JPH11326935A - Anisotropic conductive film and its connection method - Google Patents

Anisotropic conductive film and its connection method

Info

Publication number
JPH11326935A
JPH11326935A JP10125709A JP12570998A JPH11326935A JP H11326935 A JPH11326935 A JP H11326935A JP 10125709 A JP10125709 A JP 10125709A JP 12570998 A JP12570998 A JP 12570998A JP H11326935 A JPH11326935 A JP H11326935A
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
particle layer
projection
acf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10125709A
Other languages
Japanese (ja)
Other versions
JP3438583B2 (en
Inventor
泰行 ▲高▼野
Yasuyuki Takano
Masatoshi Takeda
雅俊 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12570998A priority Critical patent/JP3438583B2/en
Publication of JPH11326935A publication Critical patent/JPH11326935A/en
Application granted granted Critical
Publication of JP3438583B2 publication Critical patent/JP3438583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to join one member to be connected formed with a two-stage projection connecting member and another member to be connected with high joining reliability. SOLUTION: The anisotropic conductive film 20 has ball bumps 2 formed to two stages of projections on at least one member to be connected and is formed by electrically connecting and mechanically fixing the two opposite members 1 to be connected. The film 20 has an insulating layer 3 formed of a resin having insulatability and adhesiveness and a particle layer 4 dispersed and arranged with many conductive particles for effecting electrical conduction into the resin having the insulatability and adhesiveness. The insulating layer 3 and the particle layer 4 are laminated and are formed like a film. The thickness of the particle layer 4 is formed lower than the amt. of the projection constituting the step at the front end of the ball bump 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LCD(Liqu
id Crystal Display−液晶ディスプ
レイ−)とフレキシブル基板との接続剤などとして用い
られる異方導電性フィルムおよびその接続方法に関する
ものである。
The present invention relates to an LCD (Liquor).
The present invention relates to an anisotropic conductive film used as a connecting agent between an id Crystal Display (liquid crystal display) and a flexible substrate, and a method for connecting the anisotropic conductive film.

【0002】[0002]

【従来の技術】導電接続剤として用いられている異方導
電性フィルム−Anisotropic Conduc
tive Film−(以下、「ACF」という。)
は、金属コートプラスチック粒子や金属粒子を熱硬化性
樹脂等の樹脂に分散した導電フィルムであり、その異方
導電性および接着性を利用して、電子部品と基板との電
気的接続に広く利用されている。
2. Description of the Related Art Anisotropic conductive films used as conductive connecting agents-Anisotropic Conductu
live Film- (hereinafter, referred to as “ACF”)
Is a conductive film in which metal-coated plastic particles and metal particles are dispersed in a resin such as a thermosetting resin, and is widely used for electrical connection between electronic components and substrates by utilizing its anisotropic conductivity and adhesiveness. Have been.

【0003】以下に、従来のACFおよびACFの接続
技術について説明する。ここで図4は従来のACFを示
す断面図、図5は図4のACFによる実装プロセスを連
続的に示す工程図、図6は半導体チップに対するボール
バンプ(二段突起接続部材)の形成プロセスを連続的に
示す工程図、図7は半導体チップ上に形成されためっき
バンプとボールバンプとの構成を示す比較図、図8はボ
ールバンプの形成された半導体チップを図4に示すAC
Fによりプリント基板に接続した状態を示す断面図であ
る。
[0003] A conventional ACF and ACF connection technology will be described below. Here, FIG. 4 is a cross-sectional view showing a conventional ACF, FIG. 5 is a process diagram continuously showing a mounting process by the ACF of FIG. 4, and FIG. 6 is a process of forming a ball bump (two-step projection connecting member) on a semiconductor chip. 7 is a comparative view showing the configuration of plated bumps and ball bumps formed on a semiconductor chip, and FIG. 8 is a view showing a semiconductor chip on which ball bumps are formed.
It is sectional drawing which shows the state connected to the printed circuit board by F.

【0004】まず、ACFの構成について図4を参照し
て説明する。ACF6は、既に述べたように、熱硬化性
樹脂等の絶縁性と接着性を兼ねた接着剤7中に金属コー
トプラスチック粒子や金属粒子等の導電粒子5を分散配
置した接着フィルムである。そして、ACF6における
導電粒子7の充填量と導電率の関係から、ACF6の導
電粒子充填量に対する導電率には異方性がある。すなわ
ち、ACF6は、その膜厚方向で高い導電性を示す一
方、導電粒子5が互いに孤立しているため、平面方向に
は高い絶縁性を示すという特徴を持ったものである。
First, the configuration of the ACF will be described with reference to FIG. As described above, the ACF 6 is an adhesive film in which conductive particles 5 such as metal-coated plastic particles and metal particles are dispersed and arranged in an adhesive 7 having both insulating properties and adhesiveness such as a thermosetting resin. Further, from the relationship between the filling amount of the conductive particles 7 in the ACF 6 and the conductivity, the conductivity with respect to the filling amount of the conductive particles in the ACF 6 has anisotropy. In other words, the ACF 6 has a feature that it has high conductivity in the thickness direction, but has high insulating properties in the plane direction because the conductive particles 5 are isolated from each other.

【0005】次に、従来の半導体チップ1をACF6を
用いてプリント配線基板8に接続するプロセスについて
図5を参照しながら説明する。
Next, a process for connecting the conventional semiconductor chip 1 to the printed wiring board 8 using the ACF 6 will be described with reference to FIG.

【0006】まず、仮載せツール9を用いて、一方の接
続対象部材であるプリント配線基板8とACF6とを熱
と荷重(約80℃で5sec、数十g/バンプ)を加え
て仮圧着する(図5(a))。
First, using the temporary mounting tool 9, the printed wiring board 8 and the ACF 6 which are one of the members to be connected are temporarily compressed by applying heat and a load (5 sec at about 80 ° C., several tens g / bump). (FIG. 5 (a)).

【0007】次に、チップ最終工程において金のめっき
バンプ10が形成された他方の接続対象部材である半導
体チップ1をACF6が仮圧着されたプリント基板8の
チップ実装部に位置合わせし、熱を加えずに荷重の印加
のみで仮実装する。なお、めっきバンプ10は、めっき
下地の接続金属としてたとえばTi,Crなど、金属間
化合物生成防止のバリアメタルとしてたとえばPt,N
i,Cuなどが積層され、最上層に金めっきにてバンプ
が形成されたものである(図5(b))。
Next, in the chip final step, the semiconductor chip 1, which is the other connection target member on which the gold plating bumps 10 are formed, is positioned on the chip mounting portion of the printed circuit board 8 to which the ACF 6 has been temporarily pressed, and heat is applied. Temporarily mount only by applying load without applying. The plating bump 10 is made of, for example, Pt, N as a barrier metal for preventing formation of an intermetallic compound, such as Ti, Cr, etc., as a connection metal under the plating.
i, Cu and the like are laminated, and a bump is formed on the uppermost layer by gold plating (FIG. 5B).

【0008】そして、最後に熱圧着用の加熱ツール11
を用いて熱と荷重を印加(約200℃で20sec、数
十g/バンプ)して本圧着を行う。このとき、加熱・加
圧によってACF6中の接着剤7が溶融しながら、めっ
きバンプ10とプリント基板8とのパターンの間から流
れ出し(図5(c))、分散されている導電粒子5がめ
っきバンプ10とプリント基板8のパターン間に捕獲さ
れて電気的導通が取られる。また、導電粒子5とめっき
バンプ10との間の機械的接触、および導電粒子5とプ
リント基板8のパターンとの間の機械的接触は、ACF
6内の接着剤7の硬化収縮力と接着剤の高い接着力によ
り保持されている(図5(d))。
[0008] Finally, a heating tool 11 for thermocompression bonding
Is applied (approximately 200 ° C., 20 sec, several tens g / bump) to perform the final pressure bonding. At this time, while the adhesive 7 in the ACF 6 is melted by heating and pressing, it flows out from between the patterns of the plating bumps 10 and the printed circuit board 8 (FIG. 5C), and the dispersed conductive particles 5 are plated. Electrical continuity is obtained by being captured between the bumps 10 and the pattern of the printed circuit board 8. The mechanical contact between the conductive particles 5 and the plating bumps 10 and the mechanical contact between the conductive particles 5 and the pattern of the printed circuit board 8 are ACF.
6 is held by the curing shrinkage force of the adhesive 7 and the high adhesive force of the adhesive (FIG. 5D).

【0009】ここで、バンプに関しては、先にも述べた
ように、現状のACF接合ではめっきによるものが殆ど
である。しかしながら、最近、低コストで汎用性が高い
という理由で、図6に示すプロセスにて形成されるボー
ルバンプ(二段突起接続部材)2を用いるケースが増え
てきている。
Here, as described above, most of the bumps are formed by plating in the current ACF bonding. However, recently, because of low cost and high versatility, the use of ball bumps (two-step projection connection members) 2 formed by the process shown in FIG. 6 has been increasing.

【0010】ボールバンプ2を形成するための具体的な
プロセスは、まずキャピラリ14から突出している金ワ
イヤ12の先端にイニシャルボール13を形成する。次
に超音波、荷重および温度の印加により、半導体チップ
1上の電極にこのイニシャルボール13をボンディング
する。そして、キャピラリ14を引き上げて金ワイヤ1
2を切断する。最後に、切断された先端を平坦なプレー
トを押し当てることにより、ボールバンプ2が形成され
る。
In a specific process for forming the ball bump 2, first, an initial ball 13 is formed at a tip of a gold wire 12 protruding from a capillary 14. Next, the initial balls 13 are bonded to the electrodes on the semiconductor chip 1 by applying an ultrasonic wave, a load and a temperature. Then, the capillary 14 is pulled up and the gold wire 1
Cut 2 Finally, the ball tip 2 is formed by pressing the cut end against a flat plate.

【0011】しかしながら、このようなボールバンプ2
でACF接合を実現するには、幾つかの課題がある。つ
まり、図7に示すように、めっきバンプ10と異なり、
ボールバンプ2は形状が二段になるという性質上、半導
体チップ1との接合面積が減少するという問題がある。
このことは、ACF接合の信頼性確保のために必須の電
気的接続に関与する導電粒子5の数が減少することに繋
がり、信頼性の低下を引き起こす。
However, such a ball bump 2
There are several problems in realizing ACF bonding with the above. That is, as shown in FIG. 7, unlike the plating bump 10,
Due to the nature of the ball bump 2 having a two-stage shape, there is a problem that the bonding area with the semiconductor chip 1 is reduced.
This leads to a decrease in the number of conductive particles 5 involved in the electrical connection essential for ensuring the reliability of the ACF junction, causing a decrease in reliability.

【0012】また、今後、プリント基板8のパターンピ
ッチの狭ピッチ化に伴うパターン間隔の狭小化が進むこ
とにより、図8のa部に示すように、導電粒子5による
パターン間ショートの可能性が出てくる。
In the future, as the pattern pitch of the printed circuit board 8 becomes narrower as the pattern pitch becomes narrower, the possibility of short-circuit between the patterns due to the conductive particles 5 is increased as shown in FIG. Come out.

【0013】ここで、その絶縁性不良の問題を回避する
ためにACF6中の導電粒子5の数を低減させると、さ
らなる狭ピッチ化に伴うボールバンプ2の形状の小型化
つまり接合部面積の減少により、ACF6の接合信頼性
を保持する接合部の捕獲粒子数が低減し、信頼性の低下
を引き起こすといった悪循環が生じてくる。
Here, if the number of conductive particles 5 in the ACF 6 is reduced to avoid the problem of insulation failure, the shape of the ball bump 2 is reduced in size due to the further narrowing of the pitch, that is, the joint area is reduced. As a result, a vicious cycle occurs in which the number of trapped particles at the joint that maintains the joint reliability of the ACF 6 is reduced, and the reliability is reduced.

【0014】[0014]

【発明が解決しようとする課題】このように、従来のA
CFでは、ボールバンプを用いて半導体チップをプリン
ト基板に実装した場合、ボールバンプの二段突起構造に
よる接合部面積の低減およびパターンピッチの狭ピッチ
化に伴うボールバンプ形状の小型化つまり接合部面積の
小型化により、ACFの接合信頼性を保持する接合部の
導電粒子数が低減して接合信頼性の低下を引き起こす。
As described above, the conventional A
In a CF, when a semiconductor chip is mounted on a printed circuit board using ball bumps, the joint area is reduced due to the reduction of the joint area due to the two-step projection structure of the ball bump and the narrower pattern pitch, that is, the joint area. Due to the miniaturization of the ACF, the number of conductive particles in the joint that maintains the joint reliability of the ACF is reduced, and the joint reliability is reduced.

【0015】また、狭ピッチ化に伴うバンプ間の狭スペ
ース化により、導電粒子によるバンプ間ショートといっ
た絶縁性不良の問題が出てくる。そして、その絶縁性不
良の問題を回避するためにACF中の導電粒子数を低減
させると、ACFの接合信頼性を保持する接合部の導電
粒子数がさらに低減して信頼性の低下を引き起こすこと
になる。
[0015] In addition, due to the narrow space between the bumps due to the narrow pitch, there arises a problem of poor insulation such as short between bumps due to conductive particles. When the number of conductive particles in the ACF is reduced in order to avoid the problem of the poor insulation property, the number of conductive particles in the joint that maintains the joint reliability of the ACF is further reduced, and the reliability is reduced. become.

【0016】そこで、本発明は、二段突起接続部材が形
成された一方の接続対象部材と他方の接続対象部材とを
高い接合信頼性のもとで接合することのできる異方導電
性フィルムおよびその接続方法を提供することを目的と
する。
Accordingly, the present invention provides an anisotropic conductive film capable of joining one connection target member formed with a two-step projection connection member and the other connection target member with high joining reliability. It is intended to provide a connection method.

【0017】[0017]

【課題を解決するための手段】この課題を解決するため
に、本発明の異方導電性フィルムは、少なくとも一方の
接続対象部材は二段の突起に形成された二段突起接続部
材を有し、対向する2つの接続対象部材を電気的に接続
し且つ機械的に固着する異方導電性フィルムであって、
絶縁性と接着性とを有する樹脂で形成された絶縁層と、
絶縁性と接着性とを有する樹脂中に電気的に導通をさせ
る多数の導電粒子が分散配置された粒子層とを有し、絶
縁層と粒子層とが積層されてフィルム状に形成されると
ともに、粒子層の厚みが、二段突起接続部材の先端部の
段を構成する突出量以下に形成された構成としたことを
特徴とするものである。
In order to solve this problem, an anisotropic conductive film according to the present invention has at least one member to be connected having a two-stage projection connecting member formed in a two-stage projection. Anisotropically conductive film that electrically connects and mechanically fixes two opposing connection target members,
An insulating layer formed of a resin having an insulating property and an adhesive property,
Having a particle layer in which a large number of conductive particles that electrically conduct in a resin having an insulating property and an adhesive property are dispersed and arranged, and the insulating layer and the particle layer are laminated and formed into a film shape. The thickness of the particle layer is set to be equal to or less than the amount of protrusion forming the step at the tip of the two-step projection connecting member.

【0018】これにより、二段突起接続部材が形成され
た一方の接続対象部材と他方の接続対象部材とを高い接
合信頼性のもとで接合することが可能になる。
Thus, it is possible to join one connection target member having the two-step projection connection member and the other connection target member with high joining reliability.

【0019】また、本発明の異方導電性フィルムの接続
方法は、絶縁性と接着性とを有する樹脂で形成された絶
縁層と、絶縁性と接着性とを有する樹脂中に電気的に導
通をさせる多数の導電粒子が分散配置された粒子層とを
有する異方導電性フィルムを用いて、少なくとも一方の
接続対象部材は二段の突起に形成された二段突起接続部
材を有し、対向する2つの接続対象部材を電気的に接続
し且つ機械的に固着する異方導電フィルムの接続方法で
あって、二段突起接続部材を有する接続対象部材と異方
導電性フィルムの絶縁層とを対向させて配置し、接続対
象部材を介して異方導電性フィルムを加熱し且つ加圧し
て対向する2つの接続対象部材を電気的に接続し且つ機
械的に固着するようにしたことを特徴とするものであ
る。
Further, the method for connecting an anisotropic conductive film according to the present invention is characterized in that an insulating layer formed of a resin having an insulating property and an adhesive property is electrically connected to a resin having an insulating property and an adhesive property. Using an anisotropic conductive film having a particle layer in which a large number of conductive particles are dispersed and arranged, at least one of the connection target members has a two-stage protrusion connection member formed in two-stage protrusions, and A method for connecting an anisotropic conductive film that electrically connects and mechanically fixes two connection target members to be connected, wherein the connection target member having a two-step projection connection member and an insulating layer of the anisotropic conductive film are connected. It is arranged so as to face each other, and heats and presses the anisotropic conductive film via the connection target member to electrically connect and mechanically fix the two opposing connection target members. Is what you do.

【0020】これにより、二段突起接続部材が形成され
た一方の接続対象部材と他方の接続対象部材とを高い接
合信頼性のもとで接合することが可能になる。
[0020] Thus, it is possible to join one connection target member formed with the two-step projection connection member and the other connection target member with high joining reliability.

【0021】さらに、本発明の異方導電性フィルムの接
続方法は、絶縁性と接着性とを有する樹脂で形成された
絶縁層と、絶縁性と接着性とを有する樹脂中に電気的に
導通をさせる多数の導電粒子が分散配置された粒子層と
を有する異方導電性フィルムを用いて、少なくとも一方
の接続対象部材は二段の突起に形成された二段突起接続
部材を有し、対向する2つの接続対象部材を電気的に接
続し且つ機械的に固着する異方導電フィルムの接続方法
であって、二段突起接続部材を有する接続対象部材と異
方導電性フィルムの絶縁層とを対向させて配置し、接続
対象部材を介して異方導電性フィルムを加熱し且つ加圧
して対向する2つの接続対象部材を電気的に接続し且つ
機械的に固着するようにし、特に、異方導電性フィルム
の粒子層の厚みを二段突起接続部材の先端部の段を構成
する突出量以下に形成し、あるいはまた、二段突起接続
部材の先端部の段を構成する突出量を異方導電性フィル
ムの粒子層の厚み以上に形成したことを特徴とするもの
である。
Furthermore, the method for connecting an anisotropic conductive film according to the present invention is characterized in that an insulating layer formed of a resin having an insulating property and an adhesive property is electrically connected to a resin having an insulating property and an adhesive property. Using an anisotropic conductive film having a particle layer in which a large number of conductive particles are dispersed and arranged, at least one of the connection target members has a two-stage protrusion connection member formed in two-stage protrusions, and A method for connecting an anisotropic conductive film that electrically connects and mechanically fixes two connection target members to be connected, wherein the connection target member having a two-step projection connection member and an insulating layer of the anisotropic conductive film are connected. Heating and pressing the anisotropic conductive film via the connection target member so as to electrically connect and mechanically fix the two opposing connection target members. Reduce the thickness of the particle layer of the conductive film Formed to be equal to or less than the amount of protrusion constituting the step of the tip of the step projection connection member, or alternatively, the amount of protrusion constituting the step of the tip of the two step projection connection member to be equal to or greater than the thickness of the particle layer of the anisotropic conductive film It is characterized by having been formed.

【0022】これにより、二段突起接続部材が形成され
た一方の接続対象部材と他方の接続対象部材とを高い接
合信頼性のもとで接合することが可能になる。
Thus, it is possible to join one connection target member having the two-step projection connection member and the other connection target member with high joining reliability.

【0023】[0023]

【発明の実施の形態】本発明の請求項1に記載の発明
は、少なくとも一方の接続対象部材は二段の突起に形成
された二段突起接続部材を有し、対向する2つの接続対
象部材を電気的に接続し且つ機械的に固着する異方導電
性フィルムであって、絶縁性と接着性とを有する樹脂で
形成された絶縁層と、絶縁性と接着性とを有する樹脂中
に電気的に導通をさせる多数の導電粒子が分散配置され
た粒子層とを有し、絶縁層と粒子層とが積層されてフィ
ルム状に形成されるとともに、粒子層の厚みが、二段突
起接続部材の先端部の段を構成する突出量以下に形成さ
れたことを特徴とする異方導電性フィルムであり、二段
突起接続部材が形成された一方の接続対象部材と他方の
接続対象部材とを高い接合信頼性のもとで接合すること
が可能になるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, at least one connection target member has a two-stage projection connection member formed in a two-stage projection, and two opposing connection target members are provided. Is an anisotropically conductive film that electrically connects and mechanically fixes the insulating layer, the insulating layer formed of a resin having an insulating property and an adhesive property, and an electric insulating film formed of a resin having an insulating property and an adhesive property. A particle layer in which a large number of conductive particles for electrically conducting are dispersed and arranged, an insulating layer and a particle layer are laminated to form a film, and the thickness of the particle layer is a two-step projection connecting member. An anisotropic conductive film characterized by being formed not more than the amount of protrusion that constitutes the step of the tip of the one, and the one to be connected and the other to be connected where the two-step projection connection member is formed It is possible to join with high joining reliability Having an iodine.

【0024】また、本発明の請求項2に記載の発明は、
絶縁性と接着性とを有する樹脂で形成された絶縁層と、
絶縁性と接着性とを有する樹脂中に電気的に導通をさせ
る多数の導電粒子が分散配置された粒子層とを有する異
方導電性フィルムを用いて、少なくとも一方の接続対象
部材は二段の突起に形成された二段突起接続部材を有
し、対向する2つの接続対象部材を電気的に接続し且つ
機械的に固着する異方導電フィルムの接続方法であっ
て、二段突起接続部材を有する接続対象部材と異方導電
性フィルムの絶縁層とを対向させて配置し、接続対象部
材を介して異方導電性フィルムを加熱し且つ加圧して対
向する2つの接続対象部材を電気的に接続し且つ機械的
に固着することを特徴とする異方導電性フィルムの接続
方法であり、二段突起接続部材が形成された一方の接続
対象部材と他方の接続対象部材とを高い接合信頼性のも
とで接合することが可能になるという作用を有する。
Further, the invention according to claim 2 of the present invention provides:
An insulating layer formed of a resin having an insulating property and an adhesive property,
Using an anisotropic conductive film having a particle layer in which a large number of conductive particles that electrically conduct in a resin having an insulating property and an adhesive property are dispersed and arranged, at least one member to be connected is a two-stage member. A method of connecting an anisotropic conductive film having a two-stage projection connection member formed on a projection, electrically connecting and mechanically fixing two opposing connection target members, wherein the two-stage projection connection member is The member to be connected and the insulating layer of the anisotropic conductive film are disposed so as to face each other, and the two members to be connected are electrically heated by heating and pressing the anisotropic conductive film via the member to be connected. A method for connecting an anisotropic conductive film, characterized in that it is connected and mechanically fixed, wherein one connection target member formed with a two-step projection connection member and the other connection target member have high bonding reliability. Can be joined under It has the effect of becoming.

【0025】本発明の請求項3に記載の発明は、特に、
異方導電性フィルムの粒子層の厚みと二段突起接続部材
の先端部の段を構成する突出量との関係を特定したもの
で、請求項2記載の発明において、異方導電性フィルム
の粒子層の厚みが二段突起接続部材の先端部の段を構成
する突出量以下に形成されたことを特徴とする異方導電
性フィルムの接続方法であり、二段突起接続部材が形成
された一方の接続対象部材と他方の接続対象部材とを高
い接合信頼性のもとで接合することが可能になるという
作用を有する。
The invention described in claim 3 of the present invention particularly provides
The invention according to claim 2, wherein the relationship between the thickness of the particle layer of the anisotropic conductive film and the amount of protrusion forming the step at the tip of the two-step projection connecting member is specified. A method for connecting an anisotropic conductive film, wherein a thickness of a layer is formed to be equal to or less than a protrusion amount constituting a step at a tip portion of a two-step projection connection member, wherein the two-step projection connection member is formed. This has the effect that it becomes possible to join the member to be connected and the other member to be connected with high joining reliability.

【0026】本発明の請求項4に記載の発明は、特に、
異方導電性フィルムの粒子層の厚みと二段突起接続部材
の先端部の段を構成する突出量との関係を特定したもの
で、請求項2記載の発明において、二段突起接続部材の
先端部の段を構成する突出量が異方導電性フィルムの粒
子層の厚み以上に形成されたことを特徴とする異方導電
性フィルムの接続方法であり、二段突起接続部材が形成
された一方の接続対象部材と他方の接続対象部材とを高
い接合信頼性のもとで接合することが可能になるという
作用を有する。
The invention described in claim 4 of the present invention particularly provides
The relationship between the thickness of the particle layer of the anisotropic conductive film and the amount of protrusion forming the step at the tip of the two-step projection connecting member is specified. A method for connecting an anisotropic conductive film, characterized in that the projecting amount constituting the step of the portion is formed to be equal to or greater than the thickness of the particle layer of the anisotropic conductive film, wherein the two-step projection connecting member is formed. This has the effect that it becomes possible to join the member to be connected and the other member to be connected with high joining reliability.

【0027】以下、本発明の実施の形態について、図1
から図3を用いて説明する。なお、これらの図面におい
て同一の部材には同一の符号を付しており、また、重複
した説明は省略されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. In these drawings, the same members are denoted by the same reference numerals, and duplicate description is omitted.

【0028】図1は本発明の一実施の形態によるACF
を2つの接合対象部材とともに示す断面図、図2は図1
のACFを想到するに至ったACFの構成を示す説明
図、図3は図2のACFによる電気的接続の状態を示す
説明図である。
FIG. 1 shows an ACF according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing two members to be joined together, and FIG.
FIG. 3 is an explanatory diagram showing the configuration of the ACF that has led to the ACF of FIG. 2, and FIG. 3 is an explanatory diagram showing the state of electrical connection by the ACF of FIG.

【0029】図1に示すように、本実施の形態のACF
20は、半導体チップ1とプリント基板8という2つの
接続対象部材間を電気的および機械的に接続するもの
で、絶縁層3と、絶縁層3とともに積層構造をなす粒子
層4とから構成されている。
As shown in FIG. 1, the ACF according to the present embodiment
Numeral 20 electrically and mechanically connects the two connection target members, that is, the semiconductor chip 1 and the printed circuit board 8, and includes an insulating layer 3 and a particle layer 4 having a laminated structure together with the insulating layer 3. I have.

【0030】ここで、絶縁層3は、絶縁性および接着性
を有するたとえばエポキシ系の樹脂からなる。また、粒
子層4は、絶縁性および接着性を有する。たとえばエポ
キシ系の樹脂中に多数の導電粒子5が分散配置されたも
のからなる。導電粒子5には、たとえば金属コートプラ
スチック粒子や金属粒子などが用いられる。なお、絶縁
層3および粒子層4の樹脂はエポキシ系のものに限定さ
れるものではなく、さらに熱硬化性、熱可塑性の樹脂で
もよい。そして、絶縁層3と粒子層4の樹脂の材質は異
なるものであってもよい。
Here, the insulating layer 3 is made of, for example, an epoxy resin having an insulating property and an adhesive property. Further, the particle layer 4 has an insulating property and an adhesive property. For example, it is composed of a number of conductive particles 5 dispersed in an epoxy resin. As the conductive particles 5, for example, metal-coated plastic particles or metal particles are used. Note that the resin of the insulating layer 3 and the particle layer 4 is not limited to an epoxy resin, and may be a thermosetting or thermoplastic resin. Then, the material of the resin of the insulating layer 3 and the material of the resin of the particle layer 4 may be different.

【0031】このようなACF20は、膜厚方向に押圧
されると、押圧力によって導電粒子5が相互に接合し、
これらが連携して膜厚方向に対してのみ電気的導通を発
生させるようになっている。
When the ACF 20 is pressed in the film thickness direction, the conductive particles 5 are bonded to each other by the pressing force,
These cooperate to generate electrical conduction only in the film thickness direction.

【0032】なお、一方の接続対象部材である半導体チ
ップ1には二段の突起に形成された二段突起接続部材で
あるボールバンプ(二段突起接続部材)2が形成されて
いる。ここで、ボールバンプ2の材質としては金やアル
ミなどが使用できるが、特にACF20による接合では
金であることが好ましい。また、他方の接続対象部材で
あるプリント基板8には電極8aが形成されている。こ
こで、プリント基板8の基板にはたとえばセラミックな
どからなる。また、電極8aはたとえば銅やタングステ
ンなどからなり、望ましくは金めっきによる表面処理が
施されている。
Note that a ball bump (two-step projection connection member) 2 as a two-step projection connection member formed on a two-step projection is formed on the semiconductor chip 1 as one connection target member. Here, as the material of the ball bump 2, gold, aluminum, or the like can be used. An electrode 8a is formed on the printed circuit board 8, which is the other member to be connected. Here, the substrate of the printed circuit board 8 is made of, for example, ceramic. The electrode 8a is made of, for example, copper or tungsten, and is preferably subjected to a surface treatment by gold plating.

【0033】そして、ACF20の絶縁層3をボールバ
ンプ2の形成された半導体チップ1側に、粒子層4を電
極8aの形成されたプリント基板8側にそれぞれ向けて
ACF20に圧力を加えると、ボールバンプ2と電極8
aとが電気的に接続されて半導体チップ1とプリント基
板8とが機械的に接続される。
When pressure is applied to the ACF 20 so that the insulating layer 3 of the ACF 20 is directed toward the semiconductor chip 1 on which the ball bumps 2 are formed and the particle layer 4 is directed toward the printed circuit board 8 on which the electrodes 8a are formed, the ball is pressed. Bump 2 and electrode 8
is electrically connected, and the semiconductor chip 1 and the printed circuit board 8 are mechanically connected.

【0034】図示するように、ACF20の粒子層4の
厚みをt1、全体の厚みをt2とし、ボールバンプ2の
先端部(つまり、対向する接続対象部材であるプリント
基板8に近い側)の突出量をt3、全体の突出量をt4
とした場合において、粒子層4の厚みt1は先端部の突
出量t3と同じか、それよりも薄くなっている。
As shown in the figure, the thickness of the particle layer 4 of the ACF 20 is t1, the total thickness is t2, and the tip of the ball bump 2 (ie, the side closer to the printed circuit board 8 which is the member to be connected) is projected. The amount is t3, and the total protrusion amount is t4
In this case, the thickness t1 of the particle layer 4 is equal to or smaller than the protrusion amount t3 of the tip.

【0035】ここで、ACF20を前述のような絶縁層
3と粒子層4とからなる2層構造とした理由を図2およ
び図3を用いて説明する。
Here, the reason why the ACF 20 has the two-layer structure including the insulating layer 3 and the particle layer 4 as described above will be described with reference to FIGS.

【0036】図2において、隣接するボールバンプ2に
おいて、バンプ基部の間隔をG1、先端部の間隔をG2
とした場合、G2>G1の関係が成立している。したが
って、ACF6中の導電粒子5数を増大させることによ
り接合に関与する粒子数を増大させようとすると、G1
部においてショートの発生率が高くなる。これに対し、
G2部はG1部よりスペースが広いため、必然的にショ
ートの発生率は低くなる。
In FIG. 2, in the adjacent ball bumps 2, the distance between the bump bases is G1 and the distance between the tip ends is G2.
, The relationship of G2> G1 is established. Therefore, if it is attempted to increase the number of particles involved in bonding by increasing the number of conductive particles 5 in the ACF 6, G1
The occurrence rate of short-circuits in the part increases. In contrast,
The G2 section has a larger space than the G1 section, so that the short-circuit occurrence rate is inevitably reduced.

【0037】このようなACF6の接合では、図3にお
いて、まずツール加熱により、ACF6はボールバンプ
2側つまり半導体チップ1側から溶融し始める。する
と、加圧によりボールバンプ2の下に位置する導電粒子
5がボールバンプ2の周囲へと押し出されていく。さら
に加熱および加圧が進行すると、プリント基板8側が溶
融し始め、同様に導電粒子5はボールバンプ2の周囲へ
と押し出されていく。そして、最終的にプリント基板8
に最も近い導電粒子5が流動し始めようとしたところ
で、これらの導電粒子5は加圧によりボールバンプ2と
プリント基板8との間に押さえ込まれる。
In such bonding of the ACF 6, in FIG. 3, first, the ACF 6 starts to melt from the ball bump 2 side, that is, the semiconductor chip 1 side by tool heating. Then, the conductive particles 5 located below the ball bump 2 are pushed out to the periphery of the ball bump 2 by the pressure. As heating and pressurization further progress, the printed board 8 side begins to melt, and the conductive particles 5 are similarly pushed out to the periphery of the ball bump 2. And finally, the printed circuit board 8
When the closest conductive particles 5 begin to flow, these conductive particles 5 are pressed between the ball bump 2 and the printed board 8 by pressurization.

【0038】したがって、接合に関与している導電粒子
5はプリント基板8側に最も近いところに位置する導電
粒子5であり、半導体チップ1側の導電粒子5は、接合
時にその殆どが流動してしまうために、接合には関与し
ていない。
Therefore, the conductive particles 5 involved in the bonding are the conductive particles 5 located closest to the printed circuit board 8 side, and most of the conductive particles 5 on the semiconductor chip 1 side flow during the bonding. Therefore, it is not involved in joining.

【0039】とするならば、図1に示すように、接合に
殆ど関与しない部分には導電粒子5を含まない絶縁層3
を形成し、接合に関与する部分には導電粒子5を含む粒
子層4を形成する。そして、このような2層構造におい
て、導電粒子5を含む粒子層4の厚みt1をボールバン
プ2の先端部の突出量t3以下とする。
If so, as shown in FIG. 1, an insulating layer 3 containing no conductive particles 5 is formed in a portion which hardly participates in the bonding.
Is formed, and a particle layer 4 containing the conductive particles 5 is formed in a portion involved in the bonding. In such a two-layer structure, the thickness t1 of the particle layer 4 including the conductive particles 5 is set to be equal to or less than the protrusion amount t3 of the tip of the ball bump 2.

【0040】なお、ここでのACF20は、形状の異な
る各々のボールバンプ2に対応して、粒子層4の厚みを
コントロールするものである。
The ACF 20 controls the thickness of the particle layer 4 corresponding to each of the ball bumps 2 having a different shape.

【0041】このような構成のACF20により、ショ
ート発生率の高いG1部においては高い絶縁性を保つこ
とが可能となる。
With the ACF 20 having such a configuration, it is possible to maintain high insulation properties in the G1 portion where the short-circuit occurrence rate is high.

【0042】また、導電粒子5を含む粒子層4では、図
2に示す導電粒子5を含む層のみで構成されたACF6
の導電粒子5が凝集されているので、接合に関与する導
電粒子5の数の向上が図られいる。例えば50μm厚、
導電粒子数4万個/mm2のACF20において、導電
粒子5を含む粒子層厚25μm、導電粒子5を含まない
絶縁層厚25μmという2層構造にしたとき、接合に関
与する部分の導電粒子数は2倍になる。また、導電粒子
5を含む粒子層厚18μm、導電粒子5を含まない絶縁
層厚32μmという2層構造にしたとき、接合に関与す
る部分の導電粒子数は約3倍になる。したがって、全体
の導電粒子5の数を増大させることなく、接合に関与す
る導電粒子5の数を増大させることが可能となる。
In the particle layer 4 containing the conductive particles 5, the ACF 6 composed only of the layer containing the conductive particles 5 shown in FIG.
Since the conductive particles 5 are agglomerated, the number of conductive particles 5 involved in bonding is improved. For example, 50 μm thick,
When the ACF 20 having 40,000 conductive particles / mm 2 has a two-layer structure having a particle layer thickness of 25 μm including the conductive particles 5 and an insulating layer thickness of 25 μm not including the conductive particles 5, the number of conductive particles in a portion involved in bonding is obtained. Is doubled. In addition, when a two-layer structure having a particle layer thickness of 18 μm including the conductive particles 5 and an insulating layer thickness of 32 μm not including the conductive particles 5 is used, the number of conductive particles in a portion involved in bonding is approximately tripled. Therefore, it is possible to increase the number of conductive particles 5 involved in bonding without increasing the number of entire conductive particles 5.

【0043】なお、このとき、導電粒子5を含む粒子層
4の粒子数が増えることによりG2部の絶縁性の悪化が
懸念されるが、ACF20のトータルの厚みの中で考え
れば、単層の状態でも2層構造にしても導電粒子5の数
は変わらず、また、ACF20は接合時に熱により流動
することから、導電粒子5はG2部のみに溜まることな
く全体に流動する。よって、絶縁性に関しても良好な信
頼性を得ることが可能になる。さらに、狭ピッチ化に伴
う接合部の導電粒子数の低減という問題も、導電粒子5
数を増大することなく解決することができる。
At this time, there is a concern that the number of particles in the particle layer 4 containing the conductive particles 5 may increase, thereby deteriorating the insulating property of the G2 portion. The number of conductive particles 5 does not change regardless of the state or the two-layer structure, and since the ACF 20 flows by heat at the time of joining, the conductive particles 5 flow entirely without collecting only in the G2 portion. Therefore, it is possible to obtain good reliability with respect to insulation. Furthermore, the problem of the reduction in the number of conductive particles at the joint due to the narrowing of the pitch is also a problem with the conductive particles 5.
The problem can be solved without increasing the number.

【0044】これにより、二段突起接続部材が形成され
た一方の接続対象部材である半導体チップ1と他方の接
続対象部材であるプリント基板8とを高い接合信頼性の
もとで接合することが可能になる。
Thus, the semiconductor chip 1 which is one of the connection target members having the two-step projection connection member and the printed board 8 which is the other connection target member can be joined with high joining reliability. Will be possible.

【0045】以上の説明は粒子層4の厚みをコントロー
ルするものであるが、2層構造のACF20の導電粒子
5を含む粒子層4の厚さがどのようなものであっても対
応が可能とするには、ボールバンプ2の形成条件をコン
トロールするようにする。このときには、ボールバンプ
2の二段突起の先端部の突出量を2層構造ACF20の
粒子層4の厚以上に加工するようにする。
Although the above description is for controlling the thickness of the particle layer 4, it is possible to cope with any thickness of the particle layer 4 including the conductive particles 5 of the ACF 20 having a two-layer structure. For this purpose, the conditions for forming the ball bump 2 are controlled. At this time, the protrusion amount of the tip of the two-step projection of the ball bump 2 is processed to be equal to or larger than the thickness of the particle layer 4 of the two-layer structure ACF 20.

【0046】具体的には、ボールバンプ2の先端の高さ
のバラツキや形状を整えるためにフラットニング工程の
フラットニング荷重を制御したり、使用するキャピラリ
で形状を制御することにより行う(図6参照)。これに
より、2層構造のACF20における粒子層4の厚みに
左右されることなく、接合信頼性に係わる接合部捕獲粒
子数を十分に確保し、また絶縁信頼性を向上し、接合信
頼性を高めることが可能になる。
More specifically, the adjustment is performed by controlling the flattening load in the flattening process in order to adjust the height variation and the shape of the tip of the ball bump 2, or by controlling the shape using a capillary (FIG. 6). reference). Thereby, the number of particles trapped at the joint portion relating to the joint reliability is sufficiently ensured without being influenced by the thickness of the particle layer 4 in the two-layered ACF 20, the insulation reliability is improved, and the joint reliability is improved. It becomes possible.

【0047】[0047]

【発明の効果】以上のように、本発明によれば、二段突
起接続部材が形成された一方の接続対象部材と他方の接
続対象部材とを高い接合信頼性のもとで接合することが
可能になるという有効な効果が得られる。
As described above, according to the present invention, one connection target member having the two-step projection connection member and the other connection target member can be joined with high joining reliability. An effective effect that it becomes possible is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態によるACFを2つの接
合対象部材とともに示す断面図
FIG. 1 is a sectional view showing an ACF according to an embodiment of the present invention together with two members to be joined.

【図2】図1のACFを想到するに至ったACFの構成
を示す説明図
FIG. 2 is an explanatory diagram showing the configuration of an ACF that led to the ACF of FIG. 1;

【図3】図2のACFによる電気的接続の状態を示す説
明図
FIG. 3 is an explanatory diagram showing a state of electrical connection by the ACF of FIG. 2;

【図4】従来のACFを示す断面図FIG. 4 is a sectional view showing a conventional ACF.

【図5】図4のACFによる実装プロセスを連続的に示
す工程図
5 is a process chart continuously showing a mounting process by the ACF in FIG. 4;

【図6】半導体チップに対するボールバンプ(二段突起
接続部材)の形成プロセスを連続的に示す工程図
FIG. 6 is a process chart continuously showing a process of forming a ball bump (two-step projection connection member) on a semiconductor chip.

【図7】半導体チップ上に形成されためっきバンプとボ
ールバンプとの構成を示す比較図
FIG. 7 is a comparative diagram showing a configuration of a plated bump and a ball bump formed on a semiconductor chip;

【図8】ボールバンプの形成された半導体チップを図4
に示すACFによりプリント基板に接続した状態を示す
断面図
FIG. 8 shows a semiconductor chip on which ball bumps are formed.
Sectional view showing the state connected to the printed circuit board by the ACF shown in FIG.

【符号の説明】[Explanation of symbols]

1 半導体チップ(接続対象部材) 2 ボールバンプ(二段突起接続部材) 3 絶縁層 4 粒子層 5 導電粒子 8 プリント配線基板(接続対象部材) 20 異方導電性フィルム(ACF) DESCRIPTION OF SYMBOLS 1 Semiconductor chip (connection target member) 2 Ball bump (two-step projection connection member) 3 Insulating layer 4 Particle layer 5 Conductive particle 8 Printed wiring board (connection target member) 20 Anisotropic conductive film (ACF)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方の接続対象部材は二段の突
起に形成された二段突起接続部材を有し、対向する2つ
の接続対象部材を電気的に接続し且つ機械的に固着する
異方導電性フィルムであって、 絶縁性と接着性とを有する樹脂で形成された絶縁層と、 絶縁性と接着性とを有する樹脂中に電気的に導通をさせ
る多数の導電粒子が分散配置された粒子層とを有し、 前記絶縁層と前記粒子層とが積層されてフィルム状に形
成されるとともに、 前記粒子層の厚みが、前記二段突起接続部材の先端部の
段を構成する突出量以下に形成されたことを特徴とする
異方導電性フィルム。
At least one connection target member has a two-stage projection connection member formed in a two-stage projection, and electrically connects and mechanically fixes two opposing connection target members. An electrically conductive film, in which an insulating layer formed of a resin having an insulating property and an adhesive property, and a large number of conductive particles electrically conducting in a resin having an insulating property and an adhesive property are dispersedly arranged. A particle layer, wherein the insulating layer and the particle layer are laminated to form a film, and the thickness of the particle layer is a protrusion amount constituting a step at a tip end of the two-step projection connection member. An anisotropic conductive film formed below.
【請求項2】絶縁性と接着性とを有する樹脂で形成され
た絶縁層と、絶縁性と接着性とを有する樹脂中に電気的
に導通をさせる多数の導電粒子が分散配置された粒子層
とを有する異方導電性フィルムを用いて、少なくとも一
方の接続対象部材は二段の突起に形成された二段突起接
続部材を有し、対向する2つの接続対象部材を電気的に
接続し且つ機械的に固着する異方導電フィルムの接続方
法であって、 前記二段突起接続部材を有する前記接続対象部材と前記
異方導電性フィルムの前記絶縁層とを対向させて配置
し、 前記接続対象部材を介して前記異方導電性フィルムを加
熱し且つ加圧して対向する2つの前記接続対象部材を電
気的に接続し且つ機械的に固着することを特徴とする異
方導電性フィルムの接続方法。
2. An insulating layer formed of a resin having an insulating property and an adhesive property, and a particle layer in which a large number of conductive particles for electrically conducting the resin having an insulating property and an adhesive property are dispersed. Using an anisotropic conductive film having, at least one connection target member has a two-step projection connection member formed in a two-step projection, and electrically connects two opposing connection target members and A method for connecting an anisotropic conductive film that is mechanically fixed, wherein the connection target member having the two-step projection connection member and the insulating layer of the anisotropic conductive film are arranged to face each other, A method of connecting an anisotropic conductive film, comprising heating and pressing the anisotropic conductive film via a member to electrically connect and mechanically fix two opposing connection target members. .
【請求項3】前記異方導電性フィルムの前記粒子層の厚
みは前記二段突起接続部材の先端部の段を構成する突出
量以下に形成されたことを特徴とする請求項2記載の異
方導電性フィルムの接続方法。
3. The anisotropically conductive film according to claim 2, wherein the thickness of said particle layer of said anisotropic conductive film is formed to be equal to or less than a projection amount which constitutes a step at a tip portion of said two-step projection connection member. Connection method for conductive film.
【請求項4】前記二段突起接続部材の先端部の段を構成
する突出量は前記異方導電性フィルムの前記粒子層の厚
み以上に形成されたことを特徴とする請求項2記載の異
方導電性フィルムの接続方法。
4. The projection according to claim 2, wherein the projection amount forming the step at the tip of the two-step projection connection member is formed to be greater than the thickness of the particle layer of the anisotropic conductive film. Connection method for conductive film.
JP12570998A 1998-05-08 1998-05-08 Anisotropic conductive film connection method Expired - Fee Related JP3438583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12570998A JP3438583B2 (en) 1998-05-08 1998-05-08 Anisotropic conductive film connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12570998A JP3438583B2 (en) 1998-05-08 1998-05-08 Anisotropic conductive film connection method

Publications (2)

Publication Number Publication Date
JPH11326935A true JPH11326935A (en) 1999-11-26
JP3438583B2 JP3438583B2 (en) 2003-08-18

Family

ID=14916809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12570998A Expired - Fee Related JP3438583B2 (en) 1998-05-08 1998-05-08 Anisotropic conductive film connection method

Country Status (1)

Country Link
JP (1) JP3438583B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280716A (en) * 2001-03-19 2002-09-27 Pioneer Electronic Corp Electronic part mounting method and bonded body
WO2003001586A1 (en) * 2001-06-20 2003-01-03 Toray Engineering Co., Ltd. Mounting method and device
US6680517B2 (en) * 2000-08-23 2004-01-20 Tdk Corporation Anisotropic conductive film, production method thereof, and display apparatus using anisotropic film
JP2005260138A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Board device
WO2009078409A1 (en) * 2007-12-17 2009-06-25 Hitachi Chemical Company, Ltd. Circuit connecting material and structure for connecting circuit member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680517B2 (en) * 2000-08-23 2004-01-20 Tdk Corporation Anisotropic conductive film, production method thereof, and display apparatus using anisotropic film
JP2002280716A (en) * 2001-03-19 2002-09-27 Pioneer Electronic Corp Electronic part mounting method and bonded body
WO2003001586A1 (en) * 2001-06-20 2003-01-03 Toray Engineering Co., Ltd. Mounting method and device
JP2005260138A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Board device
WO2009078409A1 (en) * 2007-12-17 2009-06-25 Hitachi Chemical Company, Ltd. Circuit connecting material and structure for connecting circuit member
JP4862944B2 (en) * 2007-12-17 2012-01-25 日立化成工業株式会社 Circuit connection material

Also Published As

Publication number Publication date
JP3438583B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
JP5347222B2 (en) Manufacturing method of semiconductor device
JP2001176918A (en) Tape carrier-type semiconductor device, its manufacturing method and liquid crystal module using the same
JP2008186843A (en) Junction structure of flexible substrate
JP2000277649A (en) Semiconductor and manufacture of the same
JP3438583B2 (en) Anisotropic conductive film connection method
JP2005116596A (en) Bonding method
JP6804181B2 (en) Semiconductor module for electric power and its mounting method
JPH114064A (en) Anisotropic conductive resin and mounting structure for electronic component using the same
JPH10125725A (en) Semiconductor device and manufacturing method thereof
JP3456576B2 (en) Semiconductor device and manufacturing method thereof
JP3458707B2 (en) Mounting unit
JP2004134653A (en) Substrate connecting structure and fabricating process of electronic parts therewith
JP3746719B2 (en) Flip chip mounting method
JP2004006705A (en) Mounting structure of semiconductor device and circuit board
US7119423B2 (en) Semiconductor device and method of manufacturing the same, electronic module, and electronic instrument
JP2004247621A (en) Semiconductor device and its manufacturing method
JP4520052B2 (en) Semiconductor device and manufacturing method thereof
JP2967560B2 (en) Connection structure of film carrier
JPH1116946A (en) Mounting method of semiconductor device
JP2009032948A (en) Ic chip, and method of mounting ic chip
JP2009032949A (en) Ic chip, and method of mounting ic chip
JP2000012613A (en) Anisotropic conductive adhesive, and method of mounting electronic parts
JPH04356935A (en) Bump-electrode formation and mounting structure of semiconductor device
JPH11214446A (en) Electronic part manufacturing method
JPH11135173A (en) Thickness direction conductive sheet and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees