JPH11349499A - 不飽和炭化水素の分離精製装置および分離精製方法 - Google Patents

不飽和炭化水素の分離精製装置および分離精製方法

Info

Publication number
JPH11349499A
JPH11349499A JP10243562A JP24356298A JPH11349499A JP H11349499 A JPH11349499 A JP H11349499A JP 10243562 A JP10243562 A JP 10243562A JP 24356298 A JP24356298 A JP 24356298A JP H11349499 A JPH11349499 A JP H11349499A
Authority
JP
Japan
Prior art keywords
distillation column
extractive distillation
concentration
column
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10243562A
Other languages
English (en)
Other versions
JP4134391B2 (ja
Inventor
Masanobu Kanouchi
政信 叶内
Yasuhiko Arimori
康彦 有森
Toshihiro Nakano
利洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP24356298A priority Critical patent/JP4134391B2/ja
Priority to DE69926063T priority patent/DE69926063T2/de
Priority to PCT/JP1999/001812 priority patent/WO1999051552A1/ja
Priority to US09/647,789 priority patent/US6413378B1/en
Priority to ES99910847T priority patent/ES2242386T3/es
Priority to EP99910847A priority patent/EP1083160B1/en
Publication of JPH11349499A publication Critical patent/JPH11349499A/ja
Application granted granted Critical
Publication of JP4134391B2 publication Critical patent/JP4134391B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4244Head-, side- and feed stream
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/08Azeotropic or extractive distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/19Sidestream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/01Automatic control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/949Miscellaneous considerations
    • Y10S585/956Condition-responsive control and related procedures in alicyclic synthesis and purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 原料成分のばらつきによらず目的とする不飽
和炭化水素を所定濃度で安定して取り出すことができ
る。 【解決手段】 たとえばブタジエン含有原料と溶剤とを
供給し蒸留してブタジエンを分離精製する抽出蒸留塔4
と、4の所定位置でのブタジエン以外の特定不純物濃度
センサ32,34と、4におけるブタジエンの濃度セン
サと、4の塔頂と塔底との差圧センサ30と、4の塔底
から取り出したブタジエンを含む流体の一部を4へ戻す
戻り流量制御弁48と、4へ供給される溶剤量制御弁2
3と、4の塔頂から取り出した原料の残存成分の一部を
4へ環流させる環流流量制御弁28と、4の塔底温度制
御ヒータ36と、これらセンサに基づき所定時間後の特
定不純物の濃度、塔頂におけるブタジエン濃度、塔頂と
塔底との差圧の予測値を算出し、それに基づき制御する
予測制御手段60とを有する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、不飽和炭化水素の
分離精製装置および方法に係り、さらに詳しくは、原料
成分のばらつきによらず目的とする不飽和炭化水素を所
定濃度で安定して取り出すことができる不飽和炭化水素
の分離精製装置および方法に関する。
【0002】
【従来の技術】不飽和炭化水素としての1,3−ブタジ
エンやイソプレンのような共役ジエン類は、一般にナフ
サをクラッキングし、エチレン、プロピレンなどのC
およびC炭化水素を分離して得られるC
分やC留分から抽出溶剤を用いて抽出蒸留により、
分離精製されている(特公昭45−17405号公報、
特公昭45−17411号公報、特公昭47−4132
3号公報、特開昭56−83421号公報など)。
【0003】通常、抽出蒸留は抽出蒸留塔と放散塔より
なる装置を用いて行われる。C留分またはC留分
中の溶剤に比較的容易に溶解する共役ジエン類は、抽出
蒸留塔の塔底から溶剤との混合物として取り出され、放
散塔に送られて、共役ジエン類と溶剤とに分離され、溶
剤は抽出蒸留塔に返送される。
【0004】従来の共役ジエン類の分離精製装置および
分離精製方法では、安定した品質の共役ジエン類を分離
精製するために、抽出蒸留塔への溶剤の供給量制御、抽
出蒸留塔の塔頂から取り出した原料の残存成分(原料か
ら共役ジエン類を抽出した残り)の一部を流量制御して
前記抽出蒸留塔へ還流させる還流量制御、抽出蒸留塔の
塔底温度制御などを行うことが一般的であった。
【0005】
【発明が解決しようとする課題】しかしながら、このよ
うな従来の共役ジエン類の分離精製装置および分離精製
方法では、抽出蒸留塔へ供給される原料の組成がばらつ
いた場合などには、塔から取り出すべき目的とする共役
ジエン類の濃度がばらつき、安定した品質の共役ジエン
類を取り出すことが困難であった。
【0006】なお、抽出蒸留塔から高濃度で且つ一定濃
度の共役ジエン類の抽出液を取り出すために、抽出蒸留
塔の塔底から取り出した抽出物を抽出蒸留塔へ戻し、そ
の戻り量をも制御することが好ましい。しかし、抽出蒸
留塔への戻り量は、溶剤量、塔底温度、塔底圧力、原料
供給量、原料中の共役ジエン類の濃度などに応じて変動
させないと、抽出蒸留塔では、目的とするブタジエンや
イソプレンなどの共役ジエン類の濃度と、それ以外の特
定不純物の濃度とを一定に保つことができない。しか
も、このような制御をオペレータの手操作では対応する
ことは不可能に近い。そこで、現状では、抽出蒸留塔か
ら取り出す共役ジエン類の濃度を多少変動させても運転
のし易さを優先させ、戻り量を制御することなく、次工
程へ送る流量を制御し、余剰量を戻り量としている。そ
のため、抽出蒸留塔から取り出した共役ジエン類の濃度
変動が大きかった。特に、共役ジエン類の分離精製装置
に用いる最初の抽出蒸留塔において、取り出した共役ジ
エン類の濃度変動が大きいと、その後のプロセスで共役
ジエン類の純度を高めることが困難になり、安定して高
純度の共役ジエン類を得ることが困難になる。
【0007】本発明は、このような実状に鑑みてなさ
れ、原料成分のばらつきや原料供給量の変動によらず目
的とする共役ジエン類などの不飽和炭化水素を所定濃度
で安定して取り出すことができる不飽和炭化水素の分離
精製装置および方法を提供することを目的とする。
【0008】
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る不飽和炭化水素の分離精製装置は、不
飽和炭化水素を含有する原料と溶剤とが供給され、当該
原料を蒸留して目的とする不飽和炭化水素を分離精製す
る抽出蒸留塔と、前記抽出蒸留塔または抽出蒸留塔に接
続されるその他の塔(以下、「抽出蒸留塔等」とも言
う)での目的とする不飽和炭化水素以外の特定不純物の
濃度を検出する不純物濃度検出手段と、前記抽出蒸留塔
等における目的とする不飽和炭化水素の濃度を検出する
目的物濃度検出手段と、前記抽出蒸留塔の塔底から取り
出した目的とする不飽和炭化水素を含む流体の一部を流
量制御して前記抽出蒸留塔へ戻す戻り量制御手段と、前
記抽出蒸留塔へ供給される溶剤の量を制御する溶剤量制
御手段と、前記抽出蒸留塔の塔頂から取り出した原料の
残存成分(原料から不飽和炭化水素を抽出した残存成分
を意味するが、多少不飽和炭化水素も含まれる;以下同
じ)の一部を流量制御して前記抽出蒸留塔へ還流させる
還流量制御手段と、前記抽出蒸留塔の塔底の温度を制御
する塔底温度制御手段と、前記不純物濃度検出手段およ
び目的物濃度検出手段により検出した検出値に基づき、
所定時間後の特定不純物の濃度、目的とする不飽和炭化
水素の濃度の予測値を算出し、当該予測値に基づき、前
記戻り量制御手段、溶剤量制御手段、還流量制御手段お
よび塔底温度制御手段を制御する予測制御手段とを有す
る。
【0009】また、本発明に係る不飽和炭化水素の分離
精製方法は、不飽和炭化水素を含有する原料と溶剤とを
抽出蒸留塔に供給する工程と、前記抽出蒸留塔等におけ
る目的とする不飽和炭化水素以外の特定不純物の濃度を
検出する工程と、前記抽出蒸留塔等における目的とする
不飽和炭化水素の濃度を検出する工程と、 前記抽出蒸
留塔の塔頂と塔底との差圧を検出する工程と、前記抽出
蒸留塔の塔底から取り出した目的とする不飽和炭化水素
を含む流体の一部を流量制御して前記抽出蒸留塔へ戻す
工程と、前記抽出蒸留塔へ供給される溶剤の量を制御す
る溶剤量の制御工程と、前記抽出蒸留塔の塔頂から取り
出した原料の残存成分の一部を流量制御して前記抽出蒸
留塔へ還流させる還流量の制御工程と、前記抽出蒸留塔
の塔底の温度を制御する塔底温度の制御工程と、前記不
純物濃度検出工程および目的物濃度検出工程により検出
した検出値に基づき、所定時間後の特定不純物の濃度、
目的とする不飽和炭化水素の濃度の予測値を算出し、当
該予測値に基づき、前記戻り量、溶剤量、還流量および
塔底温度を制御する予測制御工程とを有する。
【0010】本発明において使用される溶剤は、ジメチ
ルホルムアミド、ジエチルホルムアミド、ジメチルアセ
トアミドなどのN−アルキル置換低級脂肪酸アミド、フ
ルフラール、N−メチルピロリドン、ホルミルモルホリ
ン、β−メトキシプロピオニトリルなどの、炭化水素留
分からジオレフィン抽出蒸留用溶剤として用いられてい
るものが例示される。これらの溶剤は単独で使用できる
のみならず、2種以上を混合して使用してもよいし、ま
た沸点を調整するため、水、メタノールなどを適当量混
合してもよい。さらには、ジオレフィン類、アセチレン
類の重合を防止する重合防止剤、酸化防止剤、消泡剤な
どを併用することもできる。
【0011】抽出溶媒は、抽出蒸留塔において、不飽和
炭化水素を含有する石油留分を供給する段(石油留分供
給段)よりも、通常、上段の位置に設けられた抽出溶媒
供給段から抽出蒸留塔に供給されることが好ましい。
【0012】また、重合禁止剤を抽出溶媒の供給段より
も上段の位置から連続供給しても良い。抽出溶媒供給段
よりも上段の位置としては、たとえば、抽出溶媒フィー
ド段よりも上段の抽出蒸留塔の側部、抽出蒸留塔頂部の
凝縮器の入口あるいは出口が挙げられる。これらのう
ち、塔頂部凝縮器の入口に設けるのが、凝縮器内での重
合体の生成を抑えることができるとともに、セパレータ
ー後の次工程においても重合体の生成を抑えることがで
きるので好ましい。この重合禁止剤が連鎖移動反応によ
り重合禁止または抑制するものであることが好ましい。
重合禁止剤がジ低級アルキルヒドロキシルアミンである
ことが好ましい。
【0013】本発明で使用する原料(石油留分)は、不
飽和炭化水素を含有するものである。石油留分は、通
常、ナフサをクラッキングして分離したものである。石
油留分としては、炭素2個の炭化水素を主として含有す
るC留分、炭素3個の炭化水素を主として含有する
留分、炭素4個の炭化水素を主として含有するC
留分、炭素5個の炭化水素を主として含有するC
留分などがある。これらの中でも、抽出蒸留などに
より不飽和炭化水素の濃度を高めたものが好ましく、不
飽和炭化水素として共役ジエン類を多く含有するものが
好ましく、特に、ブタジエンを多く含有するC留分
かイソプレンを多く含有するC留分が好ましい。
【0014】本発明の装置および方法は、石油留分中の
不飽和炭化水素の濃度が、通常、90%以上、好ましく
は95%以上のもの(具体的には石油留分を抽出蒸留し
て不飽和炭化水素の濃度を高めたもの)を得ようとする
場合に適用することが効果的である。
【0015】
【発明の実施の形態】以下、本発明を、図面に示す実施
形態に基づき説明する。図1は共役ジエン類の分離精製
装置の全体構成を示す概略図、図2は図1に示す第1抽
出蒸留塔の制御方法を示す概略図、図3は図2に示す予
測制御手段の制御方法を示すフローチャート図、図4は
測定データと制御操作対象との関係を示すグラフ、図5
はブテン類の分離精製装置の全体構成を示す概略図であ
る。
【0016】第1実施形態 本実施形態では、不飽和炭化水素としての共役ジエン類
を含有するC留分またはC留分からの共役ジエ
ン類の分離精製プロセスについて説明する。
【0017】図1に示すように、C留分またはC
留分は、まず、蒸発塔2で気化させて第一抽出蒸留
塔4へと供給される。また、溶剤は第一抽出蒸留塔4の
留分またはC留分供給部位より上段に供給され
る。第一抽出蒸留塔4の塔底から共役ジエン類を含有す
る溶剤が放散塔8の塔頂より数段下へ供給され、塔内で
共役ジエン類と溶剤が分離される。塔底温度は、通常
0.5〜5気圧である塔内圧力における溶剤の沸点にな
るように操作する。放散塔8の塔頂からは、共役ジエン
類が取り出され、一部は、さらに第二抽出蒸留塔12へ
送られ、精製操作を受け、残りは第一抽出蒸留塔4へと
戻される。放散塔8の塔底からは通常100〜200℃
の溶剤が取り出される。
【0018】本実施形態においては、第一抽出蒸留塔の
塔底近くの不純物濃度の変化、第一抽出蒸留塔塔頂より
放出されるガス中の共役ジエン類濃度の変化を検出し、
その変化量に応じて、第一抽出蒸留塔4への溶剤供給量
の制御、放散塔8から第一抽出蒸留塔4への戻り流量の
制御、第一抽出蒸留塔4の塔頂での還流量の制御、およ
び第一抽出蒸留塔4の塔底温度の制御を行うことによ
り、一定の濃度の共役ジエン類が抽出できる。
【0019】以下、例として、C留分からブタジエ
ンを分離精製するプロセスについて具体的に説明する。
【0020】図1に示すように、ブタジエンを含有する
原料(ナフサ中のC成分)BBFを蒸発塔2へ供給
し、原料BBFをガス化する。蒸発塔2では、BBFを
ガス化するために、塔内温度が、好ましくは20〜80
℃、さらに好ましくは40〜80℃に保持され、塔内圧
力は、絶対圧力で、好ましくは2〜8気圧、さらに好ま
しくは4〜6気圧に保持される。
【0021】この蒸発塔2にてガス化された原料BBF
は、次に、第1抽出蒸留塔4へ供給される。第1抽出蒸
留塔4には、ガス化された原料BBFと共に抽出溶剤が
供給される。第1抽出蒸留塔4へ供給される溶剤の量
は、後述するように制御されるが、一般的には、原料B
BFが100重量部に対して、好ましくは100〜10
00重量部、さらに好ましくは200〜800重量部と
なるように供給する。溶剤の温度は、低い方が溶解度が
高く好ましいが、第1抽出蒸留塔4の内部温度や還流量
の増減に影響するために、好ましくは10〜100℃、
さらに好ましくは20〜60℃である。
【0022】抽出溶剤としては、共役ジエン類の一例と
してのブタジエンを溶解抽出することができるものであ
れば、特に限定されないが、具体的には、アセトン、メ
チルエチルケトン、ジオキサン、イソプレンサイクリッ
クサルホン、アセトニトリル、アルコール、グリコー
ル、N−メチルロールダミン、N−エチルコハク酸イミ
ド、N−メチルピロリドン、N−メチル−2−ピロリド
ン、ヒドロキシルエチルピロリドン、N−メチル−5−
メチルピロリドン、フルフラール、2−ヘプテノン、ジ
メチルホルムアミド、ジメチルアセトアミド、N,N−
ジメチルアセトン酢酸アミド、 モルホリン、N−ホル
ミルモルホリン、N−メチルモルホリン−3−オン、ス
ルホラン、メチルカルビトール、テトラヒドロフラン、
アニリン、N−メチルオキサゾリドン、N−メチルイミ
ダゾール、N,N’−ジメチルイミダゾリン−2−オ
ン、1−オキソ−1−メチルフォスホリン、メチルシア
ノアセテート、エチルアセトアセテート、エチルアセテ
ート、マロン酸ジメチルエステル、プロピレンカーボネ
ート、メチルカービトール、トリエチルホスフェート、
ジエチレングリコールモノメチルエーテル、ジメチルス
ルホキシド、γ−ブチロラクトンなどが挙げられる。本
実施形態では、抽出溶媒としては、これらのうち、アミ
ド化合物、特にジメチルホルムアミドが好適である。
【0023】抽出溶媒は、第1抽出蒸留塔4において、
共役ジエン類を含有する石油留分(原料BBF)を供給
する段(石油留分供給段)よりも上段の位置に設けられ
た抽出溶媒供給段から第1抽出蒸留塔4に供給される。
【0024】図1および2に示す第1抽出蒸留塔4の塔
頂において、揮発度(溶解度)がブタジエン以上のガス
を分離し、原料BBFからブタジエン分を分離した残存
ガスBBRを取り出し、塔底からは高濃度のブタジエン
抽出液を取り出すために、第1抽出蒸留塔4の塔底圧力
は、絶対圧力で、好ましくは、1〜10気圧、さらに好
ましくは5〜7気圧、塔底温度は、好ましくは、100
〜160℃、さらに好ましくは110〜130℃に制御
される。
【0025】第1抽出蒸留塔4の塔底において、塔底か
ら出ていく溶剤に溶け込むC4留分の溶解量は、その塔
底における溶剤量、温度、圧力によって決定される。し
たがって、第1抽出蒸留塔4の塔底から一定濃度のブタ
ジエン抽出液を取り出すためには、第1抽出蒸留塔4の
塔底における溶剤量、塔頂の還流量、塔底温度などを制
御する必要がある。また、第1抽出蒸留塔4の塔底から
取り出すブタジエン抽出液の濃度を高濃度にするために
は、後述するように、第1抽出蒸留塔4の塔底から取り
出した抽出液、または必要に応じて放散塔8を介して溶
媒を除去した一部を第1抽出蒸留塔4へ戻す必要があ
る。本実施形態では、後述するように、第1抽出蒸留塔
4の塔底から取り出した抽出液を第1抽出蒸留塔4への
戻り量の制御をも行っている。
【0026】第1抽出蒸留塔4の塔頂から取り出された
残存ガスBBRは、図示省略してある残存成分タンクへ
送り、残存ガスBBRの一部は、図示省略してある凝縮
器にて凝縮して第1抽出蒸留塔4の塔頂に戻して還流さ
せる。この残存ガスBBRの還流量も、後述するように
制御される。
【0027】図1および2に示す第1抽出蒸留塔4の塔
底では、目的とするブタジエンを高濃度に含む抽出液が
取り出され、放散塔8へ送られる。放散塔8では、塔底
圧力が絶対圧力で1〜3気圧に保持され、塔底温度が1
50〜200℃に保持され、抽出液から溶剤を分離し、
塔底から排出する。放散塔8の塔頂では、溶剤が分離さ
れたブタジエンを多く含む放散ガスが発生し、その放散
ガスの一部を凝縮器にて凝縮する場合は、凝縮分は、放
散塔8の塔頂に戻して還流される。未凝縮分はコンプレ
ッサ10を介して、一部は第1抽出蒸留塔4へと戻さ
れ、残りは第2抽出蒸留塔12へと送られる。放散ガス
を凝縮器にて全凝縮する場合は、凝縮液の一部は放散塔
8の塔頂に戻して還流され、残りはコンプレッサ10を
介して、一部は第1抽出蒸留塔4へと戻され、さらにそ
の残りが第2抽出蒸留塔12へと送られる。第1抽出蒸
留塔4へ戻されるのは、このように気体として戻される
場合と液体として戻される場合があるが、いずれの場合
もその戻り量は、後述のように制御される。
【0028】この第2抽出蒸留塔12では、揮発度(溶
解度)がブタジエン以下の不純物を塔底から分離し、塔
頂では、高濃度のブタジエンを含むガスを取り出すため
に、塔底圧力が絶対圧力で3〜6気圧に保持され、塔底
温度が100〜150℃に保持される。この第2抽出蒸
留塔12の塔底から分離された不純物を多く含む抽出液
は、第1放散塔13へ導かれる。第1放散塔13では、
塔底圧力が絶対圧力で1〜3気圧に保持され、塔底温度
が120〜180℃に保持され、抽出液からブタジエン
を分離し、ブタジエンを含む放散ガス2を放散塔8の凝
縮器入り口へと戻す。第1抽出蒸留塔4の塔底液は、第
二放散塔14へと送られる。第二放散塔14では、塔底
圧力が絶対圧力で1〜3気圧、塔底温度が150〜20
0℃に保持され、抽出液から溶剤を分離し、塔底から排
出され再使用される。放散ガスは塔頂から排出される。
【0029】第2抽出蒸留塔12の塔頂から取り出した
ブタジエンを多く含む蒸留ガスは、低沸点物除去塔16
および高沸点除去塔18へと順次送られる。低沸点物除
去塔16では、塔底圧力を3〜7気圧、塔底温度を30
〜60℃にすることで、ブタジエンよりも低沸点の不純
物であるメチルアセチレンを除去する。また、高沸点物
除去塔18では、塔底圧力で3〜7気圧、塔底温度を4
0〜70℃にすることで、ブタジエンよりも高沸点の不
純物、例えば、シス−2−ブテン、1,2−ブタジエ
ン、エチルアセチレンなどを除去する。本実施形態で
は、最終的に得られる抽出液中のブタジエンの濃度は9
9%以上となる。
【0030】次に、図2〜4を主として参照し、本実施
形態に係る第1抽出蒸留塔4の制御装置および制御方法
について説明する。
【0031】図2に示すように、第1抽出蒸留塔4の中
段には、ブタジエンを含む原料(石油留分)BBFが供
給される原料供給ライン20が接続してある。原料供給
ライン20には、原料流量計21が装着してあり、第1
抽出蒸留塔4へ供給する原料の流量を計測するようにな
っている。原料流量計21で計測した原料流量データ
は、予測制御手段60へ入力するようになっている。予
測制御手段60は、メモリ回路を持つ特定の電気回路、
汎用パソコン、汎用コンピュータ、大型コンピュータな
どで構成してあり、後述する制御を行うためのプログラ
ムが記憶してある。なお、後述する制御を行うためのプ
ログラムの代わりに、そのような動作を行う論理回路で
あっても良い。
【0032】第1抽出蒸留塔4において、原料供給ライ
ン20の上段側には、溶剤供給ライン22が接続してあ
り、ブタジエンの抽出溶剤を第1抽出蒸留塔4内に供給
するようになっている。溶剤供給ライン22には、溶剤
流量制御弁23が装着してあり、予測制御手段60から
の出力信号に基づき、第1抽出蒸留塔4内に供給する流
量を制御するようになっている。制御方法については後
述する。
【0033】第1抽出蒸留塔4の塔頂には、残存ガス排
出ライン24が接続してあり、第1抽出蒸留塔4内で原
料からブタジエンを抽出した残りの残存ガス(ただし、
多少のブタジエンは含まれる)の一部を図示省略してあ
る残存成分タンクへと排出するようになっている。排出
ライン24には、還流ライン26も接続してあり、排出
ライン24で取り出した残存ガスの一部を、第1抽出蒸
留塔4内の塔頂部へ還流するようになっている。
【0034】第1抽出蒸留塔4の塔頂近くの排出ライン
24には、塔頂におけるブタジエン濃度を検出するため
の目的物濃度センサ25(目的物濃度検出手段)と、塔
頂での内部圧力を計測するための塔頂圧力センサ27が
装着してある。目的物濃度センサ25としては、たとえ
ばガスクロマトグラフィを用いることができる。圧力セ
ンサ27としては、汎用の圧力センサを用いることがで
きる。これらセンサ25および27の出力信号は、予測
制御手段60へ入力される。
【0035】還流ライン28には、還流量制御手段とし
ての制御弁28が装着してあり、予測制御手段60から
の出力信号により制御弁28の開度を制御し、還流量を
制御するようになっている。
【0036】図2に示す例では、第1抽出蒸留塔4に
は、その塔頂内と塔底内との圧力差圧を検出する差圧検
出手段として差圧センサ30が装着してある。この例で
は、差圧センサ30で検出した塔頂−塔底差圧データ
は、予測制御手段60へ入力するようになっている。こ
の圧力差圧の変化による予測制御は、抽出物の組成の安
定性への寄与は小さいが、安全性の面への寄与が大き
く、予測制御を行うことが好ましい。
【0037】第1抽出蒸留塔4の下から7段目には、7
段目において存在するトランス−2−ブテンおよびシス
−2−ブテンなどの不純物の濃度を計測する第1および
第2不純物濃度センサ(不純物濃度検出手段)32およ
び34が装着してある。第1不純物濃度センサ32が、
シス−2−ブテンの濃度を検出し、第2不純物濃度セン
サ34がトランス−2−ブテンの濃度を計測するように
なっている。これら濃度センサ32および34は、これ
らの濃度を検出することができるものであれば特に制限
はないが、たとえばガスクロマトグラフィなどで構成さ
れる。これら濃度センサ32および34で検出した濃度
データは、予測制御手段60へ入力するようになってい
る。
【0038】なお、第1センサおよび第2センサの位置
は第1抽出蒸留塔4の下から7段目に限定されない。例
えば、下から15段目のあたりでも、放散塔8からの放
散ガスライン44上でも、凝縮液ライン51でもよい。
これらの部位では、濃度データは一致しないものの、濃
度変化量は強い相関関係を有し、いづれかの位置での濃
度を連続的に測定していれば、他の部位での濃度も正確
に判断できる。また、予測制御手段においては、濃度デ
ータを濃度変化データに変換して用いているので、これ
らの部位での濃度変化が正確に測定できれば、正確な予
測制御が可能である。
【0039】第1抽出蒸留塔4の塔底には、塔底温度制
御手段としての塔底ヒータ36が具備してあり、予測制
御手段60からの濃度変化データに応じた出力信号に基
づき、塔底温度を制御するようになっている。塔底温度
は、前述したように、一般的には、100〜160℃に
保持されるが、本実施形態では、この温度範囲内で、予
測制御手段60からの出力信号に基づき、塔底温度を制
御する。リボイラー36の熱源としては、スチームに限
らず、温水、熱媒などを例示することができる。もちろ
ん、このリボイラー36は温度制御が可能である。
【0040】第1抽出蒸留塔4の塔底には、第1抽出ラ
イン38が接続してあり、塔底に存在するブタジエンを
高濃度に含む抽出液(溶剤含有)は放散塔8に送られ
る。放散塔8では、前述したように、抽出液から溶剤を
分離し、塔底から排出する。放散塔8の塔頂では、溶剤
が分離されたブタジエンを多く含む放散ガスが発生し、
そのガスは、その塔頂から第3抽出ライン44を通して
コンプレッサ10により第2抽出蒸留塔12へと送られ
る。第3抽出ライン44には、戻りライン46が接続し
てある。戻りライン46は、第1抽出蒸留塔4の塔底近
くの段に接続してあり、第3抽出ライン44を通して運
ばれるブタジエンを多く含む放散ガスまたはその凝縮液
を第1抽出蒸留塔4内に戻すようになっている。
【0041】戻りライン46には、ライン内流量を検出
する戻り流量計50、ラインを流れる流体の流量を制御
する戻り流量制御弁48が装着してある。制御弁48
は、予測制御手段60からの出力信号に応じて制御さ
れ、戻りライン46を通して第1抽出蒸留塔4内に戻さ
れる流体の流量を制御する。制御弁48および流量計5
0が戻り量制御手段に相当する。放散ガスの一部を気体
のまま第一抽出蒸留塔4へ戻した場合は、放散ガスの残
りは、圧力センサー52の値を制御弁56で制御しなが
ら、第二抽出蒸留塔12へと送られる。放散ガスの凝縮
液を第一抽出蒸留塔4へ戻した場合は、凝縮液の残り
は、凝縮液受ドラムの液レベルを制御弁56で制御しな
がら第二抽出蒸留塔12へと送られる。
【0042】本発明においては、予測制御手段は特に限
定されないが、一例として、図3および4に基づき、図
2に示す予測制御手段60による制御方法を説明する。
図3に示すステップS1にて制御がスタートすると、ス
テップS2にて、図2に示す予測制御手段60は、デー
タCVi(i=1〜4)を読み込む。CV1は、図2に
示す抽出蒸留塔2の7段目において不純物濃度センサ3
2により検出したシス−2−ブテンの濃度データであ
る。CV2は、図2に示す抽出蒸留塔2の7段目におい
て不純物濃度センサ34により検出したトランス−2−
ブテンの濃度データである。CV3は、図2に示す抽出
蒸留塔2の塔頂に装着してある目的物濃度センサ25に
より検出したブタジエンの濃度データである。CV4
は、図2に示す抽出蒸留塔2の差圧センサ30により検
出した塔頂−塔底差圧データであって、前述のように制
御に必須のデータではないが、これを用いて制御すると
安全性が高まるので、用いることが好ましいものであ
る。
【0043】次に、図3に示すステップS3では、図2
に示す予測制御手段60に記憶してある制御モデルか
ら、前記データCV1〜CV4に基づき、t秒後のデー
タCV1〜CV4を予測し、その値をFCV1〜FCV
4とする。予測制御手段60に記憶してある制御モデル
は、以下の数式に基づき決定される制御モデルであり、
実際の第1抽出蒸留塔4における測定データCV1〜C
V4と制御操作対象(戻り量MV1、溶剤量MV2、還
流量MV3、塔底温度MV4)との関係を数式によりモ
デル化したものである。
【0044】
【数1】
【0045】上記式において、Gijは、CVi(i=
1〜4)とMVj(j=1〜4)との伝達関数を示し、
Sは、ラプラス変換計算のパラメータであり、aij
、cijは、CVi(i=1〜4)とMVj(j
=1〜4)との組合せに対応するプロセス固有の値であ
り、ステップテストの結果により求められる。なお、ス
テップテストとは、MVj(j=1〜4)を任意量ステ
ップ状に変化させて、CVi(i=1〜4)の応答デー
タを求めることである。
【0046】このような数式によりモデル化された制御
モデルを用いて、図3に示すステップS3では、所定時
間(t秒)後のデータCV1〜CV4を予測し、その値
をFCV1〜FCV4とする。なお、t秒後とは、特に
限定されないが、たとえば600〜3600秒後であ
る。
【0047】次に、図3に示すステップS4では、各デ
ータCV1〜CV4毎に予め設定された目標値PCVi
と前記の予測値FCViとの差Ai(i=1〜4)を計
算する。次に、ステップS5では、これらの差Aiが−
αi(マイナス許容値)から+αi(プラス許容値)の
所定範囲内にあるか否かを確認する。これらの差Aiが
所定範囲内にあるとは、t秒後のCViの予測値FCV
iが、それぞれ許容範囲内にあることを意味する。な
お、許容値αiは、CVi毎に決定され、特に限定され
ないが、各目標値PCViの1〜10%程度である。
【0048】ステップS5にて、これらの全ての差Ai
が許容値であれば、t秒後のCViの予測値FCViが
許容範囲であるので、制御操作対象MV1〜MV4を現
在の状態に維持し、ステップS2以降のステップを繰り
返す。ステップS5にて、これらの差Aiのうちの一つ
でも許容値から外れた場合には、該当する予測値FCV
iが許容範囲から外れることを意味するので、ステップ
S6へ行き、許容値から外れた予測値FCViを、許容
値に入る方向に変動させるように、制御操作対象MVi
の現在の設定値を変更する。たとえば許容値から外れた
予測値FCViを下げる方向に制御したい場合には、図
4に示す矢印の方向に、制御操作対象MViの現在の設
定値を変動させる。図4において、上向きの矢印が、制
御操作対象MViの現在の設定値を上げることを意味す
る。
【0049】たとえば図2に示す濃度センサ32で検出
したデータCV1に対応する7段シス−2−ブテンの濃
度予測値FCV1が所定範囲から外れて上昇する場合に
は、この7段シス−2−ブテンの濃度予測値FCV1を
下げるために、以下のように制御操作対象MViの現在
の設定値を変化させる。すなわち、図2に示す予測制御
手段60により制御弁48を操作して、戻りライン46
を通して第1抽出蒸留塔2へ戻る戻り量MV1を増大さ
せる。また、図2に示す予測制御手段60により制御弁
23を制御して、溶剤供給ライン22を通して第1抽出
蒸留塔4へ供給される溶剤量MV2を減少させる。ま
た、図2に示す予測制御手段60により還流ライン26
の制御弁28を制御して、還流量MV3を減少させる。
さらに、図2に示す予測制御手段60によりヒータ36
を制御して、塔底温度MV4を上昇させる。
【0050】同様に、図2に示す濃度センサ34で検出
したデータCV2に対応する7段トランス−2−ブテン
の濃度予測値FCV2が所定範囲から外れて上昇する場
合には、このFCV2を下げるために、図4に示す示す
矢印の方向にしたがって、制御操作対象MViの現在の
設定値を変化させる。同様に、図2に示す濃度センサ2
5で検出したデータCV3に対応する塔頂におけるブタ
ジエン濃度の予測値FCV3が所定範囲から外れて上昇
する場合には、このFCV3を下げるために、図4に示
す示す矢印の方向にしたがって、制御操作対象MViの
現在の設定値を変化させる。図2に示す差圧センサ30
で検出したデータCV4に対応する塔頂−塔底差圧の予
測値FCV4が所定範囲から外れて上昇する場合には、
このFCV4を下げるために、図4に示す示す矢印の方
向にしたがって、制御操作対象MViの現在の設定値を
変化させることが、安全上好ましい。なお、データCV
1〜CV4に対応する予測値FCV1〜FCV4が所定
範囲から外れて低下する場合には、図4に示す矢印と逆
の方向に、予測制御手段60により制御操作対象MVi
を制御する。
【0051】このような本実施形態に係る第1抽出蒸留
塔4の制御方法を実施することで、7段シス−2−ブテ
ンの濃度CV1の変動幅を0.63%(min8.50
−max9.13%)程度に小さくすることができる。
ちなみに従来の制御では、7段シス−2−ブテンの濃度
CV1の変動幅は1.29%(min7.79−max
9.08%)であった。また、本実施形態の方法によれ
ば、7段トランス−2−ブテンの濃度CV2の変動幅を
0.32%(min1.35−max1.67%)程度
に小さくすることができる。ちなみに従来の制御では、
7段トランス−2−ブテンの濃度CV2の変動幅は0.
54%(min1.28−max1.82%)であっ
た。また、本実施形態の方法によれば、塔頂ブタジエン
濃度CV3の変動幅を0.21%(min0.19−m
ax0.40%)程度に小さくすることができる。ちな
みに従来の制御では、塔頂ブタジエン濃度CV3の変動
幅は0.29%(min0.13−max0.42%)
であった。
【0052】本実施形態の装置および方法によれば、第
1抽出蒸留塔4の塔底付近において、不純物としてのシ
ス−2−ブテンおよびトランス−2−ブテンの濃度CV
1およびCV2の変動幅を抑制すると共に、塔頂ブタジ
エン濃度の変動幅を抑制することで、塔底から取り出す
抽出液に含まれるブタジエンの濃度を安定化させること
ができる。その結果、その後のプロセスで共役ジエン類
の純度を高めることが容易になり、安定して高純度の共
役ジエン類を得ることができる。
【0053】第2実施形態 本実施形態では、共役ジエン類以外の不飽和炭化水素の
分離精製プロセスについて説明する。本実施形態では、
図1に示す前記第1実施形態のC留分またはC
留分からの共役ジエン類の分離精製プロセスで副次的に
発生した残存ガスBBR(原料BBFからブタジエン分
を分離した残存ガス)を原料として、ブテン類を分離精
製する。
【0054】残存ガスBBR中には、ブテン類が30〜
80%含まれており、その他がブタン類となる。図5に
示すように、残存ガスBBRは、蒸発塔101へ供給さ
れ、そこで気化させて抽出蒸留塔102へと供給され
る。
【0055】また、溶剤は、第一抽出蒸留塔102のB
BR供給部位より上段に供給される。抽出蒸留塔102
の塔底からブテン類を含有する溶剤が取り出される。B
BRに含まれているブタン類のほとんどは、塔頂から排
出される。抽出蒸留塔102の塔底から取り出されたブ
テン類を含有する溶剤は、放散塔103の塔頂より数段
下へ供給され、放散塔塔内でブテン類と溶剤が分離され
る。
【0056】抽出蒸留塔102の塔底温度は、通常0.
5〜5気圧である塔内圧力における溶剤の沸点になるよ
うに操作する。放散塔103の塔頂からは、ブテン類が
取り出され、一部は、さらに溶剤回収塔105へ送ら
れ、残りは抽出蒸留塔102へと戻される。放散塔10
3の塔底からは通常100〜200℃の溶剤が取り出さ
れる。溶剤回収塔105では塔頂よりブデン類が回収さ
れ、塔底からは溶剤とブデン類の混合液が抽出蒸留塔1
02の塔底へ戻される。塔105から回収されたブテン
類は、n−ブテン、イソブテン、1−ブテン、2−ブテ
ンの混合物となっているのが一般的である。これらの分
離精製が必要な場合は、分離精製を困難にするブタン類
がほとんど除去されているので、通常の蒸留操作により
容易に分離精製することができる。
【0057】本実施形態においては、抽出蒸留塔102
の塔底近くの不純物濃度の変化、抽出蒸留塔塔頂102
より放出されるブタン類ガス中のブテン類濃度の変化を
検出し、その変化量に応じて、抽出蒸留塔102への溶
剤供給量の制御、放散塔103から溶剤回収塔105を
経て抽出蒸留塔102へ戻る戻り流量の制御、抽出蒸留
塔102の塔頂での還流量の制御、および抽出蒸留塔1
02の塔底温度の制御を行うことにより、一定の濃度の
ブテン類が抽出できる。本実施形態では、最終的に得ら
れる抽出液中のブテン類の濃度は99%以上となる。
【0058】本実施形態に係る抽出蒸留塔102の制御
装置および制御方法は、図2に示す第1抽出蒸留塔4の
場合に比較し、供給される原料がBBFからBBRに代
わり、塔頂から排出されるガスがBBRからブタン類を
含むガスに代わり、CV1およびCV2として検出され
る不純物が、シス−2−ブテンおよびトランス−2−ブ
テンから、n−ブタンなどのブタン類に代わり、抽出蒸
留塔102の底部から抽出される抽出液が共役ジエン類
からブテン類に代わる以外は、同様なので、その説明は
省略する。
【0059】本実施形態の装置および方法によれば、抽
出蒸留塔102の塔底付近において、不純物としてのブ
タン類の濃度CV1およびCV2の変動幅を抑制すると
共に、塔頂におけるブテン類の濃度の変動幅を抑制する
ことで、塔底から取り出す抽出液に含まれるブテン類の
濃度を安定化させることができる。その結果、その後の
プロセスでブテン類の純度を高めることが容易になり、
さらに塔頂でのブテン類の損失を抑制でき安定して高純
度のブテン類を得ることができる。
【0060】その他の実施形態 なお、本発明は、上述した実施形態に限定されるもので
はなく、本発明の範囲内で種々に改変することができ
る。
【0061】たとえば、上記第1実施形態では、第1抽
出蒸留塔4には、不純物濃度検出手段として、二つの不
純物濃度センサ32および34を用いたが、本発明で
は、いずれか一つの不純物濃度センサ32または34と
し、他の一つを省略しても良い。これらの濃度センサ3
2および34により検出されるシス−2−ブテンの濃度
とトランス−2−ブテンの濃度とは、相関関係にあり、
いずれか1の濃度のみを検出して濃度変動を抑制するこ
とで、他の1の濃度変動も抑制することができるからで
ある。ただし、省略するのであれば、シス−2−ブテン
の濃度を検出する不純物濃度センサ32を省略すること
が好ましい。シス−2−ブテンの除去は、第1抽出蒸留
塔4の後プロセスでも除去できるからである。なお、こ
の点は、第2実施形態でも同様である。
【0062】また、上述した第1実施形態では、目的と
するブタジエンの濃度を抽出蒸留塔4の塔頂にて検出し
たが、本発明では、塔頂に限らず、その他の位置であっ
ても良い。ただし、塔頂にて検出することが最も好まし
い。この点も、第2実施形態でも同様である。
【0063】
【発明の効果】以上説明してきたように、本発明に係る
装置および方法によれば、原料成分のばらつきによらず
目的とする不飽和炭化水素を所定濃度で安定して取り出
すことができる。
【図面の簡単な説明】
【図1】 図1は共役ジエン類の分離精製装置の全体構
成を示す概略図である。
【図2】 図2は図1に示す第1抽出蒸留塔の制御方法
を示す概略図である。
【図3】 図3は図2に示す予測制御手段の制御方法を
示すフローチャート図である。
【図4】 図4は測定データと制御操作対象との関係を
示すグラフである。
【図5】 図5はブテン類の分離精製装置の全体構成を
示す概略図である。
【符号の説明】 2… 蒸発塔 4… 第1抽出蒸留塔 6… 予備放散塔 8… 放散塔 10… コンプレッサ 12… 第2抽出蒸留塔 20… 原料供給ライン 22… 溶剤供給ライン 23… 溶剤量制御弁(溶剤量制御手段) 25… 目的物濃度センサ(目的物濃度検出手段) 26… 還流ライン 28… 還流量制御弁(還流量制御手段) 30… 差圧センサ(差圧検出手段) 32,34… 不純物濃度センサ(不純物濃度検出手
段) 36… リボイラー(塔底温度制御手段) 46… 戻りライン 48… 制御弁(戻り量制御手段) 50… 流量計(戻り量制御手段) 60… 予測制御手段

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 不飽和炭化水素を含有する原料と溶剤と
    が供給され、当該原料を蒸留して目的とする不飽和炭化
    水素を分離精製する抽出蒸留塔と、 前記抽出蒸留塔または抽出蒸留塔に接続されるその他の
    塔での目的とする不飽和炭化水素以外の特定不純物の濃
    度を検出する不純物濃度検出手段と、 前記抽出蒸留塔または抽出蒸留塔に接続されるその他の
    塔における目的とする不飽和炭化水素の濃度を検出する
    目的物濃度検出手段と、 前記抽出蒸留塔の塔底から取り出した目的とする不飽和
    炭化水素を含む流体の一部を流量制御して前記抽出蒸留
    塔へ戻す戻り量制御手段と、 前記抽出蒸留塔へ供給される溶剤の量を制御する溶剤量
    制御手段と、 前記抽出蒸留塔の塔頂から取り出した原料の残存成分の
    一部を流量制御して前記抽出蒸留塔へ還流させる還流量
    制御手段と、 前記抽出蒸留塔の塔底の温度を制御する塔底温度制御手
    段と、 前記不純物濃度検出手段および目的物濃度検出手段によ
    り検出した検出値に基づき、所定時間後の特定不純物の
    濃度、目的とする不飽和炭化水素の濃度の予測値を算出
    し、当該予測値に基づき、前記戻り量制御手段、溶剤量
    制御手段、還流量制御手段および塔底温度制御手段を制
    御する予測制御手段とを有する不飽和炭化水素の分離精
    製装置。
  2. 【請求項2】 目的とする不飽和炭化水素を含有する原
    料と溶剤とを抽出蒸留塔に供給する工程と、 前記抽出蒸留塔または抽出蒸留塔に接続されるその他の
    塔での目的とする不飽和炭化水素以外の特定不純物の濃
    度を検出する工程と、 前記抽出蒸留塔または抽出蒸留塔に接続されるその他の
    塔における目的とする不飽和炭化水素の濃度を検出する
    工程と、 前記抽出蒸留塔の塔底から取り出した目的とする不飽和
    炭化水素を含む流体の一部を流量制御して前記抽出蒸留
    塔へ戻す工程と、 前記抽出蒸留塔へ供給される溶剤の量を制御する溶剤量
    の制御工程と、 前記抽出蒸留塔の塔頂から取り出した原料の残存成分の
    一部を流量制御して前記抽出蒸留塔へ還流させる還流量
    の制御工程と、 前記抽出蒸留塔の塔底の温度を制御する塔底温度の制御
    工程と、 前記不純物濃度検出工程および目的物濃度検出工程によ
    り検出した検出値に基づき、所定時間後の特定不純物の
    濃度、目的とする不飽和炭化水素の濃度の予測値を算出
    し、当該予測値に基づき、前記戻り量、溶剤量、還流量
    および塔底温度を制御する予測制御工程とを有する不飽
    和炭化水素の分離精製方法。
JP24356298A 1998-04-07 1998-08-28 不飽和炭化水素の分離精製装置および分離精製方法 Expired - Lifetime JP4134391B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24356298A JP4134391B2 (ja) 1998-04-07 1998-08-28 不飽和炭化水素の分離精製装置および分離精製方法
DE69926063T DE69926063T2 (de) 1998-04-07 1999-04-06 Apparat zur trennung und reinigung eines ungesättigten kohlenwasserstoffs und verfahren zur trennung und reinigung
PCT/JP1999/001812 WO1999051552A1 (fr) 1998-04-07 1999-04-06 Appareil de separation et de purification d'hydrocarbures satures et procede de separation et de purification
US09/647,789 US6413378B1 (en) 1998-04-07 1999-04-06 Apparatus for separation and purification of saturated hydrocarbon and method for separation and purification
ES99910847T ES2242386T3 (es) 1998-04-07 1999-04-06 Aparato para la separacion y purificacion de hidrocarburos saturados y metodo de separacion y purificacion.
EP99910847A EP1083160B1 (en) 1998-04-07 1999-04-06 Apparatus for separation and purification of saturated hydrocarbon and method for separation and purification

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11148998 1998-04-07
JP10-111489 1998-04-07
JP24356298A JP4134391B2 (ja) 1998-04-07 1998-08-28 不飽和炭化水素の分離精製装置および分離精製方法

Publications (2)

Publication Number Publication Date
JPH11349499A true JPH11349499A (ja) 1999-12-21
JP4134391B2 JP4134391B2 (ja) 2008-08-20

Family

ID=26450874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24356298A Expired - Lifetime JP4134391B2 (ja) 1998-04-07 1998-08-28 不飽和炭化水素の分離精製装置および分離精製方法

Country Status (6)

Country Link
US (1) US6413378B1 (ja)
EP (1) EP1083160B1 (ja)
JP (1) JP4134391B2 (ja)
DE (1) DE69926063T2 (ja)
ES (1) ES2242386T3 (ja)
WO (1) WO1999051552A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025330A1 (ja) * 2004-08-31 2006-03-09 Zeon Corporation 不飽和炭化水素の分離精製装置及び分離精製方法
JP2011256156A (ja) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp 蒸留塔の温度制御方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267078A1 (en) * 2001-09-28 2004-12-30 Masanobu Kanauchi Method of separating/purifying conjugated diene and separation/purification apparatus
US6849155B2 (en) * 2001-11-14 2005-02-01 Daicel Chemical Industries, Ltd. Concentrator
DE10217863A1 (de) * 2002-04-22 2003-10-30 Linde Ag Verfahren und Vorrichtung zur Olefinherstellung
DE10217866A1 (de) * 2002-04-22 2003-11-06 Linde Ag Verfahren und Vorrichtung zur Olefinherstellung
DE10312918A1 (de) * 2003-03-22 2004-09-30 Oxeno Olefinchemie Gmbh Verfahren zur Abtrennung von 2-Butanol aus tert.-Butanol/Wasser-Gemischen
DE10312917A1 (de) * 2003-03-22 2004-09-30 Oxeno Olefinchemie Gmbh Verfahren zur Ausschleusung von 2-Butanol aus tert.-Butanol/Wasser-Gemischen
US20080042208A1 (en) * 2006-08-16 2008-02-21 Force Mos Technology Co., Ltd. Trench mosfet with esd trench capacitor
US8076526B2 (en) * 2009-03-30 2011-12-13 Lyondell Chemical Technology Extractive distillation of conjugated diene
US8608912B2 (en) * 2010-09-29 2013-12-17 Uop Llc Methods and extraction units employing vapor draw compositional analysis
RU2482161C1 (ru) * 2011-12-28 2013-05-20 Закрытое акционерное общество Научно Техническая Компания "МОДУЛЬНЕФТЕГАЗКОМПЛЕКТ" Способ перегонки нефти
RU2493897C1 (ru) * 2012-04-28 2013-09-27 Открытое акционерное общество "НОВАТЭК" Способ разделения газового конденсата и легкой нефти и установка для его осуществления
CN102847334B (zh) * 2012-09-14 2015-10-28 清华大学 一种含碘氢碘酸料液的精馏方法
CN103830928B (zh) * 2012-11-28 2016-03-02 上海宝钢化工有限公司 蒸馏塔泪孔的在线调节装置及方法
US9656929B2 (en) 2013-06-19 2017-05-23 Saudi Basic Industries Corporation Co-extraction systems for separation and purification of butadiene and isoprene
AR099924A1 (es) * 2014-03-06 2016-08-31 Gtc Technology Us Llc Proceso para separar hidrocarburos insaturados de hidrocarburos saturados con bajo consumo de energía
US11136281B2 (en) 2014-03-06 2021-10-05 Sulzer Management Ag Process of separating unsaturated hydrocarbons from saturated hydrocarbons with low energy consumption
US9315732B1 (en) 2014-12-12 2016-04-19 Infinitus Renewable Energy, LLC Ash filter and reboiler
CN108779044A (zh) 2016-03-31 2018-11-09 日本瑞翁株式会社 1,3-丁二烯的制造方法及制造装置
CN105777500B (zh) * 2016-05-25 2018-03-06 郝天臻 一种用于mtbe脱硫的萃取防胶剂
EP3493888A1 (de) * 2016-08-04 2019-06-12 Covestro Deutschland AG Verfahren zur regelung einer rektifikationskolonne
SG11201906703SA (en) 2017-02-01 2019-08-27 Zeon Corp 1,3-butadiene separation and recovery method and 1,3-butadiene separation and recovery apparatus
JP6939872B2 (ja) * 2019-12-13 2021-09-22 栗田工業株式会社 蒸留塔管理システム、蒸留塔状態分析方法及び蒸留塔管理方法
WO2023061898A1 (en) * 2021-10-15 2023-04-20 Chempolis Oy Stripping column arrangement and stripping method of acid filtrate from hydrolysis of cellulosic feedstock
CN114768279B (zh) * 2022-04-29 2022-11-11 福建德尔科技股份有限公司 用于电子级二氟甲烷制备的精馏控制系统及其控制方法
CN114995131B (zh) * 2022-05-25 2023-02-03 福建德尔科技股份有限公司 用于电子级三氟甲烷制备的精馏控制系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127006A (en) * 1975-04-15 1976-11-05 Basf Ag Process for preparing 33butadiene from c44hydrocarbon mixture
JPS5683421A (en) * 1979-12-10 1981-07-08 Nippon Zeon Co Ltd Extractive distillation process
JPS5754129A (ja) * 1980-09-18 1982-03-31 Japan Synthetic Rubber Co Ltd Butajenmatahaisopurennoseiseihoho
JPS5775104A (en) * 1980-08-30 1982-05-11 Krupp Koppers Gmbh Method of treating product on bottom of tower through extraction distillation method for recovering pure hydrocarbon
JPS6054704A (ja) * 1983-08-19 1985-03-29 アプライド オートメーション,インコーポレーテッド 分留操作制御装置および方法
JPS60104021A (ja) * 1983-10-28 1985-06-08 バスフ アクチェンゲゼルシャフト C↓4或はc↓5の炭化水素混合物から共役ジオレフィン及び/或はオレフィンを得る方法
JPS60156623A (ja) * 1983-12-23 1985-08-16 バスフ アクチエン ゲゼルシヤフト 抽出蒸留によりc4−炭化水素混合物を分離する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE353078B (ja) * 1965-12-30 1973-01-22 Japanese Geon Co Ltd
US4053369A (en) * 1974-05-30 1977-10-11 Phillips Petroleum Company Extractive distillation
US4057995A (en) * 1975-05-13 1977-11-15 Phillips Petroleum Company Apparatus and method for measuring low boiling component contained in relatively high-boiling liquid
US4419188A (en) * 1980-06-02 1983-12-06 Mccall Thomas F Thermally coupled extractive distillation process
JPS574926A (en) * 1980-06-12 1982-01-11 Nippon Zeon Co Ltd Separation of relatively easily soluble hydrocarbon from hydrocarbon mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127006A (en) * 1975-04-15 1976-11-05 Basf Ag Process for preparing 33butadiene from c44hydrocarbon mixture
JPS5683421A (en) * 1979-12-10 1981-07-08 Nippon Zeon Co Ltd Extractive distillation process
JPS5775104A (en) * 1980-08-30 1982-05-11 Krupp Koppers Gmbh Method of treating product on bottom of tower through extraction distillation method for recovering pure hydrocarbon
JPS5754129A (ja) * 1980-09-18 1982-03-31 Japan Synthetic Rubber Co Ltd Butajenmatahaisopurennoseiseihoho
JPS6054704A (ja) * 1983-08-19 1985-03-29 アプライド オートメーション,インコーポレーテッド 分留操作制御装置および方法
JPS60104021A (ja) * 1983-10-28 1985-06-08 バスフ アクチェンゲゼルシャフト C↓4或はc↓5の炭化水素混合物から共役ジオレフィン及び/或はオレフィンを得る方法
JPS60156623A (ja) * 1983-12-23 1985-08-16 バスフ アクチエン ゲゼルシヤフト 抽出蒸留によりc4−炭化水素混合物を分離する方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025330A1 (ja) * 2004-08-31 2006-03-09 Zeon Corporation 不飽和炭化水素の分離精製装置及び分離精製方法
JPWO2006025330A1 (ja) * 2004-08-31 2008-05-08 日本ゼオン株式会社 不飽和炭化水素の分離精製装置及び分離精製方法
JP2011256156A (ja) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp 蒸留塔の温度制御方法

Also Published As

Publication number Publication date
WO1999051552A1 (fr) 1999-10-14
DE69926063D1 (de) 2005-08-11
DE69926063T2 (de) 2006-05-24
US6413378B1 (en) 2002-07-02
EP1083160B1 (en) 2005-07-06
EP1083160A4 (en) 2003-03-12
EP1083160A1 (en) 2001-03-14
ES2242386T3 (es) 2005-11-01
JP4134391B2 (ja) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4134391B2 (ja) 不飽和炭化水素の分離精製装置および分離精製方法
US20070256920A1 (en) Separation and Purification Apparatus and Separation and Purification Method of Unsaturated Hydrocarbons
JP4881163B2 (ja) 粗製1,3−ブタジエンを取得するための方法
KR101440637B1 (ko) 선택 용매를 사용하는 추출 증류에 의한 c4 유분의 분리 방법
Cai et al. Isobaric vapor–liquid equilibrium for methanol+ dimethyl carbonate+ phosphoric-based ionic liquids
JP2015533818A (ja) 抽出蒸留による炭化水素の混合物の分離方法
KR101067520B1 (ko) C4 분획으로부터 조 1,3-부타디엔의 회수 방법
Qi et al. Vapor-liquid equilibrium experiment and process simulation of extractive distillation for separating diisopropyl ether-isopropyl alcohol using ionic liquid
JP4589317B2 (ja) 粗製c4カットの分離方法
RU2608389C2 (ru) Гибкий способ экстракции бутадиена
KR102581168B1 (ko) 순수 1,3-부타디엔을 수득하기 위한 방법
US8821696B2 (en) Methods and extraction units employing vapor draw compositional analysis
EP1437336B1 (en) Method of separating/purifying conjugated diene and separation/purification apparatus
JP3928701B2 (ja) 共役ジエンの分離精製方法および分離精製装置
US10968152B2 (en) Simplified process for isolating pure 1,3-butadiene
JP4365486B2 (ja) 1,2−ブタジエンの製造方法
JP2002053871A (ja) 共役ジエン類の分離精製方法および分離精製装置
Pătruț et al. Separation of water-Acetic acid mixtures by cyclic distillation
JPH02142598A (ja) ドライクリーナの蒸留装置
JPH027997A (ja) ドライクリーナの蒸留装置
Heida et al. Process for obtaining crude 1, 3-butadiene from a C 4 cut
Li et al. Isobaric vapor-liquid equilibrium for toluene, 3-methylthiophene and N-formylmorpholine at 101.33 kPa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term