JP3818062B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3818062B2
JP3818062B2 JP2001002575A JP2001002575A JP3818062B2 JP 3818062 B2 JP3818062 B2 JP 3818062B2 JP 2001002575 A JP2001002575 A JP 2001002575A JP 2001002575 A JP2001002575 A JP 2001002575A JP 3818062 B2 JP3818062 B2 JP 3818062B2
Authority
JP
Japan
Prior art keywords
exhaust gas
complex oxide
performance
catalyst
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002575A
Other languages
Japanese (ja)
Other versions
JP2002204955A (en
Inventor
央志 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001002575A priority Critical patent/JP3818062B2/en
Publication of JP2002204955A publication Critical patent/JP2002204955A/en
Application granted granted Critical
Publication of JP3818062B2 publication Critical patent/JP3818062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用エンジン等の内燃機関から排出される排気ガスを浄化するための排気ガス浄化触媒に関し、より詳しくは、高温での耐久性能に優れた排気ガス浄化用触媒に関する。
【0002】
【従来の技術】
自動車等の排気ガスを処理する触媒には、アルミナ等の無機酸化物の担体上に白金等の貴金属を担持させた三元触媒が有効であることが知られている。
また、従来の三元触媒にリーン雰囲気でNOxを吸蔵する機能を付加し、空燃比(A/F)が高い酸化性雰囲気下でNOxを吸蔵させ、一時的な空燃比が低い還元性雰囲気下でNOxを還元して排気ガスを浄化する吸蔵還元型NOx浄化用触媒が有効であることが知られている。
【0003】
しかるに、アルミナ等の担体に貴金属を担持させた触媒系では、触媒が高温になると貴金属が凝集して肥大粒子になる、いわゆるシンタリングが生じ、貴金属の活性表面が減少して触媒性能が低下するという問題がある。
【0004】
この触媒温度は、自動車を高速で走行させると、短時間で高温に達するため、高温でも劣化せずに排気ガスの浄化性能を維持する触媒が要請されている。また、高性能エンジンの開発動向に伴い、かかる要請は一層顕著になっている。
具体的には、酸化性と還元性の雰囲気が繰り返される1000℃の高温下でも劣化せずに浄化性能を維持することができる排気ガス浄化用触媒が要請されている。
【0005】
このため、本出願人は、先に特開平10−358号、特開平10−28864号において、特定の化学構造を有する白金複合酸化物を用いた排気ガス浄化用触媒を提案している。これらの白金複合酸化物においては、白金元素が複合酸化物の化学構造の中に取り込まれ、かつこの特定の白金複合酸化物の化学構造は高温でも安定である。したがって、かかる白金複合酸化物を用いた触媒は、高温でも白金が複合酸化物の結晶構造内に分配された状態を維持することにより、優れた高温耐久性能を有することができる。
【0006】
また、特定のペロブスカイト型複合酸化物はNOxをN2とO2に分解する作用を有することが知られており、例えば、特開平5−154384号公報、特開平5−184930号公報、特開平5−245372号公報、特開平5−261289号公報に、特定のペロブスカイト型複合酸化物を担体に担持したNOx接触還元用触媒が記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記の白金複合酸化物は、高温での耐久性能をより改良する必要があった。また、従来のペロブスカイト型複合酸化物は、酸化性と還元性の雰囲気が繰り返される1000℃の高温下では、分解が生じるという問題があり、自動車用エンジン等の内燃機関から排出される排気ガスの浄化に使用するためには、排気ガス中のNOx、HCの浄化率を高める必要もあった。
【0008】
したがって、本発明は、酸化性と還元性の雰囲気が繰り返される1000℃の高温下でも劣化せずに安定して排気ガスを浄化することができる、耐久性能に優れた排気ガス浄化用触媒を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的は、化学式:ACe1-x-y-zB’xZryB”z3(Aは、BaとSrの少なくとも1種、B’は、Nd、Sm、及びGdの少なくとも1種、B”は、PtとPdの少なくとも1種、0<x<0.5、0<y<0.5、0<z≦0.5、但し1>(x+y+z)。)で表されるペロブスカイト型複合酸化物を含んでなることを特徴とする排気ガス浄化用触媒によって達成される。
【0010】
本発明は、セリウム(Ce)とジルコニウム(Zr)を必須の構成元素とし、バリウム(Ba)とストロンチウム(Sr)から選択された少なくとも1種のアルカリ土類金属元素、ネオジム(Nd)、サマリウム(Sm)、及びガドリニウム(Gd)から選択された少なくとも1種の希土類金属元素、及び白金(Pt)とパラジウム(Pd)から選択された少なくとも1種の貴金属元素を構成元素とするペロブスカイト型複合酸化物を含んでなる、高温下の耐久性能に優れた排気ガス浄化用触媒である。
【0011】
こうした特定のペロブスカイト型複合酸化物が高い耐久性能を有する理由は、必ずしも明らかではないが、本発明者は次のように推察する。
Ceは、それ自身の性質として酸素貯蔵性能を有するため、酸化性と還元性の雰囲気が繰り返される中で、その酸化性と還元性の変動幅を軽減する作用を奏すると考えられる。そして、本発明のペロブスカイト型複合酸化物では、Pt又はPdは、Ceと同じ結晶単位の中に存在するため、この作用は、Pt又はPdに対して効果的に働き、酸化性と還元性の雰囲気変動がもたらすPt又はPdのシンタリングが軽減されるものと考えられる。
【0012】
Nd、Sm、又はGdは、ペロブスカイト型複合酸化物のBサイトのCeを一部置換することで、ペロブスカイト型複合酸化物の酸素イオン伝導性を全体的に高めると考えられる。したがって、雰囲気ガスとペロブスカイト型複合酸化物結晶の間で酸素の移動が促進され、Ceの酸素貯蔵性能がさらに高められ、上記のPt又はPdのシンタリング抑制が一層効果的になるものと考えられる。
【0013】
Zrは、その酸化物は本来高い耐熱性を有することから、Zrが結晶格子の一部を置換することで、結晶構造の安定性を高め、酸化性と還元性の雰囲気が繰り返される中での耐熱性を高めるものと考えられる。
Pt又はPdは、本来の性質として排気ガス浄化に対する触媒活性を提供するものと考えられる。
【0014】
このようなNd等による酸素イオン伝導性、Zrによる耐熱性、Pt等による触媒活性は、ペロブスカイト型複合酸化物のBサイトのCeを一部置換することにより発現するため、ペロブスカイト型複合酸化物には、本発明で限定するような組成上の最適な範囲があるものと考えられる。
【0015】
この組成上の最適範囲としては、化学式:ACe1-x-y-zB’xZryB”z3で表されるペロブスカイト型複合酸化物において、0<x<0.5であり、好ましくは0.05<x<0.4、より好ましくは0.05<x<0.3であり、0<y<0.5であり、好ましくは0.05<y<0.4、より好ましくは0.1<y<0.25であり、0<z≦0.5であり、好ましくは0.15<z<0.5、より好ましくは0.1<z<0.4である。
【0016】
【発明の実施の形態】
上記の化学式:ACe1-x-y-zB’xZryB”z3(Aは、BaとSrの少なくとも1種、B’は、Nd、Sm、及びGdの少なくとも1種、B”は、PtとPdの少なくとも1種、0<x<0.5、0<y<0.5、0<z≦0.5、但し1>(x+y+z)。)で表されるペロブスカイト型複合酸化物は、各種の方法によって製造することができる。
例えば、上記のペロブスカイト型複合酸化物に含まれる元素Ba、Sr、Ce、Nd、Sm、Gd、Zr、Pt、Pdの硝酸塩、炭酸塩等の無機化合物、又はアルコキシド、アセチルアセトナト等の有機化合物を所定の割合で混合し、次いで大気雰囲気下で600〜1100℃の温度で焼成することにより製造することができる。
【0017】
好ましくは、上記の無機化合物を所定の割合で含む水溶液を作成し、次いでアンモニア等の添加によって水溶液のpHを調節して析出物を調製する、又は上記の有機化合物を所定の割合で含むアルコール溶液を作成し、次いで水を添加して加水分解により析出物を調製するといったような、溶液を介して前駆体を調製し、次いでこれらの前駆体を焼成してペロブスカイト型複合酸化物を製造する。こうした溶液を介することで、均一な組成のペロブスカイト型複合酸化物が得られ易いためである。
【0018】
得られたペロブスカイト型複合酸化物は、必要により、破砕又は粉砕等を行って粒度を調整し、高温耐久性能に優れた排気ガス浄化用触媒として使用することができる。
こうした排気ガス浄化用触媒を一般的なハニカム型触媒として使用するには、通常の仕方でハニカム基材上に上記のペロブスカイト型複合酸化物の粉末をウオッシュコート等により担持することで可能である。
以下、実施例によって本発明をより具体的に説明する。
【0019】
【実施例】
実施例1
24.38gの硝酸バリウムBa(NO3)2、24.306gの硝酸セリウムCe(NO3)3・6H2O、4.211gの硝酸ガドリニウムGd(NO3)3・6H2O、4.9866gのオキシ硝酸ジルコニウムZrO(NO3)2・2H2O、4.8326gの塩化白金酸H2PtCl6・6H2Oを原料として用い、これらを750gのイオン交換水に添加し、1時間攪拌してこれらの原料の水溶液を作成し、この水溶液に28%アンモニア水溶液を15g添加し、2時間攪拌した。得られた析出物を120℃の大気雰囲気中で12時間乾燥し、次いで300℃の大気雰囲気中で1時間仮焼した。
この仮焼した粉末を粉砕し、次いで700℃の大気雰囲気中で5時間焼成してBaCe0.6Gdo.1Zr0.2Pt0.13 の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0020】
実施例2
4.211gの硝酸ガドリニウムGd(NO3)3・6H2Oに代えて4.5336gの硝酸サマリウムSm(NO3)3・6H2Oを原料として用いた以外は実施例1と同様にしてBaCe0.6Smo.1Zr0.2Pt0.13 の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0021】
実施例3
4.211gの硝酸ガドリニウムGd(NO3)3・6H2Oに代えて4.0895gの硝酸ネオジムNd(NO3)3・6H2Oを原料として用いた以外は実施例1と同様にしてBaCe0.6Ndo.1Zr0.2Pt0.13 の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0022】
実施例4
4.8326gの塩化白金酸H2PtCl6・6H2Oに代えて2.15gの硝酸パラジウムPd(NO3)3を原料として用いた以外は実施例3と同様にしてBaCe0.6Ndo.1Zr0.2Pd0.13 の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0023】
実施例5
4.8326gの塩化白金酸H2PtCl6・6H2Oに代えて3.6245gの塩化白金酸H2PtCl6・6H2Oと0.5375gの硝酸パラジウムPd(NO3)3を原料として用いた以外は実施例3と同様にしてBaCe0.6Ndo.1Zr0 .2Pt0.075Pd0.0253 の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0024】
比較例1
97.52gの硝酸バリウムBa(NO3)2、4.8326gの塩化白金酸H2PtCl6・6H2Oを原料として用いた以外は実施例1と同様にしてBa4PtO6の組成を有する複合酸化物の粉末を得た。
【0025】
比較例2
24.38gの硝酸バリウムBa(NO3)2、24.306gの硝酸セリウムCe(NO3)3・6H2O、4.9866gのオキシ硝酸ジルコニウムZrO(NO3)2・2H2O、9.6652gの塩化白金酸H2PtCl6・6H2Oを原料として用いた以外は実施例1と同様にしてBaCe0.6Zr0.2Pt0.23の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0026】
比較例3
24.38gの硝酸バリウムBa(NO3)2、32.408gの硝酸セリウムCe(NO3)3・6H2O、4.0895gの硝酸ネオジムNd(NO3)3・6H2O、4.8326gの塩化白金酸H2PtCl6・6H2Oを原料として用いた以外は実施例1と同様にしてBaCe0.8Nd0.1Pt0.13の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0027】
比較例4
24.38gの硝酸バリウムBa(NO3)2、28.357gの硝酸セリウムCe(NO3)3・6H2O、4.9866gのオキシ硝酸ジルコニウムZrO(NO3)2・2H2O、4.0895gの硝酸ネオジムNd(NO3)3・6H2Oを原料として用いた以外は実施例1と同様にしてBaCe0.7Zr0.2Nd0.13の組成を有するペロブスカイト型複合酸化物の粉末を得た。
【0028】
その他のペロブスカイト型複合酸化物の例
上記の実施例1〜5と比較例1〜4は、ペロブスカイト型複合酸化物の最適組成の付近で元素の異なる典型的な例、及び比較のための例を挙げたものである。これらの例の他、組成が異なることによる効果を把握するため、実施例で用いたのと同じ原料を割合を変えて用い、x、y、zの異なる種々のペロブスカイト型複合酸化物を製造し、上記の例と併せて試験に供した。
【0029】
−耐久処理−
上記の各種複合酸化物をそれぞれ加圧成形し、次いで粉砕して直径1〜3mmの粒状にした。得られた各粒状物を常圧流通式の耐久処理装置に配置し、空気/燃料(A/F)の比が14と16を1分間ごとに交替する、下記に組成を示すモデル排気ガスの変動雰囲気下で、全ガス量5リットル/分として1000℃で5時間の耐久処理を行った。
【0030】

Figure 0003818062
【0031】
−排気ガス浄化性能試験−
上記の耐久処理をする前と後の各ペロブスカイト型複合酸化物を排気ガス浄化用触媒として用い、それぞれ2gの粒状物を排気ガス浄化性能測定装置に入れ、下記に示す組成のモデル排気ガスを全ガス量15リットル/分として流通させながら、触媒温度を変化させて、NOとC36の浄化率を測定した。
【0032】
Figure 0003818062
この結果を50%浄化温度(NO又はC36を50%浄化する触媒温度)として表1、及び図3〜5にまとめて示す。
【0033】
−粉末X線回折(XRD)評価−
実施例3と比較例1で得られたそれぞれのペロブスカイト型複合酸化物の粉末について、耐久処理をする前後のXRDチャートをそれぞれ図1と図2に示す。
また、XRDチャート上で最高ピークを示すスペクトルの面積から、比例計算により構造残存率を求めた。
【0034】
−結果より−
(1) 結晶構造の安定性
図1と図2に示したXRDチャートから、実施例3と比較例1の粉末の耐久前と耐久後のXRDチャートに現れる変化を比較すると、実施例3では殆ど変化が見られないのに対し、比較例1ではかなりの変化が生じていることが分かる。
また、透過型電子顕微鏡で実施例3と比較例1の粉末粒子を観察したところ、実施例3の粉末粒子には、耐久処理の前後で形態上の変化は見られなかったが、耐久処理後の比較例1の粉末粒子には、シンタリングによるPt粒子の析出が観察された。
【0035】
また、図4から、ペロブスカイト型複合酸化物に含まれるZrの量が増すにつれて、ペロブスカイト型複合酸化物の構造安定性が高くなることが分かる。
これらのことから、本発明で特定するペロブスカイト型複合酸化物は高い耐久性能を有し、この耐久性能にはZrの存在が寄与することが分かる。
【0036】
(2) 高温耐久性能
表1に、実施例1〜5と比較例1〜4の各触媒について、耐久処理の前後でのNOとC36の50%浄化温度をまとめて示す。これらの結果から、実施例と比較例とでは、耐久処理後のNOとC36の浄化性能に顕著な差があることが分かる。
【0037】
(3) x値の最適範囲
図3は、ペロブスカイト型複合酸化物のBサイトのCeの一部をGdで置換することによりNOとC36の浄化性能が向上し、x値に最適範囲があることを示している。この浄化性能向上の効果は、Ceの一部をGdで置換することにより、酸素イオン伝導性が高められるためであり、一方でこの置換量が増すとCe量が減少して酸素貯蔵性能が低下するため、x値に最適範囲があると考えられる。
【0038】
(4) y値の最適範囲
図4は、ペロブスカイト型複合酸化物のBサイトのCeの一部をZrで置換することによりC36の浄化性能が向上し、y値に最適範囲があることを示している。この浄化性能向上の効果は、Ceの一部をZrで置換することにより、Zrの本来有する耐久性能が発揮されるためであり、一方でこの置換量が増すとCe量が減少して酸素貯蔵性能が低下するため、y値に最適範囲があると考えられる。
【0039】
(5) z値の最適範囲
図5は、ペロブスカイト型複合酸化物のBサイトのCeの一部をPtで置換することによりNOとC36の浄化性能が向上するが、Pt量の増加による効果は一定のレベルで飽和することを示している。この浄化性能向上の効果は、Ceの一部をPtで置換することにより、Ptの本来有する浄化性能が発揮されるためであり、一方でこの置換量が増すとCe量が減少して酸素貯蔵性能が低下するため、性能向上の効果に一定の限界があると考えられる。
また、図5は、Ptの比較的少ない組成領域でも高い排気ガス浄化性能が発現するといった、Pt量を低減させ得る本発明の効果もまた明示している。
【0040】
(6) このように、本発明では、特定のペロブスカイト型複合酸化物を用いることによって高い耐久性能を有する排気ガス浄化用触媒を提供するものであるが、この耐久性能は、酸素貯蔵性能、酸素イオン伝導性、結晶構造の安定性、及び触媒活性のバランスによってもたらされるため、かかるペロブスカイト型複合酸化物には、本発明で限定するような組成上の最適な範囲があるものと考えられる。
【0041】
【表1】
Figure 0003818062
【0042】
【発明の効果】
触媒温度が1000℃を超える高い温度でも劣化せずに触媒性能を維持することができる耐久性能に優れた触媒を提供することができる。
【図面の簡単な説明】
【図1】本発明のペロブスカイト型複合酸化物の耐久処理の前後を比較したXRDチャートである。
【図2】比較例のペロブスカイト型複合酸化物の耐久処理の前後を比較したXRDチャートである。
【図3】x値を変化させたときの触媒浄化性能の変動を示すグラフである。
【図4】y値を変化させたときの触媒浄化性能の変動を示すグラフである。
【図5】z値を変化させたときの触媒浄化性能の変動を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile engine, and more particularly to an exhaust gas purification catalyst having excellent durability performance at high temperatures.
[0002]
[Prior art]
It is known that a three-way catalyst in which a noble metal such as platinum is supported on an inorganic oxide carrier such as alumina is effective as a catalyst for treating exhaust gas of an automobile or the like.
Also, an additional function of absorbing the NO x in lean atmosphere to a conventional three-way catalyst, to occlude NO x at high oxidizing atmosphere air (A / F), a temporary air-fuel ratio is low reductive storage reduction the NO x purification catalyst for purifying exhaust gas by reducing NO x in an atmosphere are known to be effective.
[0003]
However, in a catalyst system in which a noble metal is supported on a support such as alumina, so-called sintering occurs in which the noble metal aggregates into enlarged particles when the temperature of the catalyst becomes high, and the active surface of the noble metal decreases and the catalytic performance decreases. There is a problem.
[0004]
Since this catalyst temperature reaches a high temperature in a short time when the automobile is driven at a high speed, there is a demand for a catalyst that maintains the exhaust gas purification performance without deteriorating even at a high temperature. In addition, with the development trend of high performance engines, such demands are becoming more prominent.
Specifically, there is a demand for an exhaust gas purification catalyst that can maintain purification performance without deterioration even at a high temperature of 1000 ° C. in which an oxidizing and reducing atmosphere is repeated.
[0005]
For this reason, the present applicant has previously proposed an exhaust gas purifying catalyst using a platinum complex oxide having a specific chemical structure in Japanese Patent Laid-Open Nos. 10-358 and 10-28864. In these platinum composite oxides, platinum element is incorporated into the chemical structure of the composite oxide, and the chemical structure of this specific platinum composite oxide is stable even at high temperatures. Therefore, a catalyst using such a platinum composite oxide can have excellent high-temperature durability performance by maintaining the state in which platinum is distributed in the crystal structure of the composite oxide even at high temperatures.
[0006]
In addition, it is known that a specific perovskite type complex oxide has an action of decomposing NO x into N 2 and O 2 , for example, JP-A-5-154384 and JP-A-5-184930. No. 5-245372 and JP-Hei 5-261289, a particular perovskite NO x catalyst for catalytic reduction of the composite oxide was supported on a carrier are described.
[0007]
[Problems to be solved by the invention]
However, the platinum composite oxide has been required to further improve the durability performance at high temperatures. In addition, the conventional perovskite type complex oxide has a problem that decomposition occurs at a high temperature of 1000 ° C. in which an oxidizing and reducing atmosphere is repeated, and the exhaust gas discharged from an internal combustion engine such as an automobile engine is a problem. In order to use it for purification, it was necessary to increase the purification rate of NO x and HC in the exhaust gas.
[0008]
Therefore, the present invention provides an exhaust gas purifying catalyst excellent in durability performance that can stably purify exhaust gas without deterioration even at a high temperature of 1000 ° C. in which oxidizing and reducing atmospheres are repeated. The purpose is to do.
[0009]
[Means for Solving the Problems]
The above object has the formula: ACe 1-xyz B 'x Zr y B "z O 3 (A is at least one of Ba and Sr, B' is Nd, Sm, and at least one Gd, B" Is at least one of Pt and Pd, 0 <x <0.5, 0 <y <0.5, 0 <z ≦ 0.5, where 1> (x + y + z).) This is achieved by an exhaust gas purifying catalyst characterized by comprising a substance.
[0010]
In the present invention, cerium (Ce) and zirconium (Zr) are essential constituent elements, and at least one alkaline earth metal element selected from barium (Ba) and strontium (Sr), neodymium (Nd), samarium ( Sm) and at least one rare earth metal element selected from gadolinium (Gd) and at least one noble metal element selected from platinum (Pt) and palladium (Pd) as perovskite complex oxides Is an exhaust gas purifying catalyst excellent in durability at high temperatures.
[0011]
The reason why such a specific perovskite complex oxide has a high durability performance is not necessarily clear, but the present inventors infer as follows.
Since Ce has oxygen storage performance as its own property, it is considered that the oxidative and reductive atmospheres are repeated, and the oxidative and reducible fluctuation range is reduced. In the perovskite complex oxide of the present invention, Pt or Pd is present in the same crystal unit as Ce. Therefore, this action works effectively on Pt or Pd, and has oxidizing and reducing properties. It is considered that the sintering of Pt or Pd caused by the atmosphere change is reduced.
[0012]
Nd, Sm, or Gd is considered to increase the oxygen ion conductivity of the perovskite complex oxide as a whole by partially replacing Ce at the B site of the perovskite complex oxide. Therefore, it is considered that oxygen transfer is promoted between the atmospheric gas and the perovskite complex oxide crystal, the oxygen storage performance of Ce is further enhanced, and the sintering suppression of Pt or Pd is more effective. .
[0013]
Since Zr is inherently high in heat resistance, Zr replaces a part of the crystal lattice to improve the stability of the crystal structure and repeat the oxidizing and reducing atmosphere. It is thought to increase heat resistance.
Pt or Pd is considered to provide catalytic activity for exhaust gas purification as an inherent property.
[0014]
Such oxygen ion conductivity due to Nd, heat resistance due to Zr, and catalytic activity due to Pt are manifested by partial substitution of Ce at the B site of the perovskite complex oxide. It is considered that there is an optimum range in composition as limited by the present invention.
[0015]
The optimum range on the composition, the chemical formula: in ACe 1-xyz B 'x Zr y B " perovskite-type composite oxide represented by z O 3, an 0 <x <0.5, preferably 0. 05 <x <0.4, more preferably 0.05 <x <0.3, 0 <y <0.5, preferably 0.05 <y <0.4, more preferably 0. 1 <y <0.25, 0 <z ≦ 0.5, preferably 0.15 <z <0.5, and more preferably 0.1 <z <0.4.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The above formula: ACe 1-xyz B 'x Zr y B "z O 3 (A is at least one of Ba and Sr, B' is Nd, Sm, and at least one Gd, B" is, Pt And at least one of Pd, 0 <x <0.5, 0 <y <0.5, 0 <z ≦ 0.5, where 1> (x + y + z).) It can be manufactured by various methods.
For example, inorganic compounds such as nitrates and carbonates of elements Ba, Sr, Ce, Nd, Sm, Gd, Zr, Pt, and Pd contained in the perovskite complex oxide, or organic compounds such as alkoxides and acetylacetonates Can be manufactured by mixing at a predetermined ratio and then firing at a temperature of 600 to 1100 ° C. in an air atmosphere.
[0017]
Preferably, an aqueous solution containing the above-mentioned inorganic compound in a predetermined ratio is prepared, and then a precipitate is prepared by adjusting the pH of the aqueous solution by adding ammonia or the like, or an alcohol solution containing the above-mentioned organic compound in a predetermined ratio Then, precursors are prepared through a solution such that water is added to prepare a precipitate by hydrolysis, and these precursors are then fired to produce a perovskite complex oxide. This is because a perovskite complex oxide having a uniform composition is easily obtained through such a solution.
[0018]
The obtained perovskite complex oxide can be used as an exhaust gas purifying catalyst excellent in high temperature durability performance by adjusting the particle size by crushing or pulverizing if necessary.
In order to use such an exhaust gas purifying catalyst as a general honeycomb type catalyst, it is possible to carry the above-mentioned perovskite type complex oxide powder on a honeycomb base material by a wash coat or the like in a usual manner.
Hereinafter, the present invention will be described more specifically with reference to examples.
[0019]
【Example】
Example 1
24.38 g of barium nitrate Ba (NO 3 ) 2 , 24.306 g of cerium nitrate Ce (NO 3 ) 3 .6H 2 O, 4.21 g of gadolinium nitrate Gd (NO 3 ) 3 .6H 2 O, 4.9866 g Zirconium oxynitrate ZrO (NO 3 ) 2 · 2H 2 O, 4.8326 g of chloroplatinic acid H 2 PtCl 6 · 6H 2 O as raw materials, and these were added to 750 g of ion-exchanged water and stirred for 1 hour. An aqueous solution of these raw materials was prepared, and 15 g of a 28% aqueous ammonia solution was added to the aqueous solution and stirred for 2 hours. The obtained precipitate was dried in an air atmosphere at 120 ° C. for 12 hours and then calcined in an air atmosphere at 300 ° C. for 1 hour.
The calcined powder was pulverized and then calcined in an air atmosphere at 700 ° C. for 5 hours to obtain a perovskite complex oxide powder having a composition of BaCe 0.6 Gd o.1 Zr 0.2 Pt 0.1 O 3 .
[0020]
Example 2
4. BaCe as in Example 1 except that 4.5336 g of samarium nitrate Sm (NO 3 ) 3 .6H 2 O was used as a raw material instead of 4.21 g of gadolinium nitrate Gd (NO 3 ) 3 .6H 2 O. A perovskite complex oxide powder having a composition of 0.6 Sm o.1 Zr 0.2 Pt 0.1 O 3 was obtained.
[0021]
Example 3
In the same manner as in Example 1 except that 4.0895 g of neodymium nitrate Nd (NO 3 ) 3 .6H 2 O was used as a raw material instead of 4.21 g of gadolinium nitrate Gd (NO 3 ) 3 .6H 2 O. A perovskite complex oxide powder having a composition of 0.6 Nd o.1 Zr 0.2 Pt 0.1 O 3 was obtained.
[0022]
Example 4
BaCe 0.6 Nd o.1 in the same manner as in Example 3 except that 2.156 g of palladium nitrate Pd (NO 3 ) 3 was used instead of 4.8326 g of chloroplatinic acid H 2 PtCl 6 .6H 2 O. A perovskite complex oxide powder having a composition of Zr 0.2 Pd 0.1 O 3 was obtained.
[0023]
Example 5
Instead of 4.8326 g of chloroplatinic acid H 2 PtCl 6 .6H 2 O, 3.6245 g of chloroplatinic acid H 2 PtCl 6 .6H 2 O and 0.5375 g of palladium nitrate Pd (NO 3 ) 3 are used as raw materials. except that had got powder of perovskite-type composite oxide having a composition of BaCe 0.6 Nd o.1 Zr 0 .2 Pt 0.075 Pd 0.025 O 3 in the same manner as in example 3.
[0024]
Comparative Example 1
The composition of Ba 4 PtO 6 is the same as that of Example 1 except that 97.52 g of barium nitrate Ba (NO 3 ) 2 and 4.8326 g of chloroplatinic acid H 2 PtCl 6 .6H 2 O are used as raw materials. A composite oxide powder was obtained.
[0025]
Comparative Example 2
24.38 g of barium nitrate Ba (NO 3 ) 2 , 24.306 g of cerium nitrate Ce (NO 3 ) 3 .6H 2 O, 4.9866 g of zirconium oxynitrate ZrO (NO 3 ) 2 .2H 2 O, 9. A perovskite complex oxide powder having a composition of BaCe 0.6 Zr 0.2 Pt 0.2 O 3 was obtained in the same manner as in Example 1 except that 6652 g of chloroplatinic acid H 2 PtCl 6 · 6H 2 O was used as a raw material.
[0026]
Comparative Example 3
24.38 g of barium nitrate Ba (NO 3 ) 2 , 32.408 g of cerium nitrate Ce (NO 3 ) 3 .6H 2 O, 4.0895 g of neodymium nitrate Nd (NO 3 ) 3 .6H 2 O, 4.8326 g A perovskite complex oxide powder having a composition of BaCe 0.8 Nd 0.1 Pt 0.1 O 3 was obtained in the same manner as in Example 1 except that chloroplatinic acid H 2 PtCl 6 · 6H 2 O was used as a raw material.
[0027]
Comparative Example 4
24.38 g of barium nitrate Ba (NO 3 ) 2 , 28.357 g of cerium nitrate Ce (NO 3 ) 3 .6H 2 O, 4.9866 g of zirconium oxynitrate ZrO (NO 3 ) 2 .2H 2 O, 4. A perovskite complex oxide powder having a composition of BaCe 0.7 Zr 0.2 Nd 0.1 O 3 was obtained in the same manner as in Example 1 except that 0895 g of neodymium nitrate Nd (NO 3 ) 3 .6H 2 O was used as a raw material. .
[0028]
Examples of other perovskite type complex oxides Examples 1 to 5 and Comparative Examples 1 to 4 above are typical examples of different elements in the vicinity of the optimum composition of the perovskite type complex oxide, and examples for comparison. It is what I have listed. In addition to these examples, in order to grasp the effects of different compositions, the same raw materials used in the examples were used at different ratios to produce various perovskite complex oxides having different x, y, and z. The test was combined with the above example.
[0029]
-Endurance treatment-
Each of the above-mentioned various complex oxides was pressure-molded and then pulverized into granules having a diameter of 1 to 3 mm. Each obtained particulate matter is placed in a normal pressure flow-type endurance treatment device, and the ratio of air / fuel (A / F) is changed between 14 and 16 every minute. Under a changing atmosphere, a durability treatment was performed at 1000 ° C. for 5 hours with a total gas amount of 5 liters / minute.
[0030]
Figure 0003818062
[0031]
−Exhaust gas purification performance test−
Each perovskite type complex oxide before and after the above durability treatment was used as an exhaust gas purification catalyst, and 2 g of each granular material was put into an exhaust gas purification performance measuring device. While flowing at a gas volume of 15 liters / minute, the catalyst temperature was changed and NO and C 3 H 6 purification rates were measured.
[0032]
Figure 0003818062
The results are summarized in Table 1 and FIGS. 3 to 5 as 50% purification temperature (catalyst temperature for purifying NO or C 3 H 6 by 50%).
[0033]
-X-ray powder diffraction (XRD) evaluation-
FIG. 1 and FIG. 2 show XRD charts of the perovskite complex oxide powders obtained in Example 3 and Comparative Example 1 before and after the endurance treatment, respectively.
Moreover, the structure residual rate was calculated | required by the proportional calculation from the area of the spectrum which shows the highest peak on an XRD chart.
[0034]
-From the results-
(1) Stability of crystal structure From the XRD charts shown in FIG. 1 and FIG. 2, when the changes appearing in the XRD chart before and after the endurance of the powder of Example 3 and Comparative Example 1 are compared, While no change is seen, it can be seen that in Comparative Example 1, a considerable change has occurred.
Further, when the powder particles of Example 3 and Comparative Example 1 were observed with a transmission electron microscope, the powder particles of Example 3 showed no change in form before and after the durability treatment, but after the durability treatment. In the powder particles of Comparative Example 1, precipitation of Pt particles due to sintering was observed.
[0035]
Further, FIG. 4 shows that the structural stability of the perovskite complex oxide increases as the amount of Zr contained in the perovskite complex oxide increases.
From these, it can be seen that the perovskite complex oxide specified in the present invention has high durability performance, and the presence of Zr contributes to this durability performance.
[0036]
(2) High temperature durability performance Table 1 summarizes the 50% purification temperatures of NO and C 3 H 6 before and after the durability treatment for the catalysts of Examples 1 to 5 and Comparative Examples 1 to 4. From these results, it can be seen that there is a significant difference in the purification performance of NO and C 3 H 6 after the endurance treatment between the example and the comparative example.
[0037]
(3) Optimum range of x value Figure 3 shows that the purification performance of NO and C 3 H 6 is improved by substituting part of Ce at the B site of the perovskite type complex oxide with Gd. It shows that there is. The effect of improving the purification performance is that oxygen ion conductivity is increased by substituting part of Ce with Gd. On the other hand, when the amount of substitution increases, the amount of Ce decreases and the oxygen storage performance decreases. Therefore, it is considered that the x value has an optimum range.
[0038]
(4) Optimum range of y value FIG. 4 shows that the purification performance of C 3 H 6 is improved by substituting part of Ce at the B site of perovskite type complex oxide with Zr, and there is an optimum range of y value. It is shown that. The effect of improving the purification performance is that by replacing part of Ce with Zr, the inherent durability performance of Zr is exhibited. On the other hand, when the amount of substitution increases, the amount of Ce decreases and oxygen storage Since the performance decreases, it is considered that there is an optimum range for the y value.
[0039]
(5) Optimum range of z value Fig. 5 shows that the replacement performance of NO and C 3 H 6 is improved by substituting part of Ce at the B site of the perovskite complex oxide, but the increase in the amount of Pt The effect of shows that it saturates at a certain level. The effect of improving the purification performance is that by substituting part of Ce with Pt, the original purification performance of Pt is exhibited. On the other hand, when the amount of substitution increases, the amount of Ce decreases and oxygen storage occurs. Since performance decreases, it is considered that there is a certain limit to the performance improvement effect.
FIG. 5 also clearly shows the effect of the present invention that can reduce the amount of Pt, such that high exhaust gas purification performance is exhibited even in a composition region having a relatively small amount of Pt.
[0040]
(6) Thus, the present invention provides an exhaust gas purification catalyst having high durability performance by using a specific perovskite-type composite oxide. This durability performance includes oxygen storage performance, oxygen storage performance, Such a perovskite type complex oxide is considered to have an optimum compositional range as limited by the present invention because it is brought about by a balance of ion conductivity, stability of crystal structure, and catalytic activity.
[0041]
[Table 1]
Figure 0003818062
[0042]
【The invention's effect】
It is possible to provide a catalyst having excellent durability performance that can maintain the catalyst performance without deterioration even at a high temperature exceeding 1000 ° C.
[Brief description of the drawings]
FIG. 1 is an XRD chart comparing before and after endurance treatment of a perovskite complex oxide of the present invention.
FIG. 2 is an XRD chart comparing before and after endurance treatment of a perovskite complex oxide of a comparative example.
FIG. 3 is a graph showing fluctuations in catalyst purification performance when x value is changed.
FIG. 4 is a graph showing fluctuations in catalyst purification performance when the y value is changed.
FIG. 5 is a graph showing fluctuations in catalyst purification performance when the z value is changed.

Claims (2)

化学式:ACe1-x-y-zB’xZryB”z3(Aは、BaとSrの少なくとも1種、B’は、Nd、Sm、及びGdの少なくとも1種、B”は、PtとPdの少なくとも1種、0<x<0.5、0<y<0.5、0<z≦0.5、但し1>(x+y+z)。)で表されるペロブスカイト型複合酸化物を含んでなることを特徴とする排気ガス浄化用触媒。 Formula: ACe 1-xyz B 'x Zr y B "z O 3 (A is at least one of Ba and Sr, B' is Nd, Sm, and at least one Gd, B" is, Pt and Pd A perovskite complex oxide represented by 0 <x <0.5, 0 <y <0.5, 0 <z ≦ 0.5, where 1> (x + y + z). An exhaust gas purifying catalyst characterized by that. 前記x、y、及びzの値が、0.05<x<0.4、0.05<y<0.4及び0.015<z<0.5の範囲にある請求項1に記載の排気ガス浄化用触媒。The value of x, y, and z is in the range of 0.05 <x <0.4, 0.05 <y <0.4, and 0.015 <z <0.5. Exhaust gas purification catalyst.
JP2001002575A 2001-01-10 2001-01-10 Exhaust gas purification catalyst Expired - Fee Related JP3818062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002575A JP3818062B2 (en) 2001-01-10 2001-01-10 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002575A JP3818062B2 (en) 2001-01-10 2001-01-10 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2002204955A JP2002204955A (en) 2002-07-23
JP3818062B2 true JP3818062B2 (en) 2006-09-06

Family

ID=18871061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002575A Expired - Fee Related JP3818062B2 (en) 2001-01-10 2001-01-10 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3818062B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576032B2 (en) 2003-12-17 2009-08-18 Daihatsu Motor Co., Ltd. Catalyst composition
JP5106748B2 (en) 2004-11-08 2012-12-26 株式会社キャタラー Exhaust gas purification catalyst
EP1854538A4 (en) * 2005-03-04 2011-06-08 Daihatsu Motor Co Ltd Catalyst composition
JP2006346603A (en) * 2005-06-16 2006-12-28 Cataler Corp Catalyst composition
JP4465305B2 (en) * 2005-06-16 2010-05-19 株式会社キャタラー Exhaust gas purification catalyst
JP4979900B2 (en) * 2005-06-16 2012-07-18 株式会社キャタラー Exhaust gas purification catalyst
JP4855013B2 (en) * 2005-08-18 2012-01-18 株式会社ノリタケカンパニーリミテド Oxygen separation membrane and hydrocarbon oxidation reactor
JP5549258B2 (en) * 2010-02-15 2014-07-16 マツダ株式会社 Exhaust gas purification catalyst
EP2954950B1 (en) 2013-02-08 2020-06-17 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying nox occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
CN104689817B (en) * 2014-12-12 2017-02-22 湖北航特科技有限责任公司 Composite oxide catalyst for purification of vehicle tail gas and method for preparing composite oxide catalyst for purification of vehicle tail gas
US9527033B2 (en) * 2015-01-23 2016-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Mixed metal oxide catalyst
EP3925688A4 (en) * 2019-03-22 2022-11-02 Murata Manufacturing Co., Ltd. Exhaust gas purification catalyst and exhaust gas treatment equipment

Also Published As

Publication number Publication date
JP2002204955A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
EP1666127B1 (en) Catalyst for lowering the amount of nitrogen oxides in the exhaust gas from lean burn engines
US6569803B2 (en) Catalyst for purifying exhaust gas
JP4006976B2 (en) Composite oxide powder, method for producing the same and catalyst
US20130143732A1 (en) Exhaust gas purifying catalyst
US7745371B2 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
EP2438984B1 (en) Composite oxide for exhaust gas purifying catalyst, exhaust gas purifying catalyst and diesel exhaust purifying filter
JP2004141833A (en) Production method of metal oxide particles and exhaust emission control catalyst
EP2055365B1 (en) Catalyst-supported particulate filter
JP3818062B2 (en) Exhaust gas purification catalyst
KR20070004749A (en) Inorganic oxide, exhaust gas purifying catalyst carrier, and exhaust gas purifying catalyst
EP2353713A1 (en) Composite oxide for exhaust-gas purification catalyst, process for producing same, coating material for exhaust-gas purification catalyst, and filter for diesel exhaust-gas purification
CN101421037B (en) Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
EP2269730A1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP5754691B2 (en) Exhaust gas purification three-way catalyst
EP1516855B1 (en) Cerium-zirconium composite metal oxide with a cerium oxide core surrounded by zirconium oxide
EP1743696A1 (en) Exhaust gas clarification catalyst
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP3757715B2 (en) Exhaust gas purification catalyst
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP3152681B2 (en) Phosphoric acid composition and catalyst for NOx reductive decomposition using the same
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001106527A (en) Cerium/aluminum oxide and catalyst for purifying exhaust gas
EP4295941A1 (en) Exhaust gas purification catalyst
JP3152680B2 (en) Phosphoric acid composition and catalyst for NOx reductive decomposition using the same
JPH1157475A (en) Exhaust gas cleaning catalyst material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees