JPH11512607A - 核酸分子を特性化する方法 - Google Patents

核酸分子を特性化する方法

Info

Publication number
JPH11512607A
JPH11512607A JP9513594A JP51359497A JPH11512607A JP H11512607 A JPH11512607 A JP H11512607A JP 9513594 A JP9513594 A JP 9513594A JP 51359497 A JP51359497 A JP 51359497A JP H11512607 A JPH11512607 A JP H11512607A
Authority
JP
Japan
Prior art keywords
dna
standard
nucleic acid
glycosylase
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9513594A
Other languages
English (en)
Other versions
JP3561523B2 (ja
Inventor
ジエー. ジエンドリサク,ジエローム
エム. ホフマン,レスリー
イー. スミス,ロバート
Original Assignee
エピセンター テクノロジーズ コーポレーシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エピセンター テクノロジーズ コーポレーシヨン filed Critical エピセンター テクノロジーズ コーポレーシヨン
Publication of JPH11512607A publication Critical patent/JPH11512607A/ja
Application granted granted Critical
Publication of JP3561523B2 publication Critical patent/JP3561523B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】 核酸分子を特性化する方法が開示されている。その方法とは、核酸鋳型、プライマー分子、DNA分子が合成されるようにプライマーを伸長させる酵素、4つの標準的デオキシヌクレオシドトリホスフェート、及び少なくとも1つの非標準的デオキシヌクレオシドトリホスフェートを含む反応混合物の存在下でDNAを合成することを特徴とする。この非標準的デオキシヌクレオシドトリホスフェートは、唯一つの標準的デオキシヌクレオシドトリホスフェートの一部分の代わりに、合成されたDNAにとり込まれる。合成されたDNAは、非標準的デオキシヌクレオシドトリホスフェートの塩基部分を、合成されたDNAから切除するN−グリコシラーゼで処理される。DNAは、それからDNAのホスホジエステルバックボーンが非塩基性部位のところで切断され、これによって少なくとも2つのDNA断片を創出するような方法で処理される。断片は大きさに従って分離される。

Description

【発明の詳細な説明】 核酸分子を特性化する方法 発明の分野 本発明の分野は、核酸分子の特性化方法である。特に、本発明は非標準的(ノ ン−キャノニカル)デオキシヌクレオシドトリホスフェートの存在下でDNAを 合成し、非標準的デオキシヌクレオシドトリホスフェートの塩基部を取り除き、 非塩基部位に於けるDNAのホスホジエステルバックボーンを切断し、且つその 結果得られたDNAの断片を分析することによって、核酸分子の特性化をする( characterize)ことに関する。 発明の背景核酸分子の特性化方法 核酸分子の特性化をすることに関しては多くの理由がある。例えば、人間や動 ・植物に多くの病気を引き起す、或いはこれらの病気に関係する遺伝子が直ちに 同定され、且つ特性化られる。何か特定の遺伝子の中でも、特別な病気の状態の 原因となる多数の変種(突然変異)が同定されている。このように既知および未 知の突然変異を検出する多くの方法が開発されている(例えばコットン(Cot ton),1993年を参照)けれども、人間や他のゲノム類についての我々の 知識が豊富になるにつれて、核酸を特性化するための新規で、より良く、且つよ り速い方法を開発することの重要性がいっそう増大している。診断に用いる他に 、核酸を迅速に特性化する ための改良方法は、人間の法廷論争、父であることのテスト、動・植物の品種改 良、細胞組織の判定、危険に瀕した種をひそかに入手するスクリーニング、及び 生物学上の研究を含む、多くの他の分野においても有用である。 DNA分子を特性化するための様々の方法が、当該技術分野において知られて いる。例えば、DNA分子はアガロース、又はポリアクリルアミドのゲルを通過 する電気泳動に基づく大きさによって特性化られる。この方法においては、マイ ナスに荷電したDNA分子がゲルを通ってプラスに荷電した電極の方向へ移動す る。ゲル状のアガロース、或いはポリアクリルアミドの百分率が、電気泳動する DNA分子のサイズ範囲にとって適切であると仮定すると、DNA分子が小さい ほど、より大きなDNA分子に比べて、もっと迅速にゲルの穴を通って移動する 。DNA分子は大きさに依存する速度でゲル中を移動するために、DNAを色づ けして目に見えるようにし、次に大きさがわかっている標識のDNA分子の移動 と、標本(サンプル)のDNA分子の移動を比較することによって、分子の大き さを決定できる。適当な条件の下では、単一のヌクレオチドだけであっても、長 さの異なる一本鎖のDNA分子が、変性ポリアクリルアミドゲル電気泳動法によ って区別できる。 DNA分子の特性化をする他の方法は、各DNA分子を1以上の制限エンドヌ クレアーゼで処理し、次にこの処理の結果として生じた種々のDNA断片の大き さを、アガロースゲル電気泳動法によって決定することにある。制限エンドヌク レアーゼは、DNA中の塩基(各DNAストランド上に、しばしば4、5、6又 は時々8個の塩基)の特定の配列を認識し、次にDNAのポリヌクレオチド鎖の ホスホジエステル結合を認識した配列に従って切断する酵素である。異った認識 配列をもった多くの制限エンドヌクレアーゼが手に入るために、他のどの制限酵 素が与えられた制限酵素によって発生したDNAの断片を切断するか、またその 結果生じた全断片の大きさはどれだけであるかを決定することによって、制限酵 素認識部位の位置と、それらの間の距離とを示すDNA分子全体の制限地図を得 ることができる。このような制限地図は、特定のDNA分子に関して特徴的であ り、特定の配列をおおよそ同定するのに使える。更にDNAにおける突然変異に よって引き起されるもののような変化が制限部位の消失(ロス)と増加(ゲイン )の結果になりうる、いわゆる“制限断片長さの多形現象”(RFLP)(カザ ジアンら(Kazazian,et al .),1989年)である。診断上 重要なRFLPの例はベーターヘモグロビン遺伝子における単一塩基突然変異、 即ちDdeI制限部位を消去するAからTの変化であって、この変化によって鎌 状細胞貧血症となる(カザジアンら(Kazazian,et al.),19 89年)。 DNA分子を特性化するための最も情報を提供する方法の1つは、そのヌクレ オチド配列を決定することである。DNAの配列を決める1つの方法(マキサム とギルバート(Maxam and Gilbert),1977年)は、配列 を決定するための5′−又は3′−末端にラベル化したDNA分子の1ストラン ドの4つのアリコートの各々を4つの異った化学試薬の1つで処理するとで達成 される。即ち、1つ目の薬品がDNA中のグアニン塩基だけを特に修飾し、2つ 目の薬品はシトシンだけを、また3つ目の薬品はグアニン又はアデニン塩基のい ずれか、そして4つ目の薬品はチミン又 はシトシン塩基のいずれかを修飾する。この化学処理は、修飾を受けやすい塩基 の全体のうちの少しの割合いのものだけが現実に修飾されるような条件下で行わ れる。 特定の型の1つの塩基だけ異なる一組の断片を発生させるために、化学反応が 制限されることが重要である。例えば全てのG残基が修飾されるならば、この残 基は全てホスホジエステル結合開裂を受けやすくなる。それ故、部分的に修飾さ れた核酸を集めることが配列を決定するために要求される。ピペリジンでの後処 理では、非塩基性部位(abasic site)でのDNA分子のホスホジエ ステル結合の開裂という結果となり、化学的な修飾の後、可能性のある有らゆる 大きさのDNA分子の混合物を発生させ、且つ対応する感応性塩基の1つ1つの 喪失という結果となる。その四つの反応の各々におけるDNA分子は、それから ポリアクリルアミドゲルの隣接したレーンにおいて、電気泳動によって解析され る。そしてDNA分子が放射線同位元素でラベルされれば、バンド模様がゲルを X線フィルムに暴すことによって明らかにされる。DNAの配列が、暴されたX 線フィルムを分析することで明らかにされる。或いは、DNA分子が蛍光、化学 発光、又は何か他の非放射性のものでラベルされている場合には、その配列は当 業界で公知の適当な方法によって明らかにされる。 この当時にDNAの配列を決定するために最も普通に使用している方法(サン ガーら(Sanger,et al.),1977年)は、DNAポリメラーゼ を使用して配列決定のためのDNA内の四つの標準的塩基(A=アデニン、C= シチジン、G=グアニン、及びT=タミン)の位置(配列)に依存して異った大 きさの断片を 造るという方法である。この方法においては、配列を決めるためのDNAは試験 管内でのDNA合成のための鋳型として使われる。全四種の標準的(キャノニカ ル)デオキシヌクレオチド(dATP、dCTP、dGTP及びdTTP)に加 えて、対応するジデオキシヌクレオチドによって少ない比率の標準的ヌクレオチ ドの無作為置換の結果となるような濃度で、2′,3′−ジデオキシヌクレオチ ドも又、各試験管内DNA合成反応に含められうる。このようにして、各DNA 合成反応は、正常なデオキシヌクレオチドの替りにジデオキシヌクレオチドがど こに取り入れられようと、連鎖停止に対応して異った長さのDNA断片の混合物 を産する。DNA断片は幾つかの方法の1つによって放射能を使って、或いは放 射能を使わないでラベルされ、且つそのラベルは、ラベルされたプライマーの伸 長によって、或いはラベルされたデオキシ又はジデオキシヌクレオチドの取り込 みによって、DNAの中に取入れられる。4つのジデオキシヌクレオチド(dd ATP、ddCTP、ddGTP、及びdTTP)の各々に関してDNA合成反 応を実施することによって、それから変性ポリアクリルアミドゲルの隣接したレ ーンにおける各反応生成物を分離し、且つ幾つかの方法の1つでもって、これら の生成物を検査することによって、DNA鋳型の配列が直接読めるようになる。 循環(サイクル)配列決定は、熱的に安定なDNAポリメラーゼを使い、且つ 鋳型DNAの変性の多ラウンドの各々を通じて、連鎖停止DNA合成を繰返し( 例えば95℃で)、単一プライマー・オリゴヌクレオチドをアニールし(例えば 55℃で)、そして当該プライマーの伸長(例えば70℃で)によって、配列シ グナルの線状 の増幅を成し遂げるサンガー配列決定のバリエーションである。 核酸配列決定は、特定の核酸が同一であるか、否かをみることに関して最も高 い確度を提供する。又、突然変異の部位が知られていなくても、核酸配列決定に よって遺伝子中に突然変異があるか否かを検出することができる。又、配列決定 データは、特別の突然変異、又は配列における変化に関する臨床上の重要性が見 積れるだけの十分な情報を与えてくれうる。 核酸を配列決定によって特性化するためには、核酸が特定の方法で使われるた めに、十分な量で単離されなければならない。核酸をプラスミド又は他のベクタ ーに最初クローン化することによって、十分な量の核酸を得ることが可能である けれども、この手続は時間がかかり過ぎ、且つ臨床上の診断のため、或いは他の 目的で、標本のお定まりの分析をすることから、しばしば実用的でない。標本中 の核酸の量が所定の方法での最適量より少ないときは、核酸分子の増幅部分用に 開発されている幾つかの方法の1つを用いるのが好都合である。ポリメラーゼ連 鎖反応(PCR)、核酸配列に基づく増幅(NASBA)、自己抑制配列複製( 3SR)、複写を介した増幅(TMA)、及びストランド転位増幅(SDA)、 というのが核酸分子を試験管中で増幅するために開発された方法の幾つかの例で ある。 更に例示すると、DNA分子の特定の部位は、二つのプライマー(1つのプラ イマーはDNAストランドの各々に対して相補的であり、且つ重要なDNA配列 に接している)、熱的に安定なDNAポリメラーゼ、及び4つの全ての標準的な 2′−デオキシヌクレオシド−5′−トリホスフェート(dATP、dCTP、 dGTP及び dTTP)とを含む緩衝液中での標本DNAの温度循環によってPCRを使って 増幅されうる。特定の核酸配列は、約30サイクルの変性(例えば95℃で)、 2つのプライマーのアニール(例えば55℃で)、及びDNAポリメラーゼによ るこれらのプライマーの伸長(例えば70℃で)を通じて幾何学的に増幅され、 その結果、核酸配列の約10億までのコピーが得られる。RNAはRT−PCR の幾つかのプロトコルの1つを使って、例えば逆転写酵素をも持つ熱的に安定な DNAポリメラーゼを使って反応を行うことによって、同様に増幅されうる(マ イヤースとゲルファンド(MyersとGelfand),1991年)。 上に論述したようなポリメラーゼ連鎖反応(PCR)は以下のものを含む数多 くの刊行物の主題である。 ムリスら(Mullis,KB,et al),U.S.Pat.No.4, 683,202;U.S.Pat.No.4,683,195;ムリス(Mul lis,KB),EP201,184;エールリッヒ(Ehrlich,H.) ,EP50,424,EP84,796,EP258,017及びEP237, 362;エールリッヒ(Ehrlich,H.),U.S.Pat.No.4, 582,788;サカキら(Saiki,R.,et al.),U.S.Pa t.No.4,683,202;コールドスプリングハーバーSympQua ntBoil,51:263におけるムリスら(Mullis,KB,et al .)(1986);サイキら(Saiki R.,et al.)(198 5)Sience 230:1350;サイキら(Saiki,et al.) (1985)Sience231:487;及びローら(Loh, EY,et al.)(1988)Nature335:141. 二番目の例を挙げると、RNA分子の全体又は特定の部位がNASBA(ファ イら(Fahy,et al.)1991)を使い、下記のものを含む緩衝液中 で標本RNAの等温温置によって増幅されうる。 「以下のもの」とは、2つのプライマー(RNA分子にとって相補的で、且つ RNAポリメラーゼのプロモーター配列をコードする第1のプライマーと、RN A分子の逆転写から生じる第1のcDNA鎖の3′−末端体にとって相補的な第 2のプライマー)、RNA分解酵素H活性(又は別個のRNA分解酵素H酵素) をも有するRNA−及びDNA−依存DNAポリメラーゼ、4つ全ての標準的2 ′−デオキシヌクレオシド−5′−トリホスフェート(dATP、dCTP、d GTP、及びdTTP)、第1のプライマーのプロモーター配列を認識するRN Aポリメラーゼ、および4つ全てのリボヌクレオシド−5′−トリホスフェート (rATP、rCTP、rGTP及びrUTP)である。 第1のcDNAストランドは、逆転写によって第1のプライマーの伸長によっ て合成される。それから、RNA分解酵素Hは結果として生じたDNA:RNA ハイブリッドのRNAを消化(ダイジェスト)し、且つ第2のプライマーが第2 のcDNA鎖の合成を準備する。RNAポリメラーゼはそれから、もっと多くの RNAの複製をつくり、これらの複製が順次cDNAに逆転写され、結果として 生じた二本鎖のDNA(ds−DNA)分子をRNAポリメラーゼプロモーター 配列から転写する。そして、このプロセスは再びいたるところで始まる。RNA 中間体を経由してds−DNAから、よ り多くのds−DNAへのこの一連の反応は、反応成分が消費され、又は酵素が 不活性になるまで自己統一した方法で継続する。DNA標本はまた、NASBA 又は3SRの他の変異によって増幅されうる。 ストランド置換増幅(SDA)は、もう1つ別の等温核酸増幅技術である(ウ オーカー(Walker),1994年)。SDAはプライマーの伸長、一本鎖 の伸長生成物の置換、プライマーの伸長生成物(又は元の標的配列)へのアニー リング、及びその後のプライマーの伸長が反応混合物中で同時に生じるような核 酸増幅の方法である。これは反応の温度抑制の結果として反応のステップが不連 続相又はサイクル中で生じるPCRと対称的である。SDAは以下の1)及び2 )に基づいている。 1)二本鎖の認識部位をもったヘミホスホロチオエート体の未修飾ストランド に切れ目をつける制限エンドヌクレアーゼの能力 2)切れ目のところで複製を開始し、且つ川下の(ダウンストリーム)非鋳型 ストランドを置き換える、或る種のポリメラーゼの能力 プライマーのアニーリングのために、二本鎖の標的配列を変性するべく昇温( 約95℃)した状態での初めの温置の後、それに続いて新しく合成されたストラ ンドのポリマー化や置換が一定の温度(通常約37℃)のところで起る。標的配 列の各々の新しいコピーの生産は以下の5つの工程からなる。 1)増幅プライマーを、最初の標的配列に、又は予めポリマー化された一本鎖 の伸長生成物であって置換されたものに、結合すること 2)α−チオデオキシヌクレオシドトリホスフェートを含むエクソヌクレアー ゼ−欠陥(exo-)クレノーポリメラーゼによるプライマーの伸長 3)ヘミホスホロチオエート二本鎖の制限部位に切れ目をつけること 4)切れ目部位から制限酵素の解離 5)川下の非鋳型ストランドの置換を伴うexo-クレノーによる切れ目の3 ′−末端からの伸長 切れ目からの伸長は、他の切れ目可能な制限部位を再生するために、一定の温 度では、切れ目、ポリマー化及び置換が同時かつ連続的に生じる。二本鎖の標的 配列の両方のストランドにハイブリッド化するプライマーが使われるときは、増 幅は、センス及び抗センスストランドが後続回の増幅において、相対立するプラ イマーの鋳型として働くので、指数関数的である。 PCR、NASBAおよび核酸増幅の他の方法が、更なる特性化のためにもっ と多量の核酸を入手することにとって非常に有用でありうる。しかしながら、一 般に増幅した核酸分子は、配列のための使用に先立って、プライマーやヌクレオ チドや不完全な増幅生成物や他の不純物を取り除いて精製されなければならない 。その他、例えばPCRプライマーはラベルをつけた配列プライマーと競争しう るし、またPCRヌクレオチドがサンガージデオキシ配列決定のために使用され る配列決定ヌクレオチド混合物と競争しうる。またサンガー配列決定はPCR又 は他の増幅方法と同時には明らかになされえない、或いは少なくとも効率ではな い。その理由は、配列決定のために利用されるジデオキシヌクレオチドは配列決 定反応と同様 に、DNAの増幅反応の終了という結果になるからである。 1つのグループが、核酸の配列決定をするために要求される工程を減らすこと を目的とした方法を開発している(シャウとポーター(ShawとPorter ),PCT WO95/06752)。この方法によると、エクソヌクレアーゼ III(exoIII)消化に対して耐性があることがわかった5′−アルファーボラ ノ−デオキシヌクレオシドトリホスフェートが、4つのプライマー伸長反応の1 つに於いて、標準ヌクレオチド(dATP、dCTP、dGTP、dTTP)の 1つの替りに、試験管内でのDNA合成を通じてDNA中に含有された。exo III での処理は、アルファーボラノデオキシヌクレオシド含有の時点まで合成D NAを消化するであろう。exoIII での消化と、ポリアクリルアミドゲル上で のラベルをつけた断片の分解の後、核酸の配列が決定される。 アルファーボラノ/exoIII 法の利点は、それがPCR増幅にとり込ませら れうるということである。しかしながら、これにはまた欠点もある。主な欠点は 、マキサム−ギルバート又はサンガーの配列決定法に比べて、配列データの精確 さの程度が低いことである。その理由は、アルファーボラノ/exoIII 法は、 配列決定ゲル上に余分のバンドと欠損したバンドとの両方を与えるからである。 これらの配列決定アーチファクトが発生する機構は未だ不確かではあるが、余分 なバンドは多分DNAの非ホウ素化された部位のexoIII による不完全な消化 によるものであろうと考えられ、他方、紛失したバンドは多分アルファーボラノ −ヌクレオを含む幾つかの配列を通して、exoIII による選択的消化によるも のであろうと考えられる。アルファーボラノ/exoIII 法の他の重大な欠点は 、exoIII の基質要求に関係している。exoIII は、各ストランドの3′− 未満に始って、二本鎖のDNAだけを消化するために、配列がPCR生成物の各 ストランドの3′−半分に関してだけで決定されうる。その結果、プライマーに 近い配列を得ることができない。また、exoIII 消化がフルサイズのPCR生 成物の長さの50%と100%の間にある断片だけを生成するために、この方法 によって配列決定されるDNAのサイズ幅は多少制限される。例えば長さにおい て1000の塩基対をもつPCR生成物がアルファーボラノ/exoIII 法に従 って配列決定されるならば、電気泳動にかけられる断片は、およそ500〜10 00ヌチレオチドの長さであろう。そのような長さの断片は、DNA配列決定ゲ ル中に分解させることはもっと困難である。ウラシルN−グリコシラーゼ “ウラシルN−グリコシラーゼ”又は“ウラシル−DNAグリコシラーゼ”( UNG又はUDG)は、DNA中の塩基ウラシルと糖デオキシリボースの間のN −グリコシド結合を開裂するのに触媒作用を及ぼす酵素であり、前記DNAには 非標準ヌクレオチド2′−デオキシウリジン−5′−トリホスフェート(dUT P)が標準的ヌクレオチドdTTPの代わりに含有されている(リンダール(L indahl),1979年)。UDGは遊離のdUTP、遊離のデオキシウリ ジン又はRNAからのウラシルの開裂に対して触媒作用を及ぼさない(ダンカン (Duncan),1981年)。 U.S.特許5,035,996には、UDGが核酸増幅反応の汚染を抑制す るために使用されるプロセスが記載されている(ハートリー(Hartley) ,U.S.Pat.No.5,035, 996)。この発明の目的は、他の標本の先の増幅に由来するウラシル含有DN Aが破壊されてしまっており、もはや第2の増幅反応を汚染しないだろうという 保証をするために、増幅がUDGと一緒に行われるような新しい標本を含む反応 混合物を予め処理しておくことであった。第2の増幅反応を実施するに先立って 、第2の増幅混合物を消化することは、第1の増幅の残りの生成物が、更なる増 幅の鋳型として働く能力を奪っている。 ある程度、上と同様にUS特許5,418,149は核酸の不特定増幅を減ら すためにグリコシラーゼの使用を開示している。 DNAに部位が特定された突然変異を導入するための方法が、また述べられて いる。この方法はDNA中においてチミンをウラシルで置換すること、及びウラ シル−DNAグリコシラーゼで行う後処理に依存している。U.S.特許4,8 73,192及びクンケル(Kunkel),1985年を参照。更に、ウラシ ル含有ファージが、遺伝子情報をウラシル−Nグリコシラーゼ欠陥細胞にだけ伝 達し、自然に発生しているバクテリアに対しては伝達しないという生物学的封じ 込めシステムの一部分として教唆された。ワーナーら(Warner,et .),1979年参照。 分子生物学におけるUDGの他の用途は、ニッソンら(Nisson,et al .),1991年によって述べられている。ニッソンら(Nisson, al.)において、UDGはPCR生成物の指向性クローニングを促進する ために使用される。このようにして、PCR増幅のために使用されるべくプライ マーは、dTMPの替りにdUMPを含む特定の12−塩基5′配列を含むよう につくられる。それから、PCR増幅後(反応混合物中のdUTP なしに)、増幅生成物は各5′末端にdUMP残基を含むから、これらのPCR 生成物をUDGで処理することは、5′−末端からウラシル残基を取り除いてし まう。熱による後処理は、ウラシルが消失させられる非塩基部位でのホスホジエ ステル結合の開裂という結果となり、更にそれによって相補的末端をもつベクタ ーに容易にクローン化されうる12−塩基の結合性の強い末端を生じさせる。 当業界において必要とされるものは、核酸および核酸間の差異を検出し、且つ 同定する際に、マキサム−ギルバート又はサンガー配列と同程度に精確で且つ具 体的であり、しかしもっと容易で、もっと速く、もっと高感度で及び/又は標本 のDNAが少なくて済む、そんな核酸の特性化方法である。この新しい方法は、 また増幅生成物のような比較的不純な核酸標本用に、そしてこの標本からプライ マーやヌクレオチドや他の不純物を取り除いて精製する必要なしに使われるべき である。この方法は、またアルファーボラノ/exoIII 法に似た方法で、但し 、この方法の欠点を有さないて、PCRのような増幅法の中に結合されうるべき である。 発明の要約 本発明は、核酸ポリマーを特性化するための、簡素で信頼できる方法を提供す る。一実施態様において、本発明によって核酸ポリマー中での突然変異の検出と 局在が可能である。また他の実施態様において、本発明では核酸分子が類似して いるか、違っているかを決定でき、また類似又は相違の程度を決定できる。また 、他の態様において本発明では核酸分子の配列を決定できる。本発明の方法に用 いられる配列の限界を定める非標準的ヌクレオチドは、DNA合成 の連鎖ターミネーターではないがために、この方法は、またPCR、NASBA 、又はSDAのような増幅法の一部又はこれと一対をなすものでありうる。 本発明において、DNA分子は4つ全ての標準的デオキシヌクレオシドトリホ スフェートと同様、核酸の鋳型、プライマー、ポリメラーゼ及び非標準的デオキ シヌクレオシドトリホスフェートの存在下で合成される。試験管内で合成された DNAは、それから非標準的塩基をDNAから取り去る酵素で処理され、それに よって非塩基性部位が創出される。合成されたDNAのホスホジエステル結合が 非塩基性部位のところで切断され、そして長さの異った一連の分子が生じせしめ られる。 分子の大きさのクラスは、非標準的ヌクレオチドがその最初の配列内の標準的 ヌクレオチドにとって代わる部位に対応している。開裂したDNA分子のセット についてのゲル電気泳動法、毛細管電気泳動法、又は他の方法によるサイズ分析 では、非標準的ヌクレオチドによる個々の置換の位置を示している。 一実施態様において、非標準的ヌクレオシドトリホスフェートはdUTPであ る。非標準残基を取り除く酵素は、好ましくはウラシルN−グリコシラーゼのよ うなN−グリコシラーゼである。 本発明の一実施態様において、DNA分子中のヌクレオチド配列が、4つの異 った非標準的デオキシヌクレオシドトリホスフェートが標準的デオキシヌクレオ シドトリホスフェートの各々の部分にとって代わる4つの異った反応を創出する ことで、またこれらの反応の生成物を比較することによって、導かれる。 本発明の目的は、ヌクレオチドレベルで核酸分子を比較すること である。 本発明の他の目的は、突然変異を検出する方法を提供することである。 本発明の他の目的は、増幅手順と適合しうる非標準デオキシヌクレオシドトリ ホスフェートを組入れる方法を提供することにある。 本発明の他の目的は、核酸分子の配列を決定する方法を提供することにある。 本発明の他の目的は、増幅生成物の配列を直接に決定する方法を提供すること にある。 その方法が正確で且つ再現性があることが、本発明の利点である。 その方法は欠損バンドや複製したバンドなどの不自然な結果にならないことが 、本発明の他の利点である。 本発明の他の利点、特徴、及び目的は、明細書、特許請求の範囲および図面の 審査の後で明らかになるであろう。 図面の説明 図1は、BESS法の模式図(構成図)である。 図2は、特定の突然変異の結果を評価するべくBESSの使用を示す模式図で ある。 図3は、一対となったPCRとBESSを示す模式図である。 図4は、BESSを使ったDNA配列決定の模式図である。 図5は、核酸分子が似ているか、違っているか、又どの程度似ているのか、違 っているのかを決定すべくBESSの使用を示す模式図である。 発明の詳細な説明定義 ここで使用されている“突然変異”(ミューテーション)という術語は、核酸 のヌクレオチド組成物中における変化(変質)について言及しており、そして核 酸配列における削除、挿入、単独又は複合の残基変化からなりうる。この変化は 、普通には、ヌクレオチド残基を他の種類の普通に存在する(標準的な)ヌクレ オチドによって置換することからなる。 “ヌクレオチド”は、塩基−糖ホスフェート化合物について言及している。又 、ヌクレオチドはRNA及びDNAという2つのタイプの核酸ポリマーのモノマ ー成分(サブユニット)である。“ヌクレオチド”は、rATP、rGTP、r UTP及びrCTPのようなリボヌクレオシドトリホスフェート、及びdATP 、dGTP、dTTP及びdCTPのようなデオキシリボヌクレオシドトリホス フェートに言及している。“ヌクレオシド”はホスフェート基のない塩基−糖の 組合せについて言及している。“塩基”は例えばアデニン(A)、シチジン(C )、グアニン(G)及びチミン(T)のような含窒素塩基について言及している 。 “とり込み”(インコーポレーション)は、核酸ポリマーの一部になることに ついて言及している。核酸前駆体の“とり込み”については、術語学上において 柔軟性があることが知られている。例えば、ヌクレオチドdGTPはデオキシリ ボヌクレオシドトリホスフェートである。DNAへの“とり込み”で、それはd GMP、或いはデオキシグアノシンモノホスフェート残基となる。DNA中には dGTP分子はないけれども、dGTPをDNAにとり込ませると言ってもよい 。 “標準的”(キャノニカル)という術語は、DNA中で普通に見い出される4 つの通常の核酸塩基であるアデニン、シトシン、グアニン及びチミンについて言 及しているか、又は標準塩基をそれぞれ含むデオキシリボヌクレオシド、デオキ シリボヌクレオチド、又は2′−デオキシリボヌクレオシド−5′−トリホスフ ェートについて言及するために使われている。 “非標準的”(ノン−キャノニカル)という術語は、前記の4つの標準的塩基 以外のDNA中の核酸塩基について、又は非標準的塩基をそれぞれ含むデオキシ リボヌクレオシド、デオキシリボヌクレオチド、又は2′−デオキシリボヌクレ オシド−5′−トリホスフェートについて言及するために使われている。ウラシ ルはDNA中の普通の核酸塩基であるけれども、ウラシルはDNA中の非標準的 塩基である。“非標準的塩基”は非標準的ヌクレオチドの含有の結果として、又 は存在する塩基(標準的又は非標準的)の修飾の結果として、核酸中に見い出さ れる。 “アンプリコン”という術語は、PCR又は当業者に知られた、他の核酸増幅 技術による増幅の生成物を記述するために登用した。 ここで記述した温度の全ては、それと違って特定されていなければ、摂氏で表 現されている。一般 我々は核酸を特性化するための新しい方法を、“塩基切除配列スクリーニング ”或いは“BESS(商標)”として言及して開示する。図1はBESSの態様 を記述している。 BESS法は、鋳型として特性化されるべく核酸を使って、試験管内でのDN A合成中に、DNAに非標準的ヌクレオチドをとり込ませることに基づいている 。図1について言及すると、ラベルを付けたプライマーが、プライマーを伸長さ せることのできるポリメラーゼ、4つ全ての標準的デオキシヌクレオシドトリホ スフェート、及び非標準的ヌクレオチドの存在下で、核酸の鋳型にアニールされ る。図1において例示された特定の非標準的ヌクレオチドはdUTPである。D NA合成の後、各非標準的塩基は、その塩基のための特定の酵素によってDNA から切除される。図1の例において、この酵素はウラシルDNAグリコシラーゼ である。 更にまた図1について言及すると、DNA鎖はそれから各非標準的ヌクレオチ ドの位置に対応した非塩基性部位のところで破壊される。図1において説明され た例は、APエンドヌクレアーゼとエンドヌクレアーゼIVを使って非塩基性部位 のところでDNAを破壊するものである。それから、その結果生じたDNA断片 の分離は、非標準的塩基が除かれた位置で終る断片の模様を作り出す。試験管内 で合成されたDNA内での各非標準的ヌクレオチドの位置は、特性化される核酸 内の標準的ヌクレオチドの位置に対応している。 BESSは、単独の非標準的ヌクレオチドに適用されたときでも、特定の核酸 配列又はそれと他の核酸配列とが関係あることの存在又は不存在を特性化するた めに、DNA断片の配列に関係するパターンを得るために使用できる(図2と5 を参照)。BESS法に使用される非標準的ヌクレオチドはDNA鎖の終りをな さないために、BESSはPCR、RT−PCR、NASBA又はSDAのよう な増幅プロセス、又は試験管内でのDNA合成に係る他の方法の一 部分でありうる(図3参照)。BESSは核酸分子の完全なヌクレオチド配列を 決定するために使用されうる(図4参照)。BESS反応中のDNA合成の好ま しい方法は、PCR Technology,グリフィンとグリフィン(Gri ffin及びGriffin),eds.,CRC Press,Boca R aton,FL(1994)に記載されている。DNA合成のための好ましい最 小限の成分は、鋳型DNA(二本鎖又は一本鎖のもの)、鋳型部分の逆さ補充物 である配列のプライマーオリゴデオキシヌクレオチド、50〜250マイクロモ ルの濃度での4つの標準的デオキシヌクレオシドトリホスフェート、pH6.5 〜9.0の緩衝液、1〜10mMでのマグネシウムイオン、及びDNAポリメラ ーゼ酵素である。非標準的デオキシヌクレオシドトリホスフェートの濃度、及び 対応する標準的ヌクレオチドに対しての反応混合物中でのその割合は、各非標準 的ヌクレオチドとDNAポリメラーゼの組合せに関して経験的に決定される。本 発明は、ポリヌクレオチドにそった、ある与えられた部位に関して全ての分子の 断片だけがN−グリコシラーゼ酵素によって、その部位のところで開裂するよう に、多量の非標準的ヌクレオチドのとり込みを要求している。この非標準的ヌク レオチドは、DNAを合成するための4つの普通のヌクレオチド成分、即ちデオ キシチミジントリホスフェート、デオキシアデノシントリホスフェート、デオキ シシトシントリホスフェート、又はデオキシグアノシントリホスフェート、のい ずれかの特定の置換体でありうる。幾つかの好ましい方法が以下の実施例で記述 されている。 BESS法では、非標準的ヌクレオチドのとり込みは、標準的なDNA合成反 応中に生じる。DNA又はRNA分子のいずれかが鋳 型として働く。当業者はこの反応を修飾するための多くの方法を知っている。こ の反応は、ヌクレオチド配列を含むラベルを付けたプライマーを使って遂行する のが好ましい。但し、このプライマーはその少なくとも一部が、鋳型とハイブリ ッド形成するのに、この鋳型分子の一部分と十分に相補的であることが好ましい 。鋳型がDNA分子である場合には、DNA依存DNAポリメラーゼがプライマ ー分子を伸長することが好ましい。そして、このDNA依存DNAポリメラーゼ が熱的に安定なDNA依存DNAポリメラーゼであることが最も好ましい。また 、RNA分子が鋳型である場合には、RNA依存DNAポリメラーゼ(逆転写酵 素)が使用される。この酵素は熱的に安定であることが好ましい。 放射能を利用してラベルを付けたプライマーを用いる場合には、分離した反応 生成物をX線フィルム上に暴露することによって、この反応生成物を目で見える ようにすることができる。或いは、当業者に知られた放射能を利用しない方法で プライマーにラベルを付け、反応生成物を検出することもできる。非標準的ヌクレオチドとしてのdUTP 本発明の一態様において、非標準的ヌクレオチドdUTPはDNAの合成中に DNA配列の中にとり込まれる。BESS法とそれを使った幾つかが、例示的な 非標準的ヌクレオチドとしてdUTPを、そして例示的なN−グリコシラーゼと してウラシル−DNAグリコシラーゼを用いて図解されている。例えば、デオキ シチミジン(dT)残基の消失と増加が係わりをもつ特定の突然変異は、デオキ シウリジン(dU)をDNAにとり込ませた後に検出できる。UDGでdU−置 換された標本を消化したり、非塩基性部位(dU除去 の地点)でホスホジエステル結合を加水分解することで、非塩基性部位の各々の ところで終る入れ子形(ネスト)一そろいの断片ができる、この態様においては 、突然変異によるdT残基の消失又は増加は、ゲル電気泳動、又は他の分離法に 従って検出されるであろう核酸の同じストランドの上で生じなければならない。 “とり込み”は、PCR、又は当業界で知られたDNA合成が係わる他の増幅中 でありうる。デオキシヌクレオチドdGTP、dCTP、dTTP及びdUTP の混合物が、新しく合成されたDNAへのとり込みのための前駆体プールとして 使用される。鋳型ストランド上でdAと反対側にとり込まれたヌクレオチドは、 合成されたDNA分子の大部分に関してdTであるけれども、dUは合成された DNA分子の断片に関して任意のそのような位置でヌクレオチドを構成する。 合成された核酸は、それからウラシルがdUとして含有されている部位からウ ラシルだけを取り除く、UDGのようなN−グリコシラーゼでもって処理される 。この除去は“非塩基性部位”を創出する。ウラシルが可能な含有部位をもつ断 片だけに存在するために、核酸は分子の断片中のその位置のUDGによって開裂 させられる。dUがdTを通常含む位置で、核酸中に随意にとり込まれる場合に は、UDG消化やホスホジエステル結合の切断によって、最初の核酸配列中にd T残基間の距離だけ長さが異なる分子のかたまりが生じる。そのような入れ子形 の一そろえの分子は、それから電気泳動法による分離手段によって分析されうる 。そして、初めの核酸中でのdT残基の精確な位置が推定されうる。突然変異の分析 図2は、特定の突然変異を検査するためのBESS技術の使用を 説明している。具体的には、図2は突然変異が野性型DNA中の単独T残基の突 然変異を起しDNA中のC残基による置換の結果として生じる具体例を示してい る。この変化は、BESSを使って、標本と野性型DNAとの組に比べて、標本 と突然変異を起したDNAとの組におけるPAGEゲル上でのバンドの消失とし て検出される。 図2について更に言及すると、野性型DNAと突然変異を起したDNAの両方 がラベルしたプライマーで変性され、アニールされる。TからCの転位を含むも のに対して相補的なストランドは、DNA合成のための鋳型として働く。適当な 非標準的ヌクレオチドが標準的なヌクレオチドの少しの部分に代えてDNA合成 反応中にとり込まれる。図2は野性型鋳型と、AからGの突然変異をもった鋳型 の生成物を記述している。 更に図2について言及すると、生成物は適当なN−グリコシラーゼに暴露され る。このN−グリコシラーゼはそれがとり込まれている全ての部位で非標準的塩 基を切断する。DNAはそれから非塩基性部位でそれを開裂させるように処理さ れ、そして断片が分離される。図2は野性型標本からのラベル付きの反応生成物 と、突然変異を起した標本からのラベル付き反応生成物とを比較した結果を説明 している。多様な断片が、非標準な塩基がN−グリコシラーゼによって取除かれ た全ての非塩基性部位における開裂の結果として得られる。図2に示された例は 、突然変異が観察される電気泳動法でのゲルの部分だけを描写している。 上のプロセスが(1)異った検出レベルをもった二つのPCRプライマーか、 又は(2)2つの別個のPCR混合物か、のどちらか を使って、且つ各々がラベルを付けた2つのPCRプライマーの異ったものを使 って行われる場合には、DNAの両ストランド中のdTの位置が決定されうる。 表1にみられるように、DNAの12の可能な塩基置換突然変異のうちの10 が、1つ又は他のストランド上のTの消失又は増加に係っている。そのため、非 標準的ヌクレオチドとしてdUTPを使う本発明の態様は、突然変異の最大の要 所を検出するために使用できる。表1は種々の突然変異と、UDG消化後の突然 変異の検出とを比較している。 このように、12の可能な主要突然変異のうちの10が、dUTPのとり込み とUDG消化を用いる本発明の態様と、二つの異った 方法でラベルしたプライマーをもったPCRとをカップリングさせることによっ て、非常に高い感度をもって検出できる。ラベルの付けられた1つのプライマー で、可能な突然変異の2分の1(12のうちの6)が、本発明のこの態様を使っ て決定できる。他の二つの突然変異、即ちdGからdC、及びdCからdGの検 出には、具体的にはdG又はdCの代わりに置換する非標準的なヌクレオチドと 、各々それぞれの非標準的塩基を取除くN−グリコシラーゼとの使用が求められ る。これら二つの突然変異は、二つの異ってラベルされたプライマー(DNA鋳 型の各ストランドを注入するためのもの)が使用されるならば、dGTP又はd CTPに代える1つだけの非標準的ヌクレオチドと、N−グリコシラーゼに対応 するものを使用するだけで検出できる。他の非標準的なヌクレオチドの使用 dUTP以外の非標準的ヌクレオチドが係わる本発明の態様に関しては、合成 されたDNAストランドからそれぞれの非標準的塩基を選択的に開裂させるN− グリコシラーゼを選択することが必要である。当業界で知られた他のN−グリコ シラーゼ(デンプルとハリソン(DempleとHarrison),1994 及びリンダール(Lindahl),1979)であって、DNAから特定の非 標準的ヌクレオチドを取り除くために使用できるかもしれないものがある。表2 にこれらの酵素の幾つかが記載されている。 本発明の非標準的デオキシヌクレオチドは、忠実にDNAにとり込まれなけれ ばならないし、また次回のDNA合成中に生成物であるDNAの成分として両立 しうるものでなければならない。つまり、この非標準的デオキシヌクレオチドは 生成物であるDNAストランドの伸長を終了させてはいけないし、或いはポリメ ラーゼをひるませてはいけないし、或いは相補的のストランド上で突然変異を起 させる結果となるようでもいけない。或る場合に於いては、普通でない非標準的 ヌクレオチドが存在することによってDNAの合成反応、或いはDNAの物理的 性質を変えるかもしれない(このヌクレオチドはDNA合成パラメーターが最適 化される必要があるようにDNAにとり込まれる)。 本発明用に画かれる幾つかの他の一般的要求がある。非標準的ヌ クレオチドは、例えば化学合成によって、ポリヌクレオチドの分解によって、酵 素によるヌクレオチドの修飾によって、或いはこれらのプロセスの組合せによっ て、という具合いに或る種の手段によって得られうるものでなければならないし 、また、この方法によって得られた生成物は、それからデオキシヌクレオシドト リホスフェートに変換されなければならない。更に非標準的塩基がとり込まれる 核酸から、これを切除する、この特定のN−グリコシラーゼがなければならない 。 N−グリコシラーゼによって認識される非標準的ヌクレオチドのDNA合成中 における直接のとり込みなしに、標準的ヌクレオチドの位置を特別に決定しうる 想像された本発明のバリエーションがある。このように、DNA中の標準的又は 非標準的なヌクレオチドが、適当なグリコシラーゼ酵素のための特定の基質であ る非標準的ヌクレオチドに、最初に、特定的に変換される。N−グリコシラーゼ によって具体的に認識された非標準的ヌクレオチドへのそのような変換が、化学 的または酵素による手段によって達成できる。グリコキシラーゼ活性によって生 じた非塩基性部位でのホスホジエステル結合がそれから、ここに述べたように破 壊される。例えば、非塩基性部位をもったDNAが、シトシンの脱アミド化と、 それに続くUNGとの処理によって調製される(サガーとストラウス(Sagh erとStrauss),1985)。N−グリコシラーゼの使用 他の具体的なN−グリコシラーゼは入手可能になり、また当業者に知られるよ うになるであろう。或るN−グリコシラーゼが本発明にとって適当であるか否か を決定するために、最初、非標準的ヌク レオチドを合成中のDNAにとり込ませ、次に非標準的塩基が候補的N−グリコ シラーゼによって特定的に除去できるかどうかを決定する。UDGの使用を記述 している上の例は、比較用の対象として働くであろう。 “N−グリコシラーゼ”又は“DNA−グリコシラーゼ”とは、N−グリコシ ラーゼ活性をもつ酵素を意味しており、この酵素が形式的にグリコシラーゼと呼 ばれていようが、或いは他の酵素活性と組み合わさったグリコシラーゼ活性をも っていようが、関係はない。グリコシラーゼは時々“グリコシダーゼ”として言 及され、そしてそれ故にN−グリコシラーゼとは、N−グリコシダーゼをもカバ ーするように定義されていることを意味している。 ここに定義されるように、N−グリコシラーゼ又はDNAグリコシラーゼはD NA中の非標準的核酸塩基と糖と結合の加水分解に触媒作用を及ぼし、非塩基性 (AP)部位を発生させる酵素である。そのような酵素は多くの種の中に存在す る。Escherichia coliからの例は、ウラシル−DNAグリコシ ラーゼであり(UDG)、またウラシルN−グリコシラーゼ(UNG)と呼ばれ る。他の例はデンプルとハリソン(DempleとHarrison)(199 4)によって、またダンカン(Duncan)(1981)によって記述されて いる。非塩基性部位での開裂 一旦、非塩基性部位なるものが創出されると、本発明の方法では合成されたD NAストランドが、この部位で開裂されることが要求される。非塩基性部位を開 裂するための種々の方法が当業者に知られている。加熱及び/又は塩基性の条件 が非塩基性部位でDNA分 子を破壊するのに使える。例えば下記のようなプロトコールが使える: 非標準的塩基の除去の後に、非塩基性(AP)部位を含む核酸がアミン、例え ば25mMトリス−HCl及び1〜5mMマグネシウムイオンを含む緩衝液中で 、10〜30分間、70〜95℃で加熱される。或いは、下記の処理が非塩基性 部位でのDNAを破壊するために使える。1.0Mのピペリジン塩基が、エタノ ールとともに沈殿させられ、真空乾燥されているDNAに加えられる。この溶液 はそれから90℃で30分間加熱され、そしてピペリジンを除去するために凍結 乾燥される。 非塩基性部位でDNAポリマーを破壊するために酵素処理を利用するのが好ま しい。例えばアプリン系又はアピリミジン系(AP)の部位でDNAのホスホジ エステル結合を開裂することのできるアプリン系/アピリミジン系のエンドヌク レアーゼ(APエンドヌクレアーゼ)が記述されているリンダール(Linda hl),1979;デンプルとハリソン(DempleとHarrison), 1994)。 E.coliからのエンドヌクレアーゼIVのようなAPエンドヌクレアーゼの 使用は、ホスホジエステル結合の開裂のための好ましい方法であると考えられる 。ここに定義されるように、APエンドヌクレアーゼは非塩基性(AP)部位で のDNA開裂に触媒作用を及ぼす任意の酵素である。そのような酵素は多くの種 に存在している。Escherichia coliからのAPエンドヌクレア ーゼの例としては、エンドヌクレアーゼIII とエンドヌクレアーゼIVが挙げられ るが、これらのみに限定されるものではない。また、 カルシウムイオンの存在におけるE.coliエクソヌクレアーゼIII はAPエ ンドヌクレアーゼである。本発明に有用な酵素には、APエンドヌクレアーゼ様 の活性をもつ任意の酵素(それがその名前で呼ばれていようと、他の名前で呼ば れていようと関係なく)が含まれる。 エンドヌクレアーゼIVはAP残基の5′−ホスフェート基と、隣接するヌクレ オチドのデオキシリボース環との間で開裂させ、遊離の3′−ヒドロキシル基を 生じさせる。APエンドヌクレアーゼで触発される開裂とは対照的に、ホスホジ エステル結合の熱分解をAP残基の片側に起させ、開裂生成物上に3′−ホスホ リレート末端の混合物を生じさせうる。このように、エンドヌクレアーゼIVのよ うなAPエンドヌクレアーゼでのAP DNA開裂の結果は、熱分解で得られる ものよりは、電気泳動後、一式のもっとシャープなバンドが得られることである 。BESS生成物の検査 一旦、開裂が非塩基性部位で生じれば、BESS生成物を分析したいと考える であろう。この分析はゲル電気泳動法、又は毛細管電気泳動法によって行うのが 好ましい。それから、断片の大きさは、DNA分子に色をつけるか、又は放射能 を利用してラベルをつけたDNA分子をX線フィルムに暴露することによって、 目に見えるようにされるであろう。断片は当業者に知られた非放射能検出法によ っても同様に目に見えるようにされうる。1、2、3、4又はそれより多いBE SS反応からの反応生成物が、もし異った識別しうる非放射能ラベルが各反応用 に使われるならば、電気泳動に用いられるゲル又は単一の毛細管の同じレーン中 で可視可できる。 BESS断片の電気泳動法用に提案されるプロトコールは、6又は8%ポリア クリルアミドの0.2〜0.4mmゲル、89mMトリス−ボレート、pH8. 3、1mM EDTA(TBE緩衝液)、及び7M尿素がDNAの断片を分離す るのに用いられる。変性させ、負荷をかけた緩衝液(95%ホルムアミド、0. 1%ブロモフェノールブルー、0.1%キシレンシアノール及び10mM ED TA、pH7.6)が85〜95℃で5分間加熱した標本に加えられる。それか ら、標本がTBE緩衝液中、1200〜2500ボルトで電気泳動にかけられる 。 BESSプロトコールの利点 BESS法には幾つかの利点がある。主要な利点はヌクレオチド・レベルで核 酸分子を特性化することができることである。この方法ではヌクレオチド・レベ ルで分析のためにDNA又はRNAの特定部位を選ぶことができる。 図3は、BESSプロトコールと増幅反応との一体化を示している。図3がP CR増幅中に標準的ヌクレオチドの少しの部分に代えて非標準的なヌクレオチド を含有させる工程を含んでいることに注目されたい。非増幅生成物に関して上に 記述したように、PCR生成物はN−グリコシラーゼが含有される全ての部位で 非標準的塩基を切除するN−グリコシラーゼに暴露される。標本はそれから非塩 基性部位でのストランドを開裂するように処理される。図3はストランド開裂後 の予想される生成物と、分離された断片の分析結果を示している。 本発明の現行技術に対する他の利点は、増幅生成物の同定を確認するために使 用しうるバンドの模様の発生であろう(例えば図3参 照)。当該技術での或るケースにおいては、正しい分子サイズをもったPCR生 成物は、望ましい鋳型配列から誘導されると推定される。DNAの一部分は実際 、他の核酸鋳型の増幅生成物でありうる。そして、その結果はそれ故に“フォー ルス ポジティヴ(false positive)”である。もし、本発明に よって生じたPCR生成物断片が、問題の配列から誘導される標準の一式の断片 と比較されるならば、これらの断片は、たとえ突然変異があったとしても、ポジ ティブに同定されうる。突然変異は、バンドの通常の模様から逸脱として認識さ れる。本発明では、アンプリコンの同定がN−グリコシラーゼ消化とホスホジエ ステル結合の切断の後での、その特徴的なバンド模様からチェックされうるので 、フォールスポジディブの結果の発生を避けることができる。 本発明の他の利点は、増幅プロセス自体が、生成物中に後で検出される非標準 的ヌクレオチドをとり込むことができることにある。 本発明の特に利点となる特徴は、増幅生成物が、非標準的ヌクレオチドが決定 される前に、更なる精製を要求しないことにある。PCR生成物の配列を決める 現行の方法は、精製に労力が多くかかる工程と、この工程に続く、ラベルと連鎖 終結するヌクレオチドをとり込みする、更なる一本鎖の増幅工程をかかえている 。 アンプリコンの精製では、通常、最初の増幅の成分、例えばヌクレオチド、プ ライマー、先端を切り取った伸長生成物や、望まない不特定の増幅生成物を取り 除くことが必要である。本発明では、ヌクレオチドの配列の位置決めをする前の 精製工程を行う必要がない。 エクソヌクレアーゼIII 消化がアルファーボラノヌクレオチドと り込み部位の存在を決定するために使用できる、PCTWO95/06752に 記述されている方法も又、PCR生成物の直接の配列決定を可能にする。しかし ながら、この方法は配列決定ゲル中に余分な、又は喪失したバンドを生じさせる 。これらのアーチファクトの理由は未だはっきりしていないが、余分なバンドは エキソヌクレアーゼIII(exoIII)による不完全な消化によって引き起されう る。本発明は、DNAから特定の塩基を取り除くためのN−グリコシラーゼを使 用し、そして、このことが次にAP部位における連鎖開裂を許す結果となる。W O95/06752法と共通の配列決定ゲル・バンドアーチファクトが、本件発 明を利用して生じてはならない。ヌクレオチド配列を決定するためのBESSの利用 4つの標準的デオキシヌクレオシドトリホスフェートの一部の代わりに、非標 準的デオキシヌクレオシドトリホスフェートをとり込ませ、且つ適当なN−グリ コシラーゼ酵素を使うことによって、4つ全ての標準的ヌクレオシドトリホスフ ェートの位置が、本発明を使って決定できる。そのために、ヌクレオチドの完全 な配列が本発明を使って決定できる。この態様において、核酸中にとり込まれた 各々特定の非標準的ヌクレオチドを取り除くための別々のN−グリコシラーゼが ある(図4参照)。このようなケースでは、核酸の4つの変形の各々にとり込ま れた独特の非標準的ヌクレオチドがある。これら4種の核酸はそれから、非標準 的ヌクレオチドの各々にとって特有のN−グリコシラーゼによって別々に消化さ れる。グリコシラーゼ消化とホスホジエステル結合開裂後、断片はゲル電気泳動 法、毛細管電気泳動法、又は他の手段によって分離される。糖−ホ スフェート残基のホスホジエステル結合の開裂が、酵素を使わないベーター除去 、又は酵素を用いた手段によって行われる。もし、各非標準的ヌクレオチドが4 つの普通のヌクレオチドの各々にとっての特定の置換体であれば、当該核酸の完 全な配列が決定されうる。 図4は、ラベルを付けたプライマーがDNAの変性された標本に最初にアニー ルされるDNA配列決定法を記述している。別々のA,T,G及びCの特定反応 が、DNA合成中に標準的ヌクレオチドの少しの部分の代わりに、適当な非標準 的ヌクレオチドをとり込ませるために創出される。異った方法でラベル化された 複数の非放射性プライマーが、単一のレーンで検出可能にするべく各反応のため に使用されることに我々は注目している。図4を参照して、記号のAm,Tm, Cm及びGmは、“修飾されたA”、“修飾されたT”、“修飾されたC”及び “修飾されたG”について述べている。これらの“修飾された塩基”は非標準的 ヌクレオチドである。 更に図4を参照して、各ヌクレオチド−特定の反応の生成物は、それから非標 準的塩基がとり込まれる全ての部位のところで適当な非標準的塩基を特定的に切 り取るN−グリコシラーゼと接触される。非標準的塩基の切除の後、この生成物 は非塩基性部位で開裂させるために、好ましくはE.coliエンドヌクレアー ゼIVのようなAPエンドヌクレアーゼを使って処理される。これらの断片は、そ れから好ましくは変性ポリアクリルアミドゲル電気泳動法、毛細管電気泳動法、 又は他の手段によって分離され、そして分析される。鋳型分子の配列が、図4に 説明されているように、その比較から決定される。図4はまた、もし異った方法 でラベル化された複数の非放射性プライマーが各反応用に使われるならば、どの ようにして配 列が1つのレーンの電気泳動から決定できるのかを説明している。 或いは、とり込まれた非標準的ヌクレオチドが突然変異誘発性の結果を引き起 さないと仮定すると、一つの大きな反応中で全てのヌクレオチドの特定の反応を 遂行できる。この反応は適当なN−グリコシラーゼでの処理のための別々の反応 に分割できる。生成物はそれから分離され、そして先に述べたように分析されう る。 非標準的ヌクレオチドは、四つのパラレル反応の各々が、4種の普通のヌクレ オチドと一緒に一種の非標準的ヌクレオチドを含む、循環配列決定反応を使って 、とり込まれうる。それから、とり込まれる非標準的ヌクレオチドが、それにと って特有のN−グリコシラーゼによって消化される。ホスホジエステル結合開裂 後、得られた生成物は変性ゲル電気泳動法、又は先に述べたような他の方法を使 って分析される。核酸間の類似性又は差異を決定するためのBESSの使用 DNA分子の全体を異った制限酵素で消化することによって得られるDNA断 片の電気泳動模様が、DNA分子を(制限地図によって)特性化し、且つ大雑把 に同定するために使われるのとちょうど同じように、BESS法を使って生じる DNA断片の電気泳動模様が、もっと精確な分子レベル核酸分子を特性化し、且 つ同定するために使用されうる。このように、BESS法は、単独の非標準的ヌ クレオチド及び単独のN−グリコシラーゼを使う場合であっても、ヌクレオチド のレベルで核酸の標本が類似しているか、又は異っているかどうか、及びどんな 程度に異っているかを決定するために使われる。 図5は、BESS法を使って核酸間の類似性及び差異を決定する ための方法を説明している。この方法は、ラベルをつけたプライマーとラベルを つけていない、又は違った方法でラベル化したプライマー2をアニールして、変 性DNA鋳型にすることから始まる(この反応は単独のプライマーだけを使って もまた遂行される)。 非標準的ヌクレオチドは、それから試験管内のDNA合成において使用する標 準的ヌクレオチドの少しの部分の代わりにとり込まれる。図5は、評価されるた めの4つの異ったDNA鋳型標本からの合成生成物の例を説明している。各反応 生成物は、とり込まれる非標準的塩基を、それがとり込まれている部位の全てに おいて、特定的に切除するN−グリコシラーゼで処理される。DNAは、それか ら非塩基性部位のところで、好ましくはE.coliエンドヌクレアーゼIVのよ うなAPエンドヌクレアーゼを使って開裂するように処理される。 更に図5を参照して、4つ全ての標本の開裂生成物が図解されている。これら の開裂生成物は、好ましくは変性ポリアクリルアミドゲル電気泳動法又はここに 記述されているような他の方法によって、分離され、且つラベルを付けた断片が 検出される。多くのバンドは、ほとんどの標本から生成され、図5の標本は図解 目的のためにほんの少しのバンドを示す。核酸を特性化するためのキット(kit) 本発明はまた核酸を特性化するためのキットである。一実施態様において、こ のキットは核酸鋳型、4種の標準的デオキシヌクレオキシドトリホスフェート、 少なくとも1種の非標準的デオキシヌクレオキシドトリホスフェート、各非標準 的ヌクレオチドに対応するN−グリコシラーゼ及びAPエンドヌクレアーゼにハ イブリッド化 されたプライマーを伸長することのできる酵素を含んでなるであろう。このAP エンドヌクレアーゼはエンドヌクレアーゼIVであることが好ましい。 キットの他の形は、特定のDNA鋳型上で特性化を遂行する者にとって有用で あろう。キットのこの態様において、短いセクションの特定のDNA鋳型にハイ ブリッド化されるようにデザインされた少なくとも1つのプライマーがキット中 に提供される。このキットはまたBESSと増幅法とを一対にするよう要求され る他の成分を含んでもよい。例えば、BESSと、特定の核酸配列のPCR増幅 とを一対化するためのキットは、重要な配列の側面である2種の異ったプライマ ー、即ちラベルをつけたもの及び/又はラベルをつけていないもの、を含みうる 。 このキットの最も好ましい態様において、酵素は熱に安定なDNAポリメラー ゼであろう。 このキットの他の態様も、DNA配列決定用に設計されるであろう。この態様 において、キットは非標準的塩基がDNAにとり込まれた後に、4種の異った標 準的ヌクレオチドの各々の一部分を置換するように設計された4種の異った非標 準的ヌクレオチドと、これらの各々を特異的に除去することに触媒作用を及ぼす 4種の異ったN−グリコシラーゼを含むであろう。或いは、このキットは、もし 特定のDNAの両方のストランドが配列決定されるべきであれば、2又は3の非 標準的ヌクレチドだけを含みうる。 例例1 この例は、BESS法を用いた、診断上重要な単独塩基突然変異の検出を説明 している。この例はまた、BESSとPCRとの一対化を説明している。BES Sと増幅との一対化によって、いくつかの状況の下では制限される標本核酸を比 較的少量使うことで結果を得ることができる。 ポリメラーゼ連鎖反応(PCR)はプラスミドpHB4又はpSiC2内に含 まれる人間のβ−グロビン遺伝子の部位を増幅するために遂行された。プラスミ ドは人間のβ−グロビン遺伝子をベクターpT7ブルーに挿入することで構成さ れたノバゲン(Novagen),Madison,WI)。これら二つのプラ スミドは、pSiC2のグロビン遺伝子部分のセンスストランド中において、ア デノシンをチミジンで置換することだけで異なる。人間のDNAにおける、その ような突然変異はβ5又は鎌状のグロビン欠陥という分子上の原因であるカザジ アン(Kazazian),1989)グロビン遺伝子を増幅するのに使われる プライマーは、それぞれ標準的フォワード(forward)及びリバース(r everse)MB配列決定24−merオリゴヌクレチド、 (SEQ ID Nos.:5及び6)であった。 100ピコグラムのプラスミドpHB4又はpSiC2DNAが、50mMト リス−HCl pH9.0、20mM硫酸アンモニウム、1.5mMの塩化マグ ネシウム、各0.2mMのdATP、dCTP、及びdGTP、0.16mMd TTP、0.04mMdUTP、0.1マイクグラムのラベルの付いていないフ ォワードプライマー、0.1のマイクログラムの32P−末端ラベル化されたリバ ースプライマー、及び2.5ユニットのTthDNAポリメラーゼ又はTaqD NAポリメラーゼ(パーキンエルマー社(Perkin−Elmes Corp oration),Branchburg,NJ)を含む50マイクロリットル のPCR反応に加えられた。反応物は94°で2分加熱され、更に95°、30 秒、55°30秒及び72°30秒で30回反復、循環され、最後に4°に保た れた。 増幅の後、標本は37°、20分間、1単位のUDG(エピセンターテクノロ ジー(Epicentre Technologies),Madison,W I)で処理された。更にアンプリコンのホスホジエステルバックボーンが、70 °10分間加熱することによってウリジン除去の部位で開裂された。この標本は 95%ホルムアミド、10mM EDTA、pH9.5、10mM NaOH及 び各々0.1%プロモフェノールブルー及びキシレンシアノールで希釈された。 反応生成物の精製は行われなかった。むしろ、反応生成物は可熱変性され、且 つ8%ポリアクリルアミドと8M尿素ゲル中で直接に電気泳動させられた。ゲル は凝固させ、乾燥してX線フィルムに暴露された。同じプラスミドの配列決定反 応を含んだ同種のサンプルが32P−末端でラベル化したリバースプライマー用の 製造者の使用法に従ってシークイサーム(SequiTherm)(商標)循環 配列決定キットを使ってつくられた。 このテスト結果から、デオキシウリジンを含むpHB4アンプリコンのUDG −消化された生成物において、鎌状グロビン遺伝子に特徴的なAからTの突然変 異の部位のところに、追加のバンドが見 られることがわかる。循環配列決定によって得られた対応する配列が、比較のた めに隣接するレーンにおいて電気泳動された。UDG−発生のレーンは、循環配 列決定生成物の“T”レーンと同じバンドの模様を有する。但し、予想通りでは あるが、UDG−処理材料からのバンドは、わずかにより速く移動する点で異っ ている。鎌状遺伝子の突然変異もまた循環配列決定レーン中にはっきりと目でみ ることができる。同じ結果がTth DNAポリメラーゼ又はTaq DNAポ リメラーゼのいずれかについても得られた。例2 以下の例は、増幅法と一対となったBESSが、突然変異が異型接合の個体の 1つの対立遺伝子だけに存在しているときでも、診断上重要な単独塩基突然変異 を検出できることを説明している。使用されたDNA標本は、正常な対立遺伝子 に関して同型接合であるか、又は正常且つ突然変異体対立遺伝子に関して異型接 合である人間から得られた。BESSを使って得られた結果は、別途に標準的な 方法を使って、正常および突然変異体を含む両DNA標本を配列決定することに よって確認された。 アルファ1−抗トリプシン遺伝子が、例1のそれと類似したプロトコールを使 って、人間のDNAから増幅された。アルファ1−抗トリプシン遺伝子のZ遺伝 子突然変異は、エクソン・ファイヴにおけるG−から−A変移であり、このこと は342ポジションでのグルタミン酸エステルからリシンへのアミノ酸変化へと 導く。本発明の態様が異型接合のMZ個体の1つの対立遺伝子中にZ遺伝子突然 変異を検出するために使われた。 アルファ1−抗トリプシン遺伝子の“M”型は正常または野性型 の状態である。増幅反応は、プラスミドDNAの代わりに鋳型として明らかに正 常又はアルファ1−抗トリプシン異型接合人間(コリエル インスチチュート フォー メディカル リサーチ)(Coriell Institute fo r Medical Research),Camde,NJ)からのものであ ることが明らかな1/2マイクログラムの人間のゲノムDNAを含んでいる。 プライマーである (SEQ ID NOs.:1と2)がアルファ1−抗トリプシン遺伝子(コ ックス(Cox),1990)のイントロン・フォーとエキソン・ファイブの一 部分を増幅するために選ばれた。反応(物)は50mMトリス−HCl pH9 .0、20mM硫酸アンモニウム、1.5mM塩化マグネシウム、各0.2mM のdATP、dCTP及びdGTP、0.16mM dTTP、0.04mM dUTP、各0.1マイクログラムの、上に記述したプライマー、及び2.5ユ ニットのTaq DNAポリメラーゼ(パーキンエルマー(Perkin−El mer),Bronchburg,NJ)を含む。 反応(物)に対し、91°1.5分間、55°30秒間、及び68°1分間か らなるサイクルを35回行い、最後に4°に保持した。dUTPの存在下での増 幅の結果として生じたアンプリコンは、例1に記述されるようにUDGで処理さ れ、熱分解された。 更に精製工程なしに、UDG−処理したアンプリコンと循環配列決定反応標本 の両方が、例1に記述したようにポリアクリルアミド −尿素ゲル中で電気泳動された。MZ異型接合のDNAは、他のTバンドの強度 の1/2である突然変異の位置での追加の“T”バンドを生み出した。BESS を使って、AAT Z突然変異は染色体異常のDNAにおける正常及び突然変異 体対立遺伝子の混合物から得られた増幅生成物中において検出可能であった。 Z突然変異の対照ディスプレーとして、正常及びMZ異型接合の遺伝子両方の PCR生成物の配列決定が行われた。dUTPなしに合成され、四種の標準的デ オキシヌクレオチドだけを含むアンプリコンが、ドデシル硫酸ナトリウム界面活 性剤を含む不連続な13%ポリアクリルアミドゲル中で電気泳動された。310 bpアンプリコンが臭化エチジウムで色づけすることによって、局在化され、そ の後、ゲルから切除された。PCR生成物は、当業界で知られた方法を使って、 ゲルを押しつぶし、更に0.5M酢酸アンモニウム、1mM EDTA、及び0 .1% SDS中に浸すことによって精製した。このDNAは、シークイサーム (商標)循環配列決定キット(エピセンター テクノロジー(Epicentr e Technologies))の生成物情報に記述されているような32P− 未端でラベル化したプライマーを使って、循環配列決定データを生じせしめる鋳 型として使われた。例1に記述したと同じようにして実施した(従来の)標準的 循環配列決定によって、PCRと一対化したBESSを使って得られた、正常と 突然変異体のDNA標本の配列が、確認された。例3 BESSを使って生じたAP DNAのエンドヌクレアーゼIV消化の有効性が 、例3に説明されている。参照用の標準として、シー クイサーム−配列決定AAT PCR生成物(例2)のTレーンが、その態様の 幾つかにおいてBESSの結果と比較された。最初の態様は、dV−置換PCR 生成物のUNG消化(37°10分間)と、それに続く熱分解(90°20分間 )によって、AP部位におけるホスホジエステル結合を開裂することであった。 2番目の態様は、エンドヌクレアーゼIVがUNGとともに添加され、且つ90° の加熱工程がそれに続かないことを除いて、最初の態様と同じである。3番目の 態様は、EDTAがUNGとエンドヌクレアーゼIVの添加前に、10mMの最終 濃縮(物)に加えられたことを除いて2番目の態様と同じである。 この実験から幾つかの結論に達しうる: (1)AP DNAの熱分解生成物は、同じ増幅生成物のエンドヌクレアーゼIV 開裂の結果から生じたものよりもシャープでない電気泳動によるバンドを生じる 結果となる。 (2)エンドヌクレアーゼIV反応は、ポリメラーゼが、幾つかのケースでは開裂 生成物の3′−ヒドロキシ末端を伸長させるままにしておく結果、にせのバンド が生じる。UNGやエンドヌクレアーゼIVの添加前、又はそれらとともに、ED TAのようなキレート化剤を添加すると、ポリメラーゼが開裂生成物の末端を伸 長させるのを防止し、そしてにせのバンドを消失させることができる。 (3)予想されたように、BESS生成物はシークイサーム(商標)を使ってサ ンガー循環配列決定反応から生じる対応する生成物よりも、電気泳動中にもっと 迅速に移動する。その移動差は、電気泳動ゲルの底でより明らかである。 (4)PCR生成物の循環配列決定に於いて得られたアーチファク トのバンドは本発明を使って削除できる。もっと精確な配列情報が、当業界で現 在知られた方法を使うよりも、本発明を使って、その好ましい態様において得ら れうる。例4 人間のHLAクラスII複とり込みのDQB1遺伝子の第二エキソンは、非常に 多形の部位であるブガワンとエールリッヒ(BugawanとEhrhch), 1991;トルスビィとロンニンゲン(ThorsbyとRonningen) ,1993)。HLA部位の分析は組織、又は臓器移植前に組織の型を決定した り、法廷での弁論または他の分野において、同定テストすることにとって有効で ある。QB1対立遺伝子と区別するBESSの有用性を説明するために、HLA 遺伝子の幾つかの型がpUC19プラスミドベクターにクローンされ、そしてB ESSを使って分析が行われた。この例においては、BESS手法によるDNA への非標準的ヌクレオチドのとり込みが、単一のプライマーだけと熱サイクラー 中での多数回のDNA合成を利用して行われた。このようにして、1ストランド だけの核酸鋳型の線状の増幅だけが循環配列決定に類似した方法で得られた。そ れ故、プラスミドからのDQB1遺伝子の一本鎖のコピーを線状に増幅するのに BESS手法が使われた。以前に記述したように、dUが一本鎖の増幅生成物に おいて、dTの代わりに部分的に置換された。UNGとエンドヌクレアーゼIVで の消化の後、生成物が同じプラスミド標準的循環配列決定から得た“T”反応生 成物に隣接した全てのレーンで電気泳動された。 (SEQ ID NOs:3及び4)(ブガワンとエールリッヒ(Bugaw anとEhrlich),1991)が、人間の末梢血液DNAノバゲン(No vagen),Madison,WI)からのDQB1遺伝子のエキソン2を増 幅するために使用された。5つの個体からの血液標本が、HLA遺伝子標的の多 くの対立遺伝子を含むDNA調製のために使用された。50mM トリス−HC L pH9.0、20mM硫酸アンモニウム、1.5mM塩化マグネシウム、各 0.2mMのdATP、dGTP、dTTP及びdCTP、各0.1ミリグラム のDB130及びGH29プライマー、0.5マイクログラムの人間DNA、及 び1ユニットのTaq DNAポリメラーゼ(パーキンエルマー(Perkin −Elmer)Branchburg,NJ)が、MJ リサーチ DNA エ ンジン熱サイクラー中で増幅された。標本は94°3分間で変性され、それから 93°10秒間、60°40秒間、及び次に75°3分間のサイクルを30回、 この標本中に対して行った。熱サイクラーは、標本が指定された温度に到達した ときに時間測定を始めるべくプログラミングされた。 その結果生じた250bpPCR生成物は、そのプライマーによって記号化さ れた部位(region)以内の生成物を開裂させる、制限エンドヌクレアーゼ Bam HIとPstIによって消化された。PCR生成物は、ポリアクリル アミドゲル電気泳動及びゲルフラグメントからの溶出液によって精製された。プ ラスミドpUC19がBam HI及びPstIでもって消化され、HKホスホ ターゼでもって処理されたエピセンター テクノロジー(Epic entre Technologies),Madison WI)、及びPC R生成物でもってしばられた。アンピシリン耐性のあるコロニーが、標準的フォ ワード とリバース M13プライマー(SEQ ID NO5:5及び6)を使って、プラスミド 中でのPCR生成物の存在に関して選別された。候補としてのバクテリア・コロ ニーが、ポリプロピレン・ピペットの先端ですくいとられて、DNAエンジン熱 サイクラー中で、上に述べたように循環させられたPCR混合物に加えられた。 HLA遺伝子をコード化するPCR生成物が、制限エンドヌクレアーゼ消化によ って地図で表されたミツナガら(Mitsunaga,et al),1995 )。三種の独特のクローンがBESSを使う更なる分析のために選択された。 BESS分析のために、DNA合成が、循環配列決定に類似した方法で、但し ジデオキシ末端混合物の代わりに、以前に述べたようなdGTP、dCTP、d TTP、dATP及びdUTPの混合物とともに、3つのHLAクローンから準 備された。30回の線状増幅の一本鎖の生成物に対して、以前に述べたような1 0mM EDTAの存在下で、UNGとエンドヌクレアーゼIVとでの消化が行わ れ、更にこの結果生成したものが変性ポリアクリルアミドゲル中で電気泳動され た。比較のために、同じ三つのクローンのヌクレオチド配列がシークイサーム サイクル シークエンシング キット(SeqiTherm Cycle Se quencing Kit )エピセンターテクノロジー(Epicentre Technologies ),Madison,WI)を使って決定された。 BESS技法は、各クローンを循環配列決定することによって得られるT配列 レーンと良い関係をもった各HLA遺伝子型用の独特の1セットのバンドを与え た。但し、予測されたように、また先の例におけるように、BESSに由来した バンドは、対応する配列決定のバンドよりもゲル中でもっと迅速に移動した。B ESSを使って得られた配列関係のデータは、標準的循環配列決定を使って得ら れたものよりも、もっと精確でさえあった。このように、BESS生成物レーン に存在しない(ゲルの1つの部位における)ジデオキシ配列決定アーチファクト の存在が、DNA配列データの正しい解決を助けた。この例から、本発明がPC R生成物又は二本鎖のDNA分子を選別する配列に限られないことは明らかであ る。 キットは、BESSを使って人間のDNA標本のHLA遺伝子型を決定するた めにつくられるであろう。以下にリスト化された試薬を含むキットが、PCRを 遂行するために、Tth又はTaq DNAポリメラーゼ(パーキンエルマー社 (Perkin−Elmer Corp.))のような熱に安定なDNAポリメ ラーゼとともに使用できる。キットは下記のものを含みうる:マイクロリットル 当り0.1マイクログラムでのHLA−特定プライマー;各2.5mMのdGT P、dCTP及びdATP、2mM dTTP及び0.5mM dUTP、1. 0mM トリス−HCl、pH9、及び400mM硫酸アンモニウムを含むDN Aポリメラーゼ緩衝液;、マイクロリッター当り1ユニットのウラシル−DNA グリコシラーゼ;50mM EDTA;25mM塩化マグネシウム;マイクロリ ッター当り1ユニットのE.coliエンドヌクレアーゼIV;及び95%ホルム アミド、10mM EDTA、pH9.5、10mM NaOH及び各0.1% のブロモフェノール・ブルー及びキシレンシアノールを含むDNAポリメラーゼ 停止緩衝液。 キットは例1〜4及び図1〜5に記述された方法と類似した方法で使用できる 。具体的には、HLA遺伝子のDQB1基は、以下のものを含む50マイクロリ ットルの混合物中の、末梢血液又はほお(ほおの)スワブから得られた人間のD NAから増幅されうる。即ち混合物中には50mMトリス−HCl、pH9.0 、20mM硫酸アンモニウム、1.5mM塩化マグネシウム、各0.2mMのd ATP、dGTP及びdCTP、0.16mM dTTP、0.04mM dU TP、各0.1マイクログラムのプライマーDB130及びGH29(SEQ ID NOs:3及び4)、約0.5マイクロプログラムの人間のDNA、及び 1ユニットのTaq DNAポリメラーゼ(パーキンエルマー(Perkin− Elmer))が含まれる。そして、この混合物は3分間94℃で変性せられ、 更にそれから93℃10秒間、60℃40秒間、及びそれから75℃で10分間 の順で30回、循環させられうる。それからEDTAを10mMの最終濃縮物に 添加した後、増幅生成物が室温で10分間、ウラシル−DNAグリコシラーゼと エンドヌクレアーゼIVの各1ユニットで処理して開裂されうる。停止緩衝液の添 加後、標本は90℃5分間温置することによって変性され、そしてそれから8% ポリアクリルアミド−8M尿素ゲル中で電気泳動によって分析されうる。BES S手法を使って標本から生じたバンドの移動が、多分キット中の対照として、又 はキット中に含められうるDNAサイズ 標準(いっしょにクローンされたDQB1遺伝子からのBESS反応生成物と比 較されうる。)キット中のプライマーは、幾つかの方法、好ましくは非放射能手 段によってラベルされる。そしてオートメーション化されたスキャナー及び/又 は画像分析システムが対照といっしょに標本のハンド模様を比較するために使わ れうる。 参照文献 US特許文書 U.S.特許4,683,202; U.S.特許4,873,192; U.S.特許5,035,996; U.S.特許5,418,149; 国際特許出願 WO95/06752;シャウとポーター(ShawとPorter);3/ 1995 他の文献 ベマンズら(Bessmans,et al.),「デオキシリボ核酸III の酵素合成、ピリミ ジンとプリン類似体のデオキシリボ核酸へのとり込み"Enzymatic Synthesis of Deoxyribonucleic Acid.III.The Incorporation of Pyrimidine and Purine Ana logs into Deoxyribonucleic Acid ")」,Proc. Natl. Acad. Sci. USA 44:633- 640,1958. ブガワンとエールリッヒ(Bugawan and Ehrlich),「非放射性オリゴマーヌクレ オチドプローブと増幅されたDNAを使うHLA−DQB1 DNA多形性の高 速型("Rapid Typing of HLA-DQB1 DNA Polymorphism Using Nonradioactive Oli gonuleotide probes and Amplified DNA")」,Immunopenetics 33:163-170,1991 . キャノンら(Cannon,et al.),「哺乳類組織内の5−ヒドロキシメチル シト シン DNA グリコシラーゼ活性("5-hydroxymethyl Cytosine DNA Glycosyla se Activity in Mammalian Tissue")」, Biochem. Biophys. Res. Commun. 15 1:1173-1179,1988. Cook,et al.,「α−アンチトリプシン欠陥の検出のための酵素− 標識オリゴヌクレオチド、一地点突然変異欠陥のための酵素活性の最適化("Enzy me-Labeled Oligonucleotides for the Detection of Alpha,-Antitrypsin Defi ciency: Optimization of Enzyme Activity for single Point Mutation Detect ion")」,Annals of Clinical Biochemistry 32:91-93,1995. Cotton,「突然変異検出の現在の方法("Current Methods of Mutation Detection ")」,Mutation Ressearch 285:125-144,1993. コックス(Cox),「アルファーアンチトリプシン欠陥("Alpha,-Antitrypsin Def iciency")」,in The Metabolic Basis of Inherited Disease,6th Edition,Scri ver,et al.eds.,McGraw-Hill,New York,pp.2409-2437,1990. Demple and Harrison,「DNAの酸化損傷の修正("Repair of Oxidative Damage to DNA")」,Annual Rev. Biochemistry 63:915-948,1994. Duncan,「DNAグリコシラーゼ("DNA Glycosylases")」,(1981),in The Enzymes ,Boyer ed.,14:565-586,1981. Fahy,et al.,「自立配列複製(3SR)、PCRに代わる同温転写基盤増幅シ ステム("Self-Sustained Sequence Replication(3SR):An Isothermal Transcrip tion-based Amplification System Alternative to PCR")」,PCR Methods and A pplications 1:25-33,1991. Kwoh,et al.,「転写基盤増幅システムとベッド基盤サンドイッチハイブリダイ ゼーションフォーマットでの増幅されたヒト免疫欠陥ウイルスタイプIの検出(" Transcription-based amplification system and detection of amplified huma n immunodeficiency viru s type I with a bead-besed sandwich hybridization format")」, Proc. Natl. Acad. Sci. USA 86:1173-1177,1989. Lindahl,「脱アミノシトシン残基を含むDNAからの遊離ウラシルを放出する .coli からのNグリコシラーゼ("An N-Glycosylase from Escherichia col i That Releases Free Uracil from DNA Containing Deaminated Cytosine Resi dues")」,Proc. Natl. Acad. Sci. USA 71:3649-3653,1974. Lindahl,「DNAグリコシラーゼ、アプリン/アピリミジン部位に対するエンド ヌクレアーゼ、及び塩基切除−修正("DNA Glycosylases,Endonucleases for Ap urinic/Apyrimidinic Sites,and Base Excision-Repair")」,Progress in Nuc leic Acid Research 22:135-192,1979. Karran and Lindahl,「ポリデオキシヌクレオチド及びDNAを含むデオキシイノ シンモノフォスフェート残基からの遊離ヒポキサンチンの酵素的切り出し("Enzy matic Excision of Free Hypoxanthine from Polydeoxy-nucleotides and DNA C ontaining Deoxyinosine Monophosphate Residues")」,J. Biol. Chem. 253:5877 -5879,1978. Karran and Lindahl,(デオキシリボ核酸中のヒポキサンチン:アデニン残基の熱 誘導加水分解による生成及びウシ胸線由来デオキシリボ核酸グリコシラーゼによ る遊離状態での放出("Hypoxanthine in Deoxyribonucleic Acid:Generation by Heat-Induced Hydrolysis of Adenine residues and Release in Free Form by a Deoxyribonucleic Acid Glycosylase from Calf Thymus")」,Biochemistry 19 ;:6005-6011,1980. Kazazian,et al.,「鎌状赤血球貧血の出生前診断−1998("P renatal Diagnosis of Sickle Cell Anemia-1988")」,Annals of the New York Academv of Sciences 565:44-47,1989. Kunkel,1985,Proc. Natl. Acad. Sci. USA 82:488-492. Maxam and Gilbert,「DNAシークエンシングの新方法("A New Method for Sequ encing DNA")」,Proc. Natl. Acad. Sci. USA 74:560-564,1977. Marajver,et al.,「散在性卵巣腫瘍中のBRCAL遺伝子中の体細胞変移("Som atic Mutations in the BRCAL Gane in Sporadic Ovarian Tumors")」,Nature Genetics 9:439-443,1995. Mitsunaga,et al.,「グループ特異的増幅及び制限断片長多型の組合せによる高 解像度HLA−DQB1判定法("High Resolution HLA-DQB1 Typing by Combina tion of Group-Specific Amplification and Restriction Fragment Length Pol ymorphism")」,Human Immunology 42:307-314,1995. Myers and Gelfand,「サーモスサーモフィリウスDNAポリメラーゼによる逆転 写及びDNA増幅("Reverse Transcription and DNA Amplification by a Tther mus thermophilus DNA Polymerase")」, Biochemistry 30:7661-7666,1991. Nisson,et al.,「ウラシルDNAグリコシラーゼを用いたAlu−PCR生成 物の迅速及び効果的なクローニング("Rapid and Efficient Cloning of Alu-PCR Products Using Uracil DNA Glycosylase",PCR Methods and Applications")」, 1:120-123,1991. Sagher and Strauras,「DNA合成のための終止シグナルとしてのシトシンから の非塩基性部位("Abasic Sites From Cytosine as Termination Signals for DN A Synthesis")」,Nucl. Acids Res. 13(12):4285-4298,1985. Sanger et al.,「鎖終結疎外剤を有するDNAシークエンシング("DNA Sequenc ing with chain-terminating inhibitors")」,Proc. Natl. Acad. Sci. USA 74:5 463-5468,1977. Stahl and Chamberlin,「T7RNAポリメラーゼによるプロモーター利用にDN Aヘリックスの外側のグループが影響する("Groups on the Outside of the DNA Helix Effect Promoter Utilization by T7 RNA Polymerase")」,in RNA Polym erase,Losich and Chamberlin eds.,Cold Spring Harbor Press ,Cold Spring H arbor,N.Y.,pp.429-440,1976. Thorsby and Ronningen,「"特異HLA−DQ分子がタイプ1(インシュリン依存 )ジアベテスメタリス抵抗に対する感受性を決定するのに主要な役割を演じる(" Particular HLA-DQ Molecules play a Dominant Role in Datermining Suscepti bility to Resistance to Type 1(Insulin-Dependent)Diabetes Mellitus")」,D iabetologia 36:371-377,1993. Walker,「ストランド置換増幅("Strand Displacement Amplification")」,In:Nove l Amplification Technologies for DNA/RNA-BasesDiagnostics,サンフランシス コにおいて1994年4月20〜22日にその名前での会議で紹介された本(a b ook presented a meeting of that name on April 20-22,1994 in San Francisc o),CA,organized by International Business Communications,Southborough ,MA,1772-1749. Warner,et al.,1979,J. Biol. Chem. 45(16):4734-7539. Yap and McGee,「PCRによる突然変異の検出("Detection of Mutations by PCR")」,in PCR Technology,Griffin and Griffin,eds.,CRC Pre ss,Boca Raton,FL,pp.107-120,1994.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 スミス,ロバート イー. アメリカ合衆国 53719 ウイスコンシン マデイソン サウス ホワイトニー ウ エイ 2504

Claims (1)

  1. 【特許請求の範囲】 1.下記の(a)、(b)、(c)、及び(d)を含んでなる核酸分子を特性 化するための方法。 (a)下記の(i)〜(v)を含んでなる混合物の存在下でDNAを合成する こと、 (i)核酸鋳型 (ii)ヌクレオチド配列を含むプライマー分子であって、その少なくとも一部 が、鋳型の1部分に対し、それとハイブリッド形成するに十分に相補的であるも の (iii)DNA分子が合成されうるようにプライマーを伸長する酵素 (iv)四種の標準的デオキシヌクレオシドトリホスフェート、及び (v)少なくとも1種の非標準的デオキシヌクオシドトリホスフェートであっ て、そしてこのものは唯一の標準的デオキシヌクレオシドトリホスフェートの代 わりに、合成されたDNAにとり込まれるもので (b)この合成されたDNAから、非標準的デオキシヌクレオシドトリホスフ ェートの塩基部分を切除し、それによって非塩基性部位を創生せしめるN−グリ コシラーゼと、当該DNAとを接触させること、 (c)結果として全ての非塩基性部位でのホスホジエステルバックボーンの開 裂となり、それによって少なくとも2つのDNA断片が創生されるような方法で DNAを処理すること、及び (d)この断片を大きさによって分離すること 2.この大きさで分離した断片を固体支持体上に移し、それからラベルされた 相補的なプローブのそれとのハイブリッド形成によって、当該断片の存在をはっ きり示すことによって、断片が検出される、請求項1の方法。 3.合成されたDNAが検出可能なプローブとともにラベルされている、請求 項1の方法。 4.鋳型がDNA分子であり、且つ工程(a)の酵素がDNA依存DNAポリ メラーゼである、請求項1の方法。 5.酵素が熱的に安定である、請求項4の方法。 6.鋳型がRNA分子であり、且つ工程(a)の酵素がRNA−依存DNAポ リメラーゼである、請求項1の方法。 7.酵素が熱的に安定である、請求項6の方法。 8.非標準的デオキシヌクレオシドトリホスフェートが2′−デオキシウリジ ン−5′−トリホスフェートであり、且つN−グリコシラーゼがウラシル−N− グリコシラーゼである、請求項1の方法。 9.非標準的デオキシヌクレオシドトリホスフェートが2′−デオキシイノシ ン−5′−トリホスフェートであり、且つN−グリコシラーゼがヒポキサンチン −N−グリコシラーゼである、請求項1の方法。 10.修飾された塩基が、合成したDNAをN−グリコシラーゼの処理で損失 しやすい非標準的塩基になるように、この合成したDNAを処理することによっ て、非標準的塩基が合成したDNAへのとり込みの後に修飾される、請求項1の 方法。 11.異った非標準的デオキシヌクレオシドトリホスフェートが各反応で使わ れる、全部で4つのDNA合成反応を提供するために3つの追加DNA合成反応 を提供する、更なる工程を含んでなる、請求項1の方法。 12.請求項11の核酸断片を分析することによって、核酸鋳型の完全なヌク レオチド配列を決定するための方法。 13.工程(C)がDNAを加熱して非塩基性部位でのホスホジエステルバッ クボーンを切断することを含んでなる、請求項1の方法。 14.工程(C)が塩基性溶液を使って、全ての非塩基性部位でのホスホジエ ステルバックボーンの切断を実施することを含んでなる、請求項1の方法。 15.工程(C)が酵素を使って、全ての非塩基性部位でのホスホジエステル バックボーンの切断を実施することを含んでなる、請求項1の方法。 16.工程(C)がAPエンドヌクレアーゼを使って、全ての非塩基性部位で のホスホジエステルバックボーンの切断を実施することを含んでなる、請求項1 の方法。 17.合成工程に於いて少なくとも2つの異った非標準的ヌクレオチドを提供 する工程を更に含んでなり、そして異ったN−グリコシラーゼが各アリコート用 に提供されるように、反応が接触工程において別々のアリコートに分割される、 請求項1の方法。 18.DNA合成が鋳型核酸の増幅方法の一部分である、請求項1の方法。 19.DNA合成が、ポリメラーゼ連鎖反応を使う鋳型核酸の増 幅の一部分である、請求項1の方法。 20.DNA合成がNASBA反応の一部分である、請求項1の方法。 21.DNA合成が3SRの一部分である、請求項1の方法。 22.DNA合成がストランド置換増幅の一部分である、請求項1の方法。 23.電気泳動がDNA断片を分離するために使われる、請求項1の方法。 24.DNA分子が合成されうるように、核酸鋳型に結びつけられたプライマ ーを伸長することができる酵素、4つの標準的デオキシヌクレオシドトリホスフ ェート、少なくとも1つの非標準的デオキシヌクレオシドトリホスフェート、こ の合成されたDNAから各々の非標準的デオキシヌクレオシドトリホスフェート の塩基部分を切除することができるN−グリコシラーゼ、及びAPエンドヌクレ アーゼを含んでなる、核酸鋳型を特性化するためのキット。 25.更に少なくとも1つのプライマー分子を含んでなる、請求項24のキッ ト。
JP51359497A 1995-09-27 1996-09-25 核酸分子を特性化する方法 Expired - Fee Related JP3561523B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/534,799 1995-09-27
US08/534,799 US6190865B1 (en) 1995-09-27 1995-09-27 Method for characterizing nucleic acid molecules
PCT/US1996/015355 WO1997012061A1 (en) 1995-09-27 1996-09-25 Method for characterizing nucleic acid molecules

Publications (2)

Publication Number Publication Date
JPH11512607A true JPH11512607A (ja) 1999-11-02
JP3561523B2 JP3561523B2 (ja) 2004-09-02

Family

ID=24131580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51359497A Expired - Fee Related JP3561523B2 (ja) 1995-09-27 1996-09-25 核酸分子を特性化する方法

Country Status (6)

Country Link
US (1) US6190865B1 (ja)
EP (1) EP0854936A4 (ja)
JP (1) JP3561523B2 (ja)
AU (1) AU704625B2 (ja)
CA (1) CA2233079C (ja)
WO (1) WO1997012061A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534304A (ja) * 2002-05-17 2005-11-17 ニューゲン テクノロジーズ, インコーポレイテッド 核酸の断片化、標識および固定化の方法
JP2018500921A (ja) * 2015-01-12 2018-01-18 10エックス ジェノミクス, インコーポレイテッド 核酸配列決定ライブラリーを作製するためのプロセス及びシステム、並びにこれらを使用して作製したライブラリー
JP2021529548A (ja) * 2018-07-19 2021-11-04 オックスフォード ナノポール テクノロジーズ リミテッド ポリヌクレオチド合成方法、キット、およびシステム
JP2021529549A (ja) * 2018-07-19 2021-11-04 オックスフォード ナノポール テクノロジーズ リミテッド ポリヌクレオチドの合成法、キット、およびシステム

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120160687A1 (en) 1995-03-17 2012-06-28 President And Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US6362002B1 (en) * 1995-03-17 2002-03-26 President And Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
NZ298494A (en) 1995-07-11 1999-09-29 Forfas Trading As Bioresearch Glycosylase mediated detection of nucleotide sequences at candidate loci
WO1998046793A1 (en) * 1997-04-16 1998-10-22 Trevigen, Inc. Detection and mapping of point mutations using partial digestion
WO1999050447A1 (de) * 1998-03-27 1999-10-07 Mira Diagnostika Gmbh Verfahren und nucleinsäureverbindung zum abbau von in-vitro synthetisierten nucleinsäuremolekülen
DK1071811T3 (da) * 1998-04-22 2002-06-17 Entpr Ie Trd As Bioresearch Ie Fremgangsmåde til karakterisering af nukleinsyremolekyler, hvilken fremgangsmåde involverer generering af forlængelige opstrøms-DNA-fragmenter, som er et resultat af spaltningen af nukleinsyre i et abasisk sted
EP1038974A1 (de) * 1999-03-26 2000-09-27 Mira Diagnostica GmbH Verfahren, Oligonucleotide zum Abbau von in-vitro synthetisierten Nucleinsäuremolekülen
EP1041159A3 (de) * 1999-03-26 2000-10-25 MIRA Diagnostika GmbH Verfahren, Oligonucleotide zum Abbau von in-vitro synthetisierten Nucleinsäuremolekülen
AU5631200A (en) 1999-06-22 2001-01-09 President And Fellows Of Harvard College Control of solid state dimensional features
US7668658B2 (en) * 1999-10-13 2010-02-23 Sequenom, Inc. Methods for generating databases and databases for identifying polymorphic genetic markers
IE20000887A1 (en) * 2000-11-03 2002-12-11 Univ College Cork Nat Univ Ie Method for the amplification and optional characterisation of nucleic acids
US20030104428A1 (en) * 2001-06-21 2003-06-05 President And Fellows Of Harvard College Method for characterization of nucleic acid molecules
BR0211155A (pt) * 2001-07-15 2005-02-01 Keck Graduate Inst Amplificação de fragmentos de ácido nucléico com uso de agentes de corte
WO2003035906A2 (en) * 2001-10-26 2003-05-01 Galileo Genomics Method for genotyping microsatellite dna markers by mass spectrometry
US20050064419A1 (en) * 2001-10-26 2005-03-24 Abdelmajid Belouchi Method for genotyping microsatellite dna markers by mass spectrometry
GB0126887D0 (en) * 2001-11-08 2002-01-02 Univ London Method for producing and identifying soluble protein domains
US20040086918A1 (en) * 2002-07-26 2004-05-06 Zvi Loewy Macromolecular protection assay
EP1543154A4 (en) 2002-08-21 2006-08-16 Epoch Biosciences Inc ENDONUCLEASE TEST IN ABASIC SITE
US20040110205A1 (en) * 2002-09-23 2004-06-10 Hui Wang Methods and systems for nanopore data analysis
US7820378B2 (en) * 2002-11-27 2010-10-26 Sequenom, Inc. Fragmentation-based methods and systems for sequence variation detection and discovery
WO2004094666A1 (en) * 2003-04-24 2004-11-04 Dzieglewska, Hanna Allele-specific mutation detection assay
CA2523490A1 (en) * 2003-04-25 2004-11-11 Sequenom, Inc. Fragmentation-based methods and systems for de novo sequencing
WO2005017025A2 (en) 2003-08-15 2005-02-24 The President And Fellows Of Harvard College Study of polymer molecules and conformations with a nanopore
US9394565B2 (en) * 2003-09-05 2016-07-19 Agena Bioscience, Inc. Allele-specific sequence variation analysis
US20060141498A1 (en) * 2003-09-25 2006-06-29 Affymetrix, Inc. Methods for fragmenting nucleic acid
JP2007524407A (ja) * 2003-12-29 2007-08-30 ニューゲン テクノロジーズ, インコーポレイテッド 核酸のメチル化状態を分析するための方法、ならびに核酸の断片化、標識化および固定化のための方法
US7238485B2 (en) 2004-03-23 2007-07-03 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
EP1727911B1 (en) * 2004-03-26 2013-01-23 Sequenom, Inc. Base specific cleavage of methylation-specific amplification products in combination with mass analysis
US7608394B2 (en) 2004-03-26 2009-10-27 Sequenom, Inc. Methods and compositions for phenotype identification based on nucleic acid methylation
US20060073501A1 (en) * 2004-09-10 2006-04-06 Van Den Boom Dirk J Methods for long-range sequence analysis of nucleic acids
US20100022403A1 (en) * 2006-06-30 2010-01-28 Nurith Kurn Methods for fragmentation and labeling of nucleic acids
US7902345B2 (en) 2006-12-05 2011-03-08 Sequenom, Inc. Detection and quantification of biomolecules using mass spectrometry
EP2195452B1 (en) 2007-08-29 2012-03-14 Sequenom, Inc. Methods and compositions for universal size-specific polymerase chain reaction
US20090156412A1 (en) * 2007-12-17 2009-06-18 Helicos Biosciences Corporation Surface-capture of target nucleic acids
FR2928373B1 (fr) 2008-03-05 2010-12-31 Centre Nat Rech Scient Polymere derive de la polyethylenimine lineaire pour le transfert de gene.
US8669061B2 (en) * 2008-06-26 2014-03-11 Roche Molecular Systems, Inc. Method for the prevention of carryover contamination in nucleic acid amplification technologies
US20100279295A1 (en) * 2009-03-18 2010-11-04 Sequenom, Inc. Use of thermostable endonucleases for generating reporter molecules
EP2272976A1 (en) 2009-07-06 2011-01-12 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for differentiation of polynucleotide strands
EP2580588B1 (en) 2010-06-08 2014-09-24 President and Fellows of Harvard College Nanopore device with graphene supported artificial lipid membrane
EP2769007B1 (en) 2011-10-19 2016-12-07 Nugen Technologies, Inc. Compositions and methods for directional nucleic acid amplification and sequencing
GB2533882B (en) 2012-01-26 2016-10-12 Nugen Tech Inc Method of enriching and sequencing nucleic acids of interest using massively parallel sequencing
US9957549B2 (en) 2012-06-18 2018-05-01 Nugen Technologies, Inc. Compositions and methods for negative selection of non-desired nucleic acid sequences
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US9822408B2 (en) 2013-03-15 2017-11-21 Nugen Technologies, Inc. Sequential sequencing
WO2015073711A1 (en) 2013-11-13 2015-05-21 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
WO2015131107A1 (en) 2014-02-28 2015-09-03 Nugen Technologies, Inc. Reduced representation bisulfite sequencing with diversity adaptors
CN107075581B (zh) 2014-08-06 2022-03-18 纽亘技术公司 由靶向测序进行数字测量
US10160987B2 (en) * 2016-04-07 2018-12-25 Rebecca F. McClure Composition and method for processing DNA
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035996A (en) 1989-06-01 1991-07-30 Life Technologies, Inc. Process for controlling contamination of nucleic acid amplification reactions
EP0540693B1 (en) * 1990-07-24 1999-01-20 F. Hoffmann-La Roche Ag THE REDUCTION OF NON-SPECIFIC AMPLIFICATION DURING $i(IN VITRO) NUCLEIC ACID AMPLIFICATION USING MODIFIED NUCLEIC ACID BASES
WO1995006752A1 (en) 1993-09-03 1995-03-09 Duke University A method of nucleic acid sequencing
US5648211A (en) 1994-04-18 1997-07-15 Becton, Dickinson And Company Strand displacement amplification using thermophilic enzymes
NZ298494A (en) 1995-07-11 1999-09-29 Forfas Trading As Bioresearch Glycosylase mediated detection of nucleotide sequences at candidate loci

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534304A (ja) * 2002-05-17 2005-11-17 ニューゲン テクノロジーズ, インコーポレイテッド 核酸の断片化、標識および固定化の方法
JP2018500921A (ja) * 2015-01-12 2018-01-18 10エックス ジェノミクス, インコーポレイテッド 核酸配列決定ライブラリーを作製するためのプロセス及びシステム、並びにこれらを使用して作製したライブラリー
US11414688B2 (en) 2015-01-12 2022-08-16 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
JP2021529548A (ja) * 2018-07-19 2021-11-04 オックスフォード ナノポール テクノロジーズ リミテッド ポリヌクレオチド合成方法、キット、およびシステム
JP2021529549A (ja) * 2018-07-19 2021-11-04 オックスフォード ナノポール テクノロジーズ リミテッド ポリヌクレオチドの合成法、キット、およびシステム

Also Published As

Publication number Publication date
EP0854936A4 (en) 2004-06-23
JP3561523B2 (ja) 2004-09-02
AU7118396A (en) 1997-04-17
AU704625B2 (en) 1999-04-29
EP0854936A1 (en) 1998-07-29
CA2233079A1 (en) 1997-04-03
WO1997012061A1 (en) 1997-04-03
CA2233079C (en) 2002-08-27
US6190865B1 (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP3561523B2 (ja) 核酸分子を特性化する方法
AU708821B2 (en) Glycosylase mediated detection of nucleotide sequences at candidate loci
JP3330946B2 (ja) 一本鎖dna分子の生成方法
JP6166138B2 (ja) CpGメチル化を用いた同定方法
EP1712618B1 (en) Method of amplifying nucleic acid and method of detecting mutated nucleic acid using the same
US8399197B2 (en) Methods for amplifying polymeric nucleic acids
JP2006519621A5 (ja)
EP3250711B1 (en) Method and product for preventing false positives in methods employing ddntp's
WO2000043531A2 (en) Methods and kits for characterizing gc-rich nucleic acid sequences
WO2019062614A1 (en) METHOD FOR AMPLIFYING TARGET NUCLEIC ACID
JP2008161165A (ja) 競合オリゴヌクレオチドを用いた遺伝子検出法
KR20230124636A (ko) 멀티플렉스 반응에서 표적 서열의 고 감응성 검출을위한 조성물 및 방법
US6878530B2 (en) Methods for detecting polymorphisms in nucleic acids
KR20130064197A (ko) 한우 및 수입우 판별에 유용한 단일염기다형성마커 및 이의 용도
EP4317455A1 (en) Target nucleic acid amplification method using guide probe and clamping probe and composition for amplifying target nucleic acid comprising same
JP2008161164A (ja) 人工ミスマッチ核酸を含むプライマーを用いた遺伝子検出法
JP4616988B2 (ja) 三本鎖dna形成技術を応用したdna多型検出方法
RU2264468C2 (ru) Способ определения характеристик последовательности молекулы нуклеиновой кислоты путем обнаружения и характеристики вариаций этой последовательности
WO2020023493A1 (en) Methods and composition for targeted genomic analysis
Thomas Polymerase chain reaction and its various modifications In: Winter School on Vistas in Marine Biotechnology 5th to 26th October 2010

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20031215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees