a lean burn (lean) region in which combustion is performed with a mixture ratio of excess oxygen. Even in this lean region, NOx is sufficiently reduced. A catalyst that can be purified is desired.

【0004】このようなリーン領域においても十分にN
Oxを浄化する方法としては、(1)リーン雰囲気下で
気相中の炭化水素(HC)を利用してNOxを浄化する
ゼオライト触媒を用いる方法(Machida, Murakami, Kiji
ma; J. Mater. Chem., 4(1994)1621) や、(2)バリウ
ム酸化物、ランタン酸化物及び白金を組合せ、リーン雰
囲気下でNOxを吸収し、三元領域で三元触媒によりN
Oxを浄化する方法(特開平第5−511556号公報
及び特開平第5−261287号公報)等が提案されて
いる。
[0004] Even in such a lean region, N
As a method for purifying Ox, (1) a method using a zeolite catalyst for purifying NOx using hydrocarbon (HC) in a gaseous phase under a lean atmosphere (Machida, Murakami, Kiji
ma; J. Mater. Chem., 4 (1994) 1621) and (2) a combination of barium oxide, lanthanum oxide and platinum, absorbing NOx under a lean atmosphere,
Methods for purifying Ox (JP-A-5-511556 and JP-A-5-261287) have been proposed.

【0005】特開平第5−511556号公報や特開平
第5−261287号公報に記載されているように、酸
素過剰雰囲気下での排気ガスの浄化に、アルカリ元素、
アルカリ土類元素、希土類元素からなるNOx吸収剤と
貴金属触媒とを組み合わせて用いることにより、酸素過
剰雰囲気下でNOx浄化性能が得られることが知られて
いる。しかしながら、このような排気ガス浄化用触媒に
おいては、300℃以上の温度領域で、NOxの吸着と
同時にNOxの放出が開始し、全体的にはNOx吸収量
の減少を生じさせるという問題があった。
[0005] As described in JP-A-5-511556 and JP-A-5-261287, an alkali element,
It is known that NOx purification performance can be obtained in an oxygen-excess atmosphere by using a combination of a NOx absorbent composed of an alkaline earth element or a rare earth element and a noble metal catalyst. However, such an exhaust gas purifying catalyst has a problem that, in a temperature range of 300 ° C. or more, the release of NOx starts simultaneously with the adsorption of NOx, which causes a reduction in the NOx absorption amount as a whole. .

【0006】また、Machida らは、一般式La2-x Ba
x SrCu2 6 で表わされる複合酸化物は、NOの吸
収と同時に、600℃以上の高温で、この吸収されたN
Oを酸素と窒素に分解して放出することを報告した(Mch
ida, Murakami, Kijima; J.Mater. Chem., 4(1994)162
1)。当該複合酸化物は、貴金属触媒と組み合わせるNO
x吸収触媒とは異なり、複合酸化物単独で、NOxを分
解して浄化することができる触媒材料である。しかし、
これらの銅酸化物は比較的融点が低いため、高温度領域
での使用により劣化しやすいという問題があった。
[0006] In addition, Machida et al., The general formula La 2-x Ba
The composite oxide represented by x SrCu 2 O 6 simultaneously absorbs NO at a high temperature of 600 ° C. or higher at the same time as NO absorption.
O was decomposed into oxygen and nitrogen and released (Mch
ida, Murakami, Kijima; J. Mater. Chem., 4 (1994) 162
1). The composite oxide is used in combination with a noble metal catalyst.
Unlike an x-absorption catalyst, it is a catalyst material that can decompose and purify NOx with a composite oxide alone. But,
Since these copper oxides have a relatively low melting point, there is a problem that they are liable to be deteriorated when used in a high temperature region.

【0007】従って、幅広い温度領域及び雰囲気下での
使用環境下でNOx浄化性能を有する排気ガス浄化触媒
が望まれている。
Therefore, there is a demand for an exhaust gas purifying catalyst having NOx purifying performance in a wide temperature range and an operating environment under an atmosphere.

【0008】[0008]

【発明が解決しようとする課題】従って本発明の目的
は、300℃以上の温度領域及び酸化雰囲気下でも高い
NOx浄化能を有し、かつ耐熱性を有する排気ガス浄化
用触媒材料を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a catalyst material for purifying exhaust gas which has high NOx purifying ability even in a temperature range of 300 ° C. or higher and in an oxidizing atmosphere and has heat resistance. It is in.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、一定の構造を有す
る複合酸化物が、酸化雰囲気及び還元雰囲気下でも窒素
酸化物を吸収浄化し、従来の銅系層状ペロブスカイト酸
化物の融点を向上させ、耐熱性、耐久性に優れることを
見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a composite oxide having a certain structure absorbs and purifies nitrogen oxides even in an oxidizing atmosphere and a reducing atmosphere. However, the present inventors have found that the melting point of a conventional copper-based layered perovskite oxide is improved, and that it is excellent in heat resistance and durability.

【0010】即ち、本発明の排気ガス浄化用触媒は、次
の一般式 A3 2 7 (式中、Aはアルカリ元素、アルカリ土類元素、希土類
元素及び鉛から成る群より選ばれた少なくとも1種、B
は銅、コバルト及び鉄から成る群より選ばれた少なくと
も1種を示す)で表わされる層状ペロブスカイト構造を
有する複合酸化物から成り、該複合酸化物が、次の一般
式 La2-x Bax SrCu2-y B′y 7 (式中、B′はコバルト及び/又は鉄、0<x<2,0
<y<0.5を示す)で表わされることを特徴とする。
That is, the exhaust gas purifying catalyst of the present invention has the following general formula: A 3 B 2 O 7 (where A is selected from the group consisting of alkali elements, alkaline earth elements, rare earth elements and lead) At least one, B
Represents at least one selected from the group consisting of copper, cobalt and iron), and has a layered perovskite structure represented by the following general formula: La 2-x Ba x SrCu 2-y B ' y O 7 (where B' is cobalt and / or iron, 0 <x <2,0
<Y <0.5).

【0011】[0011]

【発明の実施の形態】本発明の排気ガス浄化用触媒材料
の複合酸化物は、次の一般式A3 2 7 (式中のA
は、アルカリ元素、アルカリ土類元素、希土類元素及び
鉛(Pb)からなる群から選ばれた少なくとも1種、B
は銅(Cu)、コバルト(Co)及び鉄(Fe)から成
る群より選ばれた少なくとも1種を示す)で表される層
状ペロブスカイト構造体である。かかる複合酸化物は、
通常の排気ガス浄化用触媒に比べて融点が高く、このよ
うに融点を高くすることにより酸化雰囲気及び還元雰囲
気下でNOxを吸収浄化する際の耐熱性を向上できる。
BEST MODE FOR CARRYING OUT THE INVENTION The composite oxide of the catalyst material for purifying exhaust gas of the present invention has the following general formula A 3 B 2 O 7 (A in the formula)
Is at least one selected from the group consisting of alkali elements, alkaline earth elements, rare earth elements and lead (Pb);
Is a layered perovskite structure represented by at least one selected from the group consisting of copper (Cu), cobalt (Co) and iron (Fe). Such a composite oxide is
The melting point is higher than that of a normal catalyst for purifying exhaust gas. By increasing the melting point in this way, the heat resistance when NOx is absorbed and purified under an oxidizing atmosphere and a reducing atmosphere can be improved.

【0012】アルカリ元素としては、Na,K,Rb,
Csを、アルカリ土類元素としては、Ca,Sr,Ba
を、また希土類元素としては、Sc,Y,La,Ce,
Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,H
o,Er,Tm,Yb,Luを用いることができる。
As the alkali element, Na, K, Rb,
Cs, as alkaline earth elements, Ca, Sr, Ba
And rare earth elements include Sc, Y, La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, and Lu can be used.

【0013】特に好ましい複合酸化物は、次の一般式L
2-x Bax SrCu1-y B′y 7 (式中、B′はコ
バルト(Co)及び又は鉄(Fe),0<x<1,0<
y<0.5を示す)で表される層状ペロブスカイト構造
体である。
A particularly preferred complex oxide is represented by the following general formula L
a2-xBaxSrCu1-yB 'yO 7(Where B 'is
Baltic (Co) and / or iron (Fe), 0 <x <1,0 <
y <0.5) layered perovskite structure represented by
Body.

【0014】このような組成とすることにより、特にN
Ox吸収性能を維持しつつ、Cuに加えて、Co及び/
又はFeを加えることによりCu単味よりも耐熱性を向
上させる事が可能となる。
With such a composition, in particular, N
While maintaining Ox absorption performance, in addition to Cu, Co and / or
Alternatively, the addition of Fe makes it possible to improve the heat resistance more than that of plain Cu.

【0015】また、上記式中各x,yは、0<x<2、
0<y<0.5である。0<x<2とするのはA3 2
7 型結晶構造を保持するためであり、特に0.5≦x
≦1.0であることが好ましい。また0<y<0.5と
するのはA3 2 7 型結晶構造を保持しつつ、耐熱性
を付与する元素置換を可能とするためであり、特に0<
y<0.3であることが好ましい。
In the above formula, each of x and y is 0 <x <2,
0 <y <0.5. It is A 3 B 2 that 0 <x < 2
In order to maintain the O 7 type crystal structure, in particular, 0.5 ≦ x
It is preferred that ≦ 1.0. The reason for satisfying 0 <y <0.5 is to enable element substitution for imparting heat resistance while maintaining the A 3 B 2 O 7 type crystal structure.
Preferably, y <0.3.

【0016】該複合酸化物の各構成元素は、触媒に含ま
れるこれらの全てが複合化している場合に、その上記し
た作用は最大限に発揮されるが、少なくとも一部が複合
体を形成しうる場合でも十分に上記作用を得ることがで
きる。該複合酸化物の各構成元素は、熱耐久後でも別々
の酸化物として分離することなく複合酸化物として存在
することができ、これは例えばX線回折測定により確認
することができる。
Each of the constituent elements of the composite oxide exerts the above-mentioned effects to the maximum when all of these contained in the catalyst are complexed, but at least a part of the complex oxide forms a complex. Even if it is possible, the above effect can be sufficiently obtained. Each constituent element of the composite oxide can exist as a composite oxide without being separated as a separate oxide even after thermal endurance, and this can be confirmed by, for example, X-ray diffraction measurement.

【0017】本発明に用いる複合酸化物は、複合酸化物
の各構成元素の硝酸塩、酢酸塩又は炭酸塩等を、所望す
る複合酸化物の組成比に混合し、仮焼成した後粉砕し
て、熱処理焼成する固相反応や、複合酸化物の各構成元
素の硝酸塩、酢酸塩又は炭酸塩、塩酸塩、クエン酸塩等
を、所望する複合酸化物の組成比に混合し、水に溶解し
た後、必要に応じてNH4 OHやNH3 CO3 等のアル
カリ溶液を滴下して沈殿物を生成し、ろ過した後乾燥さ
せて焼成する共沈等の公知の方法により調製することが
できる。かかる方法により、複合酸化物を構成する各成
分の少なくとも一部を複合化することができる。
The composite oxide used in the present invention is prepared by mixing nitrates, acetates, carbonates or the like of the respective constituent elements of the composite oxide in a desired composition ratio of the composite oxide, calcining the mixture, and pulverizing the mixture. After the solid-phase reaction to be subjected to heat treatment and firing, nitrate, acetate or carbonate, hydrochloride, citrate, etc. of each constituent element of the composite oxide are mixed in a desired composition ratio of the composite oxide, and then dissolved in water. If necessary, an alkaline solution such as NH 4 OH or NH 3 CO 3 is added dropwise to form a precipitate, which can be prepared by a known method such as coprecipitation in which the precipitate is filtered, dried and calcined. By such a method, at least a part of each component constituting the composite oxide can be composited.

【0018】特に好ましくは複合酸化物の各構成元素の
炭酸塩、塩基性炭酸塩又は水酸化物からなる共沈体、又
は単一化合物の混合物を、クエン酸と反応させ、乾燥・
脱水した後、生成した複合クエン酸塩を焼成する方法に
より調製する。複合クエン酸塩の合成温度は40〜12
0℃、望ましくは65±5℃が良く、またこれの乾燥、
脱水温度は50〜120℃、望ましくは90±5℃が良
い。焼成温度は850〜1100℃で4時間以上であれ
ば良い。
Particularly preferably, a coprecipitate comprising a carbonate, a basic carbonate or a hydroxide of each constituent element of the composite oxide, or a mixture of a single compound is reacted with citric acid and dried.
After dehydration, the resulting composite citrate is prepared by a method of baking. The synthesis temperature of the composite citrate is 40-12
0 ° C., preferably 65 ± 5 ° C.
The dehydration temperature is 50 to 120 ° C, preferably 90 ± 5 ° C. The firing temperature may be 850 to 1100 ° C. for 4 hours or more.

【0019】[0019]

【実施例】以下、本発明を次の実施例及び比較例により
説明する。実施例1 ランタン、バリウム、ストロンチウム、銅及び鉄の炭酸
塩または水酸化物を出発原料として、組成比がLa:B
a:Sr:Cu:Fe=15:5:10:16:4とな
るように加え、ボールミルで粉砕混合した。その中から
混合物100gと純水約400g、クエン酸約60gを
加え、60±5℃で反応させた。反応終了後、得られた
スラリーを約120℃で脱水して複合クエン酸塩が得ら
れた。得られたクエン酸塩を900℃で10時間焼成し
て、La1.5 Ba0.5 SrCu1. 6 Fe0.4 7 で示さ
れるペロブスカイト粉末の複合酸化物を得た。
The present invention will be described below with reference to the following examples and comparative examples. Example 1 Starting from lanthanum, barium, strontium, copper and iron carbonates or hydroxides, the composition ratio was La: B.
a: Sr: Cu: Fe = 15: 5: 10: 16: 4 and pulverized and mixed in a ball mill. From among them, 100 g of the mixture, about 400 g of pure water and about 60 g of citric acid were added and reacted at 60 ± 5 ° C. After completion of the reaction, the obtained slurry was dehydrated at about 120 ° C. to obtain a composite citrate. The resulting citrate was calcined 10 hours at 900 ° C. to obtain a composite oxide having a perovskite powder represented by La 1.5 Ba 0.5 SrCu 1. 6 Fe 0.4 O 7.

【0020】実施例2 ランタン、バリウム、ストロンチウム、銅及び鉄の炭酸
塩または水酸化物を出発原料として、組成比がLa:B
a:Sr:Cu:Fe=15:5:10:18:2とな
るように加え、ボールミルで粉砕混合した以外は、実施
例1と同様にしてLa1.5 Ba0.5 SrCu1.8 Fe
0.2 7 で示されるペロブスカイト粉末の複合酸化物を
得た。
EXAMPLE 2 Starting materials were lanthanum, barium, strontium, copper and iron carbonates or hydroxides, and the composition ratio was La: B.
a: Sr: Cu: Fe = 15: 5: 10: 18: 2 and La 1.5 Ba 0.5 SrCu 1.8 Fe in the same manner as in Example 1 except that the mixture was pulverized and mixed by a ball mill.
A composite oxide of perovskite powder represented by 0.2 O 7 was obtained.

【0021】実施例3 ランタン、バリウム、ストロンチウム、銅及び鉄の炭酸
塩または水酸化物を出発原料として、組成比がLa:B
a:Sr:Cu:Fe=15:5:10:19:1とな
るように加え、ボールミルで粉砕混合した以外は、実施
例1と同様にしてLa1.5 Ba0.5 SrCu1.9 Fe
0.1 7 で示されるペロブスカイト粉末の複合酸化物を
得た。
Example 3 Starting from lanthanum, barium, strontium, copper and iron carbonates or hydroxides, the composition ratio is La: B.
a: Sr: Cu: Fe = 15: 5: 10: 19: 1 and so as added, except for ground and mixed in a ball mill, La 1.5 in the same manner as in Example 1 Ba 0.5 SrCu 1.9 Fe
A composite oxide of perovskite powder represented by 0.1 O 7 was obtained.

【0022】実施例4 ランタン、バリウム、ストロンチウム、銅及び鉄の炭酸
塩または水酸化物を出発原料として、組成比がLa:B
a:Sr:Cu:Fe=15:5:10:19.5:
0.5となるように加え、ボールミルで粉砕混合した以
外は、実施例1と同様にしてLa1.5 Ba0.5 SrCu
1.95Fe0.057 で示されるペロブスカイト粉末の複合
酸化物を得た。
Example 4 Starting materials were lanthanum, barium, strontium, copper and iron carbonates or hydroxides, and the composition ratio was La: B.
a: Sr: Cu: Fe = 15: 5: 10: 19.5:
0.5 and La 1.5 Ba 0.5 SrCu in the same manner as in Example 1 except that the mixture was pulverized and mixed with a ball mill.
A composite oxide of perovskite powder represented by 1.95 Fe 0.05 O 7 was obtained.

【0023】実施例5 ランタン、バリウム、ストロンチウム、銅及び鉄の炭酸
塩または水酸化物を出発原料として、組成比がLa:B
a:Sr:Cu:Fe=15:5:10:19:1とな
るように加え、ボールミルで粉砕混合した以外は、実施
例1と同様にしてLa1.5 Ba0.5 SrCu1.9 Fe
0.1 7 で示されるペロブスカイト粉末の複合酸化物を
得た。
Example 5 Starting from lanthanum, barium, strontium, copper and iron carbonates or hydroxides, the composition ratio is La: B.
a: Sr: Cu: Fe = 15: 5: 10: 19: 1 and so as added, except for ground and mixed in a ball mill, La 1.5 in the same manner as in Example 1 Ba 0.5 SrCu 1.9 Fe
A composite oxide of perovskite powder represented by 0.1 O 7 was obtained.

【0024】比較例1 ランタン、バリウム、ストロンチウム及び銅の炭酸塩ま
たは水酸化物を出発原料として、組成比がLa:Ba:
Sr:Cu=15:5:10:2となるように加え、ボ
ールミルで粉砕混合した以外は、実施例1と同様にして
La1.5 Ba0. 5 SrCu2 7 で示されるペロブスカ
イト粉末の複合酸化物を得た。
Comparative Example 1 Starting from lanthanum, barium, strontium and copper carbonates or hydroxides, the composition ratio was La: Ba:
Sr: Cu = 15: 5: 10: 2 become as added, except for ground and mixed in a ball mill, a composite oxide of perovskite powder represented by La 1.5 Ba 0. 5 SrCu 2 O 7 in the same manner as in Example 1 I got something.

【0025】試験例 上記実施例1〜5及び比較例1で得られたNOx吸収特
性を、下記の条件下で評価を行なうことにより判断し
た。
Test Example The NOx absorption characteristics obtained in the above Examples 1 to 5 and Comparative Example 1 were judged by performing evaluation under the following conditions.

【0026】 (融点の評価法),(NO吸収能の評価法)得られた複
合酸化物の融点の測定は市販の熱分析装置(マックサイ
エンス(株)製、TG−DTA2000)を用い、示差
熱分析により測定した。また、NOの吸収能は熱天秤に
よる熱重量分析により評価した。 (1)熱分析測定条件 1)測定条件(I)(融点の測定) N2 ガスを流量100cc/分にて熱分析装置中に流通
させて、10℃/分の昇温速度で示差熱分析を行なっ
た。 2)測定条件(II)(NO吸収量の測定) NO:N2 =0.5:99.5の組成ガスを流量100
cc/分にて熱分析装置中に流通させて、10℃/分の
昇温速度で重量変化を測定した。
(Evaluation Method of Melting Point), (Evaluation Method of NO Absorbing Capacity) The melting point of the obtained composite oxide was measured using a commercially available thermal analyzer (TG-DTA2000, manufactured by Mac Science Co., Ltd.). Measured by thermal analysis. The NO absorption capacity was evaluated by thermogravimetric analysis using a thermobalance. (1) Measurement conditions for thermal analysis 1) Measurement conditions (I) (measurement of melting point) N 2 gas was passed through the thermal analyzer at a flow rate of 100 cc / min, and differential thermal analysis was performed at a heating rate of 10 ° C./min. Was performed. 2) Measurement conditions (II) (measurement of NO absorption amount) A composition gas of NO: N 2 = 0.5: 99.5 was supplied at a flow rate of 100
The sample was circulated through the thermal analyzer at cc / min, and the weight change was measured at a heating rate of 10 ° C./min.

【0027】以上のようして得られた結果を表1及び2
に示す。表1では示差熱分析により求めた各酸化物の融
点を示す。
Tables 1 and 2 show the results obtained as described above.
Shown in Table 1 shows the melting point of each oxide determined by differential thermal analysis.

【0028】[0028]

【表1】 [Table 1]

【0029】また、表2はNO吸収量を熱重量分析によ
り得られたNOの吸収特性曲線で最も吸収量の多い40
0℃における重量増加量(%)を示す。
Table 2 shows the NO absorption amount as the largest absorption amount in the NO absorption characteristic curve obtained by thermogravimetric analysis.
It shows the weight increase (%) at 0 ° C.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明の排ガス浄化用触媒材料は、従来
の銅系層状ペロブスカイト酸化物の融点を向上でき、耐
熱性、耐久性性能をも向上させ、300℃以上の温度領
域におけるNOx吸収浄化を有効に実施できる。
The catalytic material for purifying exhaust gas of the present invention can improve the melting point of the conventional copper-based layered perovskite oxide, improve heat resistance and durability, and purify NOx in a temperature region of 300 ° C. or higher. Can be effectively implemented.

【0032】さらに、本発明のNOx浄化装置は、酸化
雰囲気及び還元雰囲気下で窒素酸化物を吸収浄化しうる
触媒として、層状ペロブスカイト構造を有する複合酸化
物触媒と、Pt,Pd,Rhのうち少なくとも1種の貴
金属を含有する三元浄化触媒とを組み合わせたNOx浄
化装置として、還元雰囲気でのNOx吸収特性に加え
て、NOx分析浄化性能を向上させることもできる。
Further, the NOx purifying apparatus of the present invention comprises a composite oxide catalyst having a layered perovskite structure and at least one of Pt, Pd and Rh as a catalyst capable of absorbing and purifying nitrogen oxides in an oxidizing atmosphere and a reducing atmosphere. As a NOx purifying device combining a three-way purifying catalyst containing one kind of noble metal, in addition to the NOx absorption characteristics in a reducing atmosphere, the NOx analyzing and purifying performance can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次の一般式 A3 2 7 (式中、Aはアルカリ元素、アルカリ土類元素、希土類
元素及び鉛から成る群より選ばれた少なくとも1種、B
は銅、コバルト及び鉄から成る群より選ばれた少なくと
も1種を示す)で表わされる層状ペロブスカイト構造を
有する複合酸化物から成り、該複合酸化物が、次の一般
式 La2-x Bax SrCu2-y B′y 7 (式中、B′はコバルト及び/又は鉄、0<x<2,0
<y<0.5を示す)で表わされることを特徴とする排
気ガス浄化用触媒材料。
1. The following general formula: A 3 B 2 O 7 wherein A is at least one selected from the group consisting of alkali elements, alkaline earth elements, rare earth elements, and lead;
Represents at least one selected from the group consisting of copper, cobalt and iron), and has a layered perovskite structure represented by the following general formula: La 2-x Ba x SrCu 2-y B ' y O 7 (where B' is cobalt and / or iron, 0 <x <2,0
<Indicating y <0.5), which is a catalyst material for purifying exhaust gas.
JP9217443A 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst material Withdrawn JPH1157475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9217443A JPH1157475A (en) 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9217443A JPH1157475A (en) 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst material

Publications (1)

Publication Number Publication Date
JPH1157475A true JPH1157475A (en) 1999-03-02

Family

ID=16704322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9217443A Withdrawn JPH1157475A (en) 1997-08-12 1997-08-12 Exhaust gas cleaning catalyst material

Country Status (1)

Country Link
JP (1) JPH1157475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007994A (en) * 2012-12-13 2013-04-03 天津大学 BaFeO3-x/Cu-ZSM-5 coupled catalyst and application thereof
JP2013111490A (en) * 2011-11-25 2013-06-10 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
JP2018187621A (en) * 2017-05-11 2018-11-29 株式会社デンソー Nitrogen oxide occlusion material, method for producing the same, and exhaust gas purification catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013111490A (en) * 2011-11-25 2013-06-10 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst
CN103007994A (en) * 2012-12-13 2013-04-03 天津大学 BaFeO3-x/Cu-ZSM-5 coupled catalyst and application thereof
JP2018187621A (en) * 2017-05-11 2018-11-29 株式会社デンソー Nitrogen oxide occlusion material, method for producing the same, and exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
US6569803B2 (en) Catalyst for purifying exhaust gas
EP1729872B1 (en) Nitrogen oxide storage catalyst
KR100326747B1 (en) Device for Purifying Oxygen Rich Exhaust Gas
US7745371B2 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
US8629078B2 (en) Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst, and diesel exhaust gas purifying filter
US20070021294A1 (en) Exhaust gas-purifying catalyst
JPWO2005085137A1 (en) Complex oxide
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JP3818062B2 (en) Exhaust gas purification catalyst
WO2013039037A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
EP0788828B1 (en) NOx decomposition catalyst and exhaust gas purifier using said catalyst
JPH10218620A (en) Oxygen-storable cerium compound oxide
JPH1157475A (en) Exhaust gas cleaning catalyst material
JPS63305938A (en) Catalyst for purifying exhaust gas
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2000256017A (en) Laminar perovskite compound, catalyst material for purification of nitrogen oxide and catalyst for purification of exhaust gas using the same
JP3152681B2 (en) Phosphoric acid composition and catalyst for NOx reductive decomposition using the same
JPH10128123A (en) Catalyst for purification of exhaust gas and its preparation
JPH11276892A (en) Catalyst material for purifying nitrogen oxides
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JPH11226405A (en) Catalyst for purification of exhaust gas and its production
JPH09234347A (en) Nitrogen oxide purifying apparatus
JP2000119025A (en) Layer perovskite compound, catalyst material for cleaning nitrogen oxide and catalyst for cleaning waste gas using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102