JPH11322340A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH11322340A
JPH11322340A JP10133330A JP13333098A JPH11322340A JP H11322340 A JPH11322340 A JP H11322340A JP 10133330 A JP10133330 A JP 10133330A JP 13333098 A JP13333098 A JP 13333098A JP H11322340 A JPH11322340 A JP H11322340A
Authority
JP
Japan
Prior art keywords
phase
oxide superconductor
bismuth
oxide
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10133330A
Other languages
Japanese (ja)
Inventor
Munetsugu Kamiyama
宗譜 上山
Kazuhiko Hayashi
和彦 林
Katsumi Kakimoto
勝己 垣本
Hiroshi Maeda
弘 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10133330A priority Critical patent/JPH11322340A/en
Publication of JPH11322340A publication Critical patent/JPH11322340A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an oxide superconductor that contains the bismuth 2223 phase in a large proportion and can be produced in a short heat treatment time. SOLUTION: In the oxide superconductor that contains the bismuth 2223 phase including Bi, Pb, Sr, Ca and Cu as at least superconductive phase, the superconductive phase includes Ir. Or, in the oxide superconductor that contains the bismuth 2223 phase including Bi, Pb, Sr, Ca and Cu as at least superconductive phase and the non-superconductive phase, the superconductive phase or the non-superconductive phase includes Ir.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、酸化物超電導体
およびその製造方法に関し、より特定的には、超電導相
としてビスマス系2223相を含む超電導体およびその
製造方法に関するものである。
The present invention relates to an oxide superconductor and a method for producing the same, and more particularly, to a superconductor containing a bismuth-based 2223 phase as a superconducting phase and a method for producing the same.

【0002】[0002]

【従来の技術】従来、Bi−Sr−Ca−Cuを主成分
とする酸化物超電導体としては、組成式がBi2 Sr2
Ca2 Cu3 M (Mは10に近い数)で表わされる超
電導相(ビスマス系2223相)と、組成式がBi2
2 Ca1 Cu2 N (Nは8に近い数)で表わされる
超電導相(ビスマス系2212相)が知られている。
2. Description of the Related Art Conventionally, an oxide superconductor containing Bi-Sr-Ca-Cu as a main component has a composition formula of Bi 2 Sr 2
A superconducting phase (bismuth-based 2223 phase) represented by Ca 2 Cu 3 O M (M is a number close to 10) and a composition formula of Bi 2 S
r 2 Ca 1 Cu 2 O N (N is a number close to 8) superconducting phase represented by (bismuth-based 2212 phase) is known.

【0003】これらの相のうち、ビスマス系2223相
は、高い臨界温度と臨界電流密度を有するため、数多く
ある酸化物超電導体の中でも最も実用化に適した超電導
材料と考えられており、多くの研究開発が進められてい
る。
[0003] Among these phases, the bismuth-based 2223 phase has a high critical temperature and critical current density, and is considered to be the most suitable superconducting material for practical use among many oxide superconductors. R & D is underway.

【0004】このビスマス系2223相と呼ばれる超電
導相を含む酸化物超電導体を製造する際には、まず、B
i、Sr、Ca、Cuの酸化物または炭酸塩を用意す
る。次に、この酸化物または炭酸塩を粉末状にして所定
の割合で混合して混合粉末を準備する。混合粉末を熱処
理することにより、ビスマス系2223相とビスマス系
2212相とを含む酸化物超電導体が得られる。
When manufacturing an oxide superconductor containing a superconducting phase called bismuth-based 2223 phase, first, B
An oxide or carbonate of i, Sr, Ca, Cu is prepared. Next, this oxide or carbonate is powdered and mixed at a predetermined ratio to prepare a mixed powder. By heat-treating the mixed powder, an oxide superconductor containing a bismuth-based 2223 phase and a bismuth-based 2212 phase is obtained.

【0005】[0005]

【発明が解決しようとする課題】上述のような従来の製
造方法では、ビスマス系2223相の他に臨界温度や臨
界電流密度が低いビスマス系2212相も生成するた
め、このビスマス系2212相の生成量を減らしてビス
マス系2223相の生成量を増やしたいという要請があ
った。
In the conventional manufacturing method as described above, in addition to the bismuth-based 2223 phase, a bismuth-based 2212 phase having a low critical temperature and a low critical current density is also generated. There was a request to reduce the amount to increase the amount of bismuth-based 2223 phase formed.

【0006】この要請に応えるために、たとえば、アシ
ザワら、“Formation of 2223 Phase and Variation in
Composition of Bi(Pb)-Sr-Ca-Cu-O Superconductor
s", Proceedings of the 2nd International Symposium
on Superconductivity (ISS'89) pp.145 〜148 では、
Biの一部をPbで置換して、組成式が(Bi,Pb)
2 Sr2 Ca2 Cu3 M で表わされるようなビスマス
系2223相を得る方法が記載されている。この方法で
は、ビスマス系2223相の割合が全体の53%程度で
あり少なかった。また、焼結時間も長かった。
[0006] To meet this demand, for example,
Zawa et al., “Formation of 2223 Phase and Variation in
 Composition of Bi (Pb) -Sr-Ca-Cu-O Superconductor
s ", Proceedings of the 2nd International Symposium
 on Superconductivity (ISS'89) pp.145-148,
By substituting a part of Bi with Pb, the composition formula becomes (Bi, Pb)
TwoSrTwoCaTwoCuThreeOMBismuth as represented by
A method for obtaining the system 2223 phase is described. using this method
Means that the ratio of bismuth-based 2223 phase is about 53% of the whole
There were few. Also, the sintering time was long.

【0007】また、錦田は「Bi系酸化物超電導体高温
相の生成挙動」,住友金属 Vol.43-4 (1991) pp.92〜96
においても、組成式が(Bi,Pb)2 Sr2 Ca2
3M で表わされるビスマス系2223相を得る別の
方法が記載されている。この文献に記載された方法で
も、ビスマス系2223相の割合が全体の30%程度で
あり少なかった。また、熱処理時間も100時間とな
り、長時間の熱処理が必要であった。
Also, Nishida, "Formation behavior of high-temperature phase of Bi-based oxide superconductor", Sumitomo Metal Vol. 43-4 (1991) pp. 92-96
Also, the composition formula is (Bi, Pb) 2 Sr 2 Ca 2 C
Another method for obtaining the bismuth-based 2223 phase represented by u 3 O M is described. Even in the method described in this document, the ratio of the bismuth-based 2223 phase was as low as about 30% of the whole. Further, the heat treatment time was also 100 hours, and a long heat treatment was required.

【0008】上述のように、従来の方法ではBi系22
23相の割合が少なく、かつ長時間の熱処理が必要とい
う問題があった。そこで、この発明は上述のような問題
を解決するためになされたものであり、ビスマス系22
23相の割合が多く、かつ短い熱処理時間で製造できる
酸化物超電導体を提供することを目的とするものであ
る。
As described above, in the conventional method, the Bi system 22
There is a problem that the ratio of the 23 phases is small and a long heat treatment is required. Therefore, the present invention has been made to solve the above-described problem, and has been made in consideration of
It is an object of the present invention to provide an oxide superconductor having a high ratio of 23 phases and capable of being manufactured in a short heat treatment time.

【0009】[0009]

【課題を解決するための手段】本発明者らは、ビスマス
系2223相の割合を多くし、さらに熱処理時間を短く
するためのさまざまな実験を行なった。その結果、酸化
物超電導体の超電導相または非超電導相のいずれかまた
は両方にイリジウム(Ir)が存在することによりビス
マス系2223相の割合が多くなり、かつ短い熱処理時
間で製造できることがわかった。
The present inventors conducted various experiments to increase the ratio of the bismuth-based 2223 phase and further shorten the heat treatment time. As a result, it was found that the presence of iridium (Ir) in either or both of the superconducting phase and the non-superconducting phase of the oxide superconductor increased the proportion of the bismuth-based 2223 phase and that the oxide superconductor could be manufactured in a short heat treatment time.

【0010】その理由として、イリジウムは、ビスマス
系2223相などの超電導相または非超電導相の少なく
とも一方に入り込み、ビスマス系2223相を安定化し
ており、ビスマス系2223相の割合が多くなり、かつ
熱処理時間が短くなるものと考えられる。
[0010] The reason is that iridium enters at least one of a superconducting phase or a non-superconducting phase such as a bismuth-based 2223 phase, stabilizes the bismuth-based 2223 phase, increases the proportion of the bismuth-based 2223 phase, and increases the heat treatment. It is considered that the time is shortened.

【0011】また、種々の実験の結果、イリジウムの一
部は酸化物超電導体内に非超電導相として細かく分散
し、酸化物超電導体のピンニングセンター(ピン止め
点)となる可能性があることがわかった。これらの知見
によりなされた、この発明の酸化物超電導体は、少なく
とも超電導相としてBiとPbとSrとCaとCuとを
含むビスマス系2223相を含む酸化物超電導体におい
て、超電導相はIrを含むことを特徴とするものであ
る。
As a result of various experiments, it has been found that a part of iridium may be finely dispersed as a non-superconducting phase in the oxide superconductor, and may become a pinning center (pinning point) of the oxide superconductor. Was. Based on these findings, the oxide superconductor of the present invention provides an oxide superconductor containing at least a bismuth-based 2223 phase containing Bi, Pb, Sr, Ca, and Cu as a superconducting phase, wherein the superconducting phase contains Ir. It is characterized by the following.

【0012】また、この発明の酸化物超電導体は、少な
くとも超電導相としてBiとPbとSrとCaとCuと
を含むビスマス系2223相と非超電導相とを含む酸化
物超電導体において、超電導相または非超電導相はIr
を含むことを特徴とするものである。
Further, the oxide superconductor of the present invention is an oxide superconductor containing at least a bismuth-based 2223 phase containing Bi, Pb, Sr, Ca and Cu as a superconducting phase and a non-superconducting phase. The non-superconducting phase is Ir
It is characterized by including.

【0013】また、ビスマス系2223相内のBiの組
成比(原子比)をBとし、Pbの組成比(原子比)をP
とし、Irの組成比(原子比)をXとすると、BとPと
Xとの間には0.023≦X/(B+P+X)≦0.0
68で示す関係式が成り立つことが好ましい。
Further, the composition ratio (atomic ratio) of Bi in the bismuth-based 2223 phase is B, and the composition ratio (atomic ratio) of Pb is P
Assuming that the composition ratio (atomic ratio) of Ir is X, 0.023 ≦ X / (B + P + X) ≦ 0.0 between B, P, and X.
It is preferable that the relational expression represented by 68 be established.

【0014】また、Irは酸化物として存在することが
好ましい。Irの酸化物の組成式はSr2 CaCuIr
Z (Zは0を超える数である)で表わされることが好
ましい。また、Zは4〜7であることが好ましく、Zは
5に近い数であることがさらに好ましい。
Further, Ir is preferably present as an oxide. The composition formula of the oxide of Ir is Sr 2 CaCuIr
It is preferably represented by O Z (Z is a number greater than 0). Further, Z is preferably from 4 to 7, and more preferably Z is a number close to 5.

【0015】Irの酸化物の平均粒径は1.0μm以下
であることが好ましく、さらに、0.1μm以下である
ことが好ましい。
The average particle size of the Ir oxide is preferably 1.0 μm or less, more preferably 0.1 μm or less.

【0016】この発明に従った酸化物超電導体の製造方
法は、少なくとも超電導相としてBiとPbとSrとC
aとCuとを含むビスマス系2223相と非超電導相と
を含む酸化物超電導体の製造方法において、出発物質と
してBiと、Pbと、Srと、Caと、Cuと、さらに
Irとを含む原料粉末を用いることを特徴とするもので
ある。
The method for producing an oxide superconductor according to the present invention is characterized in that at least Bi, Pb, Sr and C
In a method for producing an oxide superconductor containing a bismuth-based 2223 phase containing a and Cu and a non-superconducting phase, a raw material containing Bi, Pb, Sr, Ca, Cu, and Ir as starting materials It is characterized by using powder.

【0017】また、原料粉末中のBiの組成比(原子
比)をBとし、Pbの組成比(原子比)をPとし、Ir
の組成比(原子比)をXとすると、BとPとXとの間に
は0.023≦X/(B+P+X)≦0.068で示す
関係式が成り立つことが好ましい。
The composition ratio (atomic ratio) of Bi in the raw material powder is B, the composition ratio (atomic ratio) of Pb is P, and Ir
Assuming that the composition ratio (atomic ratio) of X is X, it is preferable that a relational expression represented by 0.023 ≦ X / (B + P + X) ≦ 0.068 is established between B, P, and X.

【0018】また、原料粉末中のIrはIr化合物とし
て存在することが好ましい。さらに、ビスマス系222
3相を生成する、または結合させる熱処理中にIr酸化
物を生成することが好ましい。
Preferably, Ir in the raw material powder exists as an Ir compound. Further, bismuth-based 222
Preferably, the Ir oxide is formed during the heat treatment to form or combine the three phases.

【0019】[0019]

【実施例】(実施例1)Bi2 3 の粉末と、PbOの
粉末と、SrCO3 の粉末と、CaCO3 の粉末と、C
uOの粉末と、IrO2 の粉末とを用意した。BiとP
bとIrとSrとCaとCuとの組成比(原子比)がB
i:Pb:Ir:Sr:Ca:Cu=1.8:(0.4
−X):X:2.1:2.0:3.0となるように上述
の粉末を混合した。このとき、Irの原子比、すなわち
Ir配合量(X)を表1で示すように設定して出発物質
として4種類の混合粉末(サンプル1〜サンプル4)を
準備した。また、サンプル1〜4について、Biの原子
比(B)とPbの原子比(P)とIrの原子比(X)と
の和に対するIrの原子比(X)の割合{X/(B+P
+X)}を計算した。
A powder of Example (Example 1) Bi 2 O 3, a powder of PbO, and the powder of SrCO 3, a powder of CaCO 3, C
A powder of uO and a powder of IrO 2 were prepared. Bi and P
The composition ratio (atomic ratio) of b, Ir, Sr, Ca, and Cu is B
i: Pb: Ir: Sr: Ca: Cu = 1.8: (0.4
-X): The above-mentioned powder was mixed so that X: 2.1: 2.0: 3.0. At this time, the atomic ratio of Ir, that is, the Ir compounding amount (X) was set as shown in Table 1, and four kinds of mixed powders (Samples 1 to 4) were prepared as starting materials. For samples 1 to 4, the ratio of the atomic ratio of Ir (X) to the sum of the atomic ratio of Bi (B), the atomic ratio of Pb (P), and the atomic ratio of Ir (X) {X / (B + P
+ X)} was calculated.

【0020】[0020]

【表1】 [Table 1]

【0021】なお、表1中「B」は、Biの原子比(=
1.8)を示し、「P」は、Pbの原子比(=0.4−
X)を示す。
In Table 1, "B" represents the atomic ratio of Bi (=
1.8), and “P” indicates the atomic ratio of Pb (= 0.4−
X).

【0022】サンプル1〜4について、それぞれ混合粉
末を温度780〜790℃で焼結した後にボールミルで
粉砕した。この粉末を、温度780〜790℃で焼結し
た後、ボールミルで粉砕した。さらに粉末中の残留炭素
量を少なくするために酸素中で温度820℃で20時間
熱処理した。その後、この粉末をボールミルで粉砕し
た。さらに、この粉末を直径が10mmφのペレット状
に成形し、大気中で温度835℃で80時間焼結した。
For each of the samples 1 to 4, the mixed powder was sintered at a temperature of 780 to 790 ° C. and then pulverized by a ball mill. This powder was sintered at a temperature of 780 to 790 ° C. and then pulverized by a ball mill. Further, the powder was heat-treated at 820 ° C. for 20 hours in oxygen in order to reduce the amount of residual carbon in the powder. Thereafter, this powder was pulverized with a ball mill. Further, this powder was formed into a pellet having a diameter of 10 mmφ, and sintered in air at 835 ° C. for 80 hours.

【0023】このようにして得られた酸化物超電導体中
ビスマス系2223相の生成量を粉末X線回折法により
求めた。具体的には、サンプル1〜4のそれぞれについ
て、ビスマス系2223相の(115)面のX線回折強
度I2223(115)と、ビスマス系2212相の(11
5)面のX線回折強度I2212(115)とを求め、これ
らの値を以下の式に代入してビスマス系2223相の生
成量VH を求めた。
The amount of bismuth-based 2223 phase formed in the oxide superconductor thus obtained was determined by a powder X-ray diffraction method. Specifically, the X-ray diffraction intensity I 2223 (115) of the (115) plane of the bismuth-based 2223 phase and the (11
5) The X-ray diffraction intensity I 2212 (115) of the plane was determined, and these values were substituted into the following equation to determine the amount V H of formation of the bismuth-based 2223 phase.

【0024】[0024]

【数1】 (Equation 1)

【0025】サンプル1〜4についてのIrの原子比X
と、ビスマス系2223相の生成量VH との関係を図1
に示す。
Atomic ratio X of Ir for samples 1 to 4
FIG. 1 shows the relationship between the amount of generated bismuth-based 2223 phase V H
Shown in

【0026】図1中の縦軸の「VH 」は、粉末X線回折
法により求めたビスマス系2223相の生成量であり、
得られた酸化物超電導体の全体の体積に対するビスマス
系2223相の体積割合にほぼ等しい。すなわち、「V
H 」が0.6であれば、酸化物超電導体の60体積%を
ビスマス系2223相が占めているということを示す。
"V H " on the vertical axis in FIG. 1 is the amount of bismuth-based 2223 phase produced by the powder X-ray diffraction method.
It is almost equal to the volume ratio of the bismuth-based 2223 phase to the whole volume of the obtained oxide superconductor. That is, "V
If " H " is 0.6, it indicates that the bismuth-based 2223 phase occupies 60% by volume of the oxide superconductor.

【0027】図1より、Irの原子比を増やせば、80
時間という短い熱処理時間で50体積%以上のビスマス
系2223相が得られていることがわかる。そのため、
この方法に従えば、ビスマス系2223相の割合が多
く、かつ短い熱処理時間で製造できる酸化物超電導体を
得ることができるということがわかる。
FIG. 1 shows that if the atomic ratio of Ir is increased, 80
It can be seen that a bismuth-based 2223 phase of 50% by volume or more was obtained in a short heat treatment time of as short as time. for that reason,
According to this method, it is found that an oxide superconductor having a high ratio of the bismuth-based 2223 phase and capable of being manufactured in a short heat treatment time can be obtained.

【0028】(実施例2)実施例1と同様にサンプル1
〜4で示す出発物質としての混合粉末を用意した。サン
プル1〜4それぞれについて混合粉末を温度780〜7
90℃で焼結した後にボールミルで粉砕した。この粉末
を、温度780〜790℃で焼結した後ボールミルで粉
砕した。この粉末を、残留炭素量を少なくするために酸
素中で温度820℃で20時間熱処理した後ボールミル
で粉砕した。
(Example 2) Sample 1 was prepared in the same manner as in Example 1.
A mixed powder as a starting material indicated by Nos. To 4 was prepared. The mixed powder was heated at a temperature of 780 to 7 for each of the samples 1 to 4.
After sintering at 90 ° C., it was pulverized with a ball mill. This powder was sintered at a temperature of 780 to 790 ° C. and then pulverized by a ball mill. This powder was heat-treated in oxygen at a temperature of 820 ° C. for 20 hours to reduce the amount of residual carbon, and then pulverized by a ball mill.

【0029】さらに、この粉末を、それぞれ、外径8m
mφ、内径6mmφの銀パイプに充填し、銀パイプの外
径が1mmφとなるまで伸線加工を施した。伸線加工後
の銀パイプを圧延加工して厚さを0.2mmのテープ状
線材とした。得られたテープ状線材を、それぞれ大気中
で温度830℃で60時間熱処理し、さらにこのテープ
状線材にプレス加工を施した後に温度830℃で30時
間熱処理した。熱処理後のテープ状線材のそれぞれをプ
レス加工し温度830℃で30時間熱処理し、さらにプ
レス加工し温度830℃で30時間熱処理してサンプル
1〜4のそれぞれを含む超電導線材を作製した。
Further, each of the powders had an outer diameter of 8 m.
A silver pipe having a diameter of mφ and an inner diameter of 6 mmφ was filled and subjected to wire drawing until the outer diameter of the silver pipe became 1 mmφ. The drawn silver pipe was rolled to obtain a tape-shaped wire having a thickness of 0.2 mm. Each of the obtained tape-shaped wires was heat-treated at 830 ° C. for 60 hours in the air, and further subjected to press working at 830 ° C. for 30 hours. Each of the tape-shaped wires after the heat treatment was pressed and heat-treated at a temperature of 830 ° C. for 30 hours, and further pressed and heat-treated at a temperature of 830 ° C. for 30 hours to produce a superconducting wire including each of Samples 1 to 4.

【0030】得られた超電導線材において、酸化物超電
導体を被覆する銀を剥がして内部の酸化物超電導体の部
分の組織を走査型電子顕微鏡で観察した。
In the obtained superconducting wire, the silver covering the oxide superconductor was peeled off, and the structure of the internal oxide superconductor was observed with a scanning electron microscope.

【0031】観察した結果、サンプル1を用いて製造し
た酸化物超電導体以外については、ビスマス系2223
相の結晶中にIrが固溶しており、さらに、微小なIr
酸化物の粒子が点在しているのが確認された。2223
相中のPbがIrに置換されている可能性がある。
As a result of the observation, except for the oxide superconductor manufactured using Sample 1, bismuth-based 2223
Ir is dissolved in the crystal of the phase,
It was confirmed that oxide particles were scattered. 2223
Pb in the phase may be replaced by Ir.

【0032】このIr酸化物を分析した結果、酸化物の
組成式はSr2 CaCuIrOZ (Zは0を超える数で
ある)であり、Ir酸化物の最大粒径は0.5μmであ
り、平均粒径は0.1μm以下であった。また、Ir酸
化物は非超電導相であるので、ピンニングセンタとなる
可能性がある。
As a result of analyzing the Ir oxide, the composition formula of the oxide was Sr 2 CaCuIrO Z (Z is a number exceeding 0), the maximum particle size of the Ir oxide was 0.5 μm, and the average The particle size was 0.1 μm or less. In addition, since Ir oxide is a non-superconducting phase, it may be a pinning center.

【0033】[0033]

【発明の効果】この発明に従えば、ビスマス系2223
相の割合が多く、かつ短い熱処理時間で製造できる酸化
物超電導体を得ることができる。
According to the present invention, bismuth-based 2223
It is possible to obtain an oxide superconductor that has a large proportion of a phase and can be manufactured in a short heat treatment time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Irの原子比Xとビスマス系2223相の生成
量VH との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an atomic ratio X of Ir and a production amount V H of a bismuth-based 2223 phase.

フロントページの続き (72)発明者 林 和彦 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 垣本 勝己 宮城県仙台市太白区八木本山町2−37−7 メゾンアルファ103 (72)発明者 前田 弘 宮城県仙台市青葉区川内元支倉35 川内住 宅1−201Continued on the front page (72) Inventor Kazuhiko Hayashi 1-3-1 Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Katsumi Kakimoto 2-37 Yagimotoyama-cho, Taishiro-ku, Sendai City, Miyagi Prefecture -7 Maison Alpha 103 (72) Inventor Hiroshi Maeda 35 Kawasaki Moto-Hasekura, Aoba-ku, Sendai City, Miyagi Prefecture 1-201 Kawauchi Residence

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも超電導相としてBiとPbと
SrとCaとCuとを含むビスマス系2223相を含む
酸化物超電導体において、 前記超電導相は、Irを含むことを特徴とする、酸化物
超電導体。
1. An oxide superconductor containing at least a bismuth-based 2223 phase containing Bi, Pb, Sr, Ca and Cu as a superconducting phase, wherein the superconducting phase contains Ir. body.
【請求項2】 少なくとも超電導相としてBiとPbと
SrとCaとCuとを含むビスマス系2223相と非超
電導相とを含む酸化物超電導体において、 前記超電導相または前記非超電導相は、Irを含むこと
を特徴とする、酸化物超電導体。
2. An oxide superconductor containing at least a bismuth-based 2223 phase containing Bi, Pb, Sr, Ca and Cu as a superconducting phase and a non-superconducting phase, wherein the superconducting phase or the non-superconducting phase contains Ir. An oxide superconductor characterized by including.
【請求項3】 前記ビスマス系2223相内のBiの組
成比(原子比)をBとし、Pbの組成比(原子比)をP
とし、Irの組成比(原子比)をXとすると、前記Bと
前記Pと前記Xとの間には0.023≦X/(B+P+
X)≦0.068で示す関係式が成り立つことを特徴と
する、請求項1または2に記載の酸化物超電導体。
3. The composition ratio (atomic ratio) of Bi in the bismuth-based 2223 phase is B, and the composition ratio (atomic ratio) of Pb is P.
Assuming that the composition ratio (atomic ratio) of Ir is X, 0.023 ≦ X / (B + P +) between B, P, and X.
The oxide superconductor according to claim 1, wherein a relational expression represented by X) ≦ 0.068 is satisfied.
【請求項4】 Irは酸化物として存在することを特徴
とする、請求項2に記載の酸化物超電導体。
4. The oxide superconductor according to claim 2, wherein Ir exists as an oxide.
【請求項5】 Irの酸化物の組成式はSr2 CaCu
IrOZ (Zは0を超える数である)で表わされること
を特徴とする、請求項4に記載の酸化物超電導体。
5. The composition formula of an oxide of Ir is Sr 2 CaCu.
The oxide superconductor according to claim 4, wherein the oxide superconductor is represented by IrO Z (Z is a number exceeding 0).
【請求項6】 Irの酸化物の平均粒径は1.0μm以
下であることを特徴とする、請求項4または5に記載の
酸化物超電導体。
6. The oxide superconductor according to claim 4, wherein the average particle diameter of the oxide of Ir is 1.0 μm or less.
【請求項7】 Irの酸化物の平均粒径は0.1μm以
下であることを特徴とする、請求項6に記載の酸化物超
電導体。
7. The oxide superconductor according to claim 6, wherein the average particle diameter of the Ir oxide is 0.1 μm or less.
【請求項8】 少なくとも超電導相としてBiとPbと
SrとCaとCuとを含むビスマス系2223相と非超
電導相とを含む酸化物超電導体の製造方法において、 出発物質としてBiとPbと、Srと、Caと、Cu
と、さらにIrとを含む原料粉末を用いることを特徴と
する、酸化物超電導体の製造方法。
8. A method for producing an oxide superconductor containing at least a bismuth-based 2223 phase containing Bi, Pb, Sr, Ca and Cu as a superconducting phase and a non-superconducting phase, wherein Bi, Pb and Sr are used as starting materials. And Ca and Cu
And a raw material powder further containing Ir.
【請求項9】 前記原料粉末中のBiの組成比(原子
比)をBとし、Pbの組成比(原子比)をPとし、Ir
の組成比(原子比)をXとすると、前記Bと前記Pと前
記Xとの間には0.023≦X/(B+P+X)≦0.
068で示す関係式が成り立つことを特徴とする、請求
項8に記載の酸化物超電導体の製造方法。
9. The composition ratio (atomic ratio) of Bi in the raw material powder is B, the composition ratio (atomic ratio) of Pb is P, and Ir
Assuming that the composition ratio (atomic ratio) of X is X, 0.023 ≦ X / (B + P + X) ≦ 0.
The method for producing an oxide superconductor according to claim 8, wherein a relational expression represented by 068 is satisfied.
【請求項10】 前記原料粉末中のIrはIr化合物と
して存在することを特徴とする、請求項8または9に記
載の酸化物超電導体の製造方法。
10. The method for producing an oxide superconductor according to claim 8, wherein Ir in the raw material powder exists as an Ir compound.
【請求項11】 前記ビスマス系2223相を生成す
る、または結合させる熱処理中にIrの酸化物を生成す
ることを特徴とする、請求項8〜10のいずれか1項に
記載の酸化物超電導体の製造方法。
11. The oxide superconductor according to claim 8, wherein an oxide of Ir is formed during the heat treatment for forming or bonding the bismuth-based 2223 phase. Manufacturing method.
JP10133330A 1998-05-15 1998-05-15 Oxide superconductor and its production Withdrawn JPH11322340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133330A JPH11322340A (en) 1998-05-15 1998-05-15 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133330A JPH11322340A (en) 1998-05-15 1998-05-15 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH11322340A true JPH11322340A (en) 1999-11-24

Family

ID=15102204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133330A Withdrawn JPH11322340A (en) 1998-05-15 1998-05-15 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH11322340A (en)

Similar Documents

Publication Publication Date Title
EP0356969B1 (en) Method of producing oxide superconductor
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
EP0447994A2 (en) Bismuth oxide superconductor and method of preparing the same
EP0551523B1 (en) Method for manufacturing superconductive wire based on bismuth oxide superconducting material
JP4038813B2 (en) Superconducting wire manufacturing method
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH04500196A (en) Superconducting metal oxide composition
JPH11322340A (en) Oxide superconductor and its production
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH04262308A (en) Oxide superconductive wire rod
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
JP2803819B2 (en) Manufacturing method of oxide superconductor
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH01123405A (en) Manufacture of superconducting power lead
JPH0412023A (en) Oxide superconductor
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JPH0554735A (en) Manufacture of ceramic superconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802