JPH11319577A - Dispersion of composite photocatalyst particle and its preparation and photocatalyst film - Google Patents

Dispersion of composite photocatalyst particle and its preparation and photocatalyst film

Info

Publication number
JPH11319577A
JPH11319577A JP10145189A JP14518998A JPH11319577A JP H11319577 A JPH11319577 A JP H11319577A JP 10145189 A JP10145189 A JP 10145189A JP 14518998 A JP14518998 A JP 14518998A JP H11319577 A JPH11319577 A JP H11319577A
Authority
JP
Japan
Prior art keywords
fine particles
dispersion
photocatalyst fine
photocatalyst
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10145189A
Other languages
Japanese (ja)
Inventor
Koji Ono
宏次 大野
Atsushi Kishimoto
淳 岸本
Mitsumasa Saito
光正 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP10145189A priority Critical patent/JPH11319577A/en
Publication of JPH11319577A publication Critical patent/JPH11319577A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dispersion of composite photocatalyst fine particles wherein photocatalyst fine particles are highly dispersed under non-acidic condition without using an org. surfactant and a strong acid to exhibit high transparency and a photocatalytic activity and which can be coated by using an ordinary coating device without taking a special treatment to generation of corrosion and rust and a photocatalyst film formed by using this dispersion of the composite photocatalyst fine particles. SOLUTION: A dispersion of composite photocatalyst fine particles is prepd. by dispersing and stabilizing the composite photocatalyst fine particles obtd. by coating the surfaces of photocatalyst fine particles with porous silica under alkaline condition and in the method for preparing it, surface coating of the photocatalyst fine particles with the porous silica and dispersion stabilization are performed by one process by incorporating the photocatalyst fine particles, tetraalkoxy silane and an alkaline substance in a dispersion medium and applying opening and grinding power by using a dispersing machine and a photocatalyst film is formed by using the dispersion of the composite photocatalyst fine particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒微粒子を高
分散させた複合光触媒微粒子分散液及びその製造方法並
びに光触媒膜に関するものである。詳しくは、光触媒微
粒子をアルカリ性条件下で高分散させて可視光線の散乱
を抑えることにより、極めて高い透明性を備えた複合光
触媒微粒子分散液及びその製造方法並びに光触媒膜に関
する。
The present invention relates to a composite photocatalyst fine particle dispersion in which photocatalyst fine particles are highly dispersed, a method for producing the same, and a photocatalyst film. More specifically, the present invention relates to a composite photocatalyst fine particle dispersion having extremely high transparency by dispersing photocatalyst fine particles under alkaline conditions to suppress scattering of visible light, a method for producing the same, and a photocatalyst film.

【0002】[0002]

【従来の技術】光触媒材料は、紫外線を吸収することに
より生成する正孔などの強い酸化力によって悪臭成分や
汚れ、環境汚染物質の除去等、様々な目的に利用されて
いる。これを分散させた分散液をフィルムに塗工して前
述のような機能を有する機能性フィルムが得られる。
2. Description of the Related Art Photocatalytic materials are used for various purposes such as removal of bad smell components, dirt and environmental pollutants by strong oxidizing power of holes and the like generated by absorbing ultraviolet rays. The resulting dispersion is applied to a film to obtain a functional film having the above-described functions.

【0003】〔問題点〕しかし、光触媒微粒子を分散さ
せるためには、有機物である界面活性剤を用いるか、塩
酸や硝酸等の強酸で解膠するしか方法がなかった。前者
は光触媒の活性により分解されたり、光触媒の活性を低
下させる等の問題点があり、後者はその強い酸性のため
に、鉄等の金属を腐食させ、使用に際しては特殊な処置
をした装置しか用いることができないという問題点があ
った。
[Problems] However, the only way to disperse the photocatalyst fine particles is to use an organic surfactant or to peptize with a strong acid such as hydrochloric acid or nitric acid. The former has problems such as being decomposed by the activity of the photocatalyst and decreasing the activity of the photocatalyst.The latter has a strong acidity and corrodes metals such as iron. There was a problem that it could not be used.

【0004】そこで、光触媒微粒子を界面活性剤や強酸
を用いることなく、非酸性条件下で分散・安定化するこ
とが試みられているが、未だ、有効な方法が見い出され
ていない。
Accordingly, attempts have been made to disperse and stabilize the photocatalyst fine particles under non-acidic conditions without using a surfactant or a strong acid, but no effective method has yet been found.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の技術
における問題点に鑑みて成されたものであり、この問題
点を解消するために具体的に設定された課題は、光触媒
微粒子を有機系界面活性剤や強酸を用いず、非酸性条件
下で高分散させて、高い透明性と光触媒活性を有し、か
つ、腐食や錆の発生に対して特別な処置を講じることな
く通常のコーティング装置を用いてコーティングを行う
ことができる複合光触媒微粒子分散液及びその製造方
法、並びに、この複合光触媒微粒子分散液を用いて形成
された光触媒膜を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the problems in the prior art, and an object specifically set to solve the problems is to use photocatalyst fine particles in an organic solvent. Highly dispersed under non-acidic conditions without using surfactants or strong acids, has high transparency and photocatalytic activity, and can be used for ordinary coating without taking special measures against corrosion and rust. An object of the present invention is to provide a composite photocatalyst fine particle dispersion which can be coated using an apparatus, a method for producing the same, and a photocatalyst film formed using the composite photocatalyst fine particle dispersion.

【0006】[0006]

【課題を解決するための手段】本発明者等は前記課題を
解決するため鋭意検討した結果、光触媒微粒子の表面を
シリカで被覆すれば、光触媒微粒子をアルカリ条件下で
分散・安定化し得ることを見い出し、本発明を完成し
た。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that if the surface of the photocatalyst fine particles is coated with silica, the photocatalyst fine particles can be dispersed and stabilized under alkaline conditions. We have found and completed the present invention.

【0007】即ち、本発明における請求項1に係る複合
光触媒微粒子分散液は、光触媒微粒子を多孔質シリカに
より表面被覆することにより得られる複合光触媒微粒子
が、アルカリ条件下に分散し安定化してなることを特徴
とするものである。
The composite photocatalyst fine particle dispersion according to claim 1 of the present invention is obtained by dispersing and stabilizing the composite photocatalyst fine particles obtained by coating the surface of the photocatalyst fine particles with porous silica under alkaline conditions. It is characterized by the following.

【0008】また、請求項2に係る複合光触媒微粒子分
散液は、前記複合光触媒微粒子の平均一次粒子径が 1〜
100 nmであることを特徴とする。
Further, the composite photocatalyst fine particle dispersion according to claim 2 has an average primary particle diameter of the composite photocatalyst fine particles of 1 to 1.
The thickness is 100 nm.

【0009】また、請求項3に係る複合光触媒微粒子分
散液は、前記光触媒微粒子がアナターゼ型TiO2 微粒
子またはZnO微粒子であることを特徴とする。
Further, the composite photocatalyst fine particle dispersion according to claim 3 is characterized in that the photocatalyst fine particles are anatase type TiO 2 fine particles or ZnO fine particles.

【0010】また、請求項4に係る複合光触媒微粒子分
散液は、前記光触媒微粒子の一部を電気伝導性微粒子に
置換してなることを特徴とする。
The composite photocatalyst fine particle dispersion according to claim 4 is characterized in that a part of the photocatalyst fine particles is replaced with electrically conductive fine particles.

【0011】また、請求項5に係る複合光触媒微粒子分
散液は、分散媒として極性溶媒または極性溶媒と水との
混合物を用いたことを特徴とする。
The composite photocatalyst fine particle dispersion according to claim 5 is characterized in that a polar solvent or a mixture of a polar solvent and water is used as a dispersion medium.

【0012】また、請求項6に係る複合光触媒微粒子分
散液の製造方法は、分散媒中に光触媒微粒子とテトラア
ルコキシシランとアルカリ性物質とを添加し、分散機を
用いて解砕力を加えることにより、光触媒微粒子への多
孔質シリカの表面被覆と分散安定化とを1工程で行うこ
とを特徴とするものである。
According to a sixth aspect of the present invention, there is provided a method for producing a composite photocatalyst fine particle dispersion, comprising adding a photocatalyst fine particle, tetraalkoxysilane, and an alkaline substance to a dispersion medium and applying a crushing force using a disperser. The present invention is characterized in that the surface coating of fine particles with porous silica and the dispersion stabilization are performed in one step.

【0013】また、請求項7に係る光触媒膜は、請求項
1記載の複合光触媒微粒子分散液を用いて形成したこと
を特徴とするものである。
According to a seventh aspect of the present invention, a photocatalyst film is formed using the composite photocatalyst fine particle dispersion of the first aspect.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を具体
的に説明する。ただし、この実施の形態は、発明の趣旨
をより良く理解させるため具体的に説明するものであ
り、特に指定のない限り、発明内容を限定するものでは
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. However, this embodiment is specifically described for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.

【0015】この実施の形態における分散液は、テトラ
アルコキシシランのアルコール溶液中に光触媒微粒子を
加え、微量のアルカリ性物質を加えた後、解砕機を用い
て高い解砕力を与えることによって、光触媒微粒子表面
の吸着水によりテトラアルコキシシランが加水分解を受
け、光触媒微粒子表面に多孔質シリカ層が生成し、アル
カリ性条件下におけるシリカの表面電荷反発により、目
的の光触媒微粒子が分散し、安定化される分散液を作成
する。
The dispersion in this embodiment is obtained by adding fine particles of photocatalyst to an alcohol solution of tetraalkoxysilane, adding a small amount of an alkaline substance, and then giving a high crushing power using a crusher to thereby improve the surface of the fine particles of photocatalyst. The tetraalkoxysilane is hydrolyzed by the adsorbed water, a porous silica layer is formed on the surface of the photocatalyst fine particles, and the target photocatalyst fine particles are dispersed and stabilized by the surface charge repulsion of the silica under alkaline conditions. create.

【0016】例えば、オルトケイ酸テトラメチルまたは
オルトケイ酸テトラエチルを含む水溶性有機溶媒中に光
触媒微粒子を加え、加水分解触媒兼pH調整剤としてN
3を加え、ボールミル、サンドミル等の解砕機を用い
て高い解砕力を与えることにより、分散粒子径が 100n
m以下にまで、複合光触媒微粒子を高分散させた分散液
を作成する。
For example, photocatalyst fine particles are added to a water-soluble organic solvent containing tetramethyl orthosilicate or tetraethyl orthosilicate, and N is used as a hydrolysis catalyst and a pH adjuster.
By adding H 3 and applying a high crushing force using a crusher such as a ball mill or a sand mill, the dispersed particle diameter becomes 100 n.
m, a dispersion liquid in which the composite photocatalyst fine particles are highly dispersed is prepared.

【0017】この際、光触媒微粒子表面の吸着水によ
り、添加されているオルトケイ酸テトラメチルまたはオ
ルトケイ酸テトラエチルが加水分解し、光触媒微粒子を
核とした多孔質シリカ層が形成されることにより、アル
カリ性領域下でのシリカの表面電荷による反発によっ
て、高い分散安定性が維持される。
At this time, the adsorbed water on the surface of the photocatalyst fine particles hydrolyzes the added tetramethyl orthosilicate or tetraethyl orthosilicate to form a porous silica layer having the photocatalyst fine particles as a nucleus. High dispersion stability is maintained by the repulsion by the surface charge of the silica below.

【0018】この分散液は酸性を示さないため、鉄等の
金属を腐食することがなく、通常のコーティング装置を
用いることができるようになる。また、有機系界面活性
剤を用いることなく、平均一次粒子径が 100nm以下と
いう可視光線の波長よりも小さく、かつ分散安定性の高
い分散液が得られるため、透明性および光触媒活性の高
い膜を得ることができる。
Since this dispersion does not show acidity, it does not corrode metals such as iron, so that a usual coating apparatus can be used. In addition, without using an organic surfactant, a dispersion liquid having an average primary particle size smaller than the wavelength of visible light of 100 nm or less and having high dispersion stability can be obtained. Obtainable.

【0019】用いられる光触媒微粒子としては、TiO
2 微粒子及び/又はZnO微粒子を使用することがで
き、好適には光触媒活性の高いTiO2 微粒子、さらに
好適にはアナターゼ型TiO2 微粒子を用いることがで
きる。TiO2 及びZnOの微粒子は、粒径が 100nm
以下であることが好ましい。この粒径が小さいほど透明
性を得やすく、また光触媒活性も高いものが得られる。
The photocatalyst fine particles used are TiO.
2 fine particles and / or ZnO fine particles can be used, preferably TiO 2 fine particles having high photocatalytic activity, more preferably anatase TiO 2 fine particles. The fine particles of TiO 2 and ZnO have a particle size of 100 nm.
The following is preferred. The smaller the particle size, the easier it is to obtain transparency and the higher the photocatalytic activity.

【0020】また、前記光触媒微粒子の一部を電子伝導
性微粒子で置換すると光触媒活性が向上するので好まし
い。光触媒活性が向上する理由は、必ずしも定かでない
が、TiO2 微粒子およびZnO微粒子の正孔と電子と
の再結合を電子伝導性微粒子が防止する結果、正孔およ
び電子の寿命が長くなるためと考えられる。
It is preferable to replace a part of the photocatalyst fine particles with electron conductive fine particles since the photocatalytic activity is improved. The reason why the photocatalytic activity is improved is not necessarily clear, but is considered to be because the electron conductive fine particles prevent recombination of holes and electrons of the TiO 2 fine particles and ZnO fine particles with the result that the lifetime of the holes and electrons is prolonged. Can be

【0021】前記電子伝導性微粒子としては、金、銀、
パラジウム、ルテニウム等の貴金属および酸化インジウ
ム、酸化スズ等の金属酸化物が好適である。電子伝導性
微粒子の添加量は、光触媒微粒子 100重量部に対して、
最大 140重量部、より好ましくは最大 120重量部であ
る。電子伝導性微粒子の添加量が 140重量部を越える
と、光触媒微粒子のみの場合と比較して、かえって光触
媒活性を損なうことになる。
The electron conductive fine particles include gold, silver,
Noble metals such as palladium and ruthenium and metal oxides such as indium oxide and tin oxide are preferred. The addition amount of the electron conductive fine particles is based on 100 parts by weight of the photocatalytic fine particles.
It is at most 140 parts by weight, more preferably at most 120 parts by weight. If the added amount of the electron conductive fine particles exceeds 140 parts by weight, the photocatalytic activity is impaired as compared with the case where only the photocatalytic fine particles are used.

【0022】アルカリ性物質としては、アンモニア、ア
ンモニウム塩、アミン化合物またはアミン化合物の脂肪
酸塩類が好ましい。アンモニウム塩としては、酢酸アン
モニウム、安息香酸アンモニウム、炭酸アンモニウム、
クエン酸アンモニウム等を例示することができる。
As the alkaline substance, ammonia, ammonium salts, amine compounds or fatty acid salts of amine compounds are preferred. As ammonium salts, ammonium acetate, ammonium benzoate, ammonium carbonate,
Examples thereof include ammonium citrate.

【0023】アミン化合物としては、メチルアミン、エ
チルアミン、プロピルアミン、イソプロピルアミン、ブ
チルアミン、アミルアミン、ヘキシルアミン、ジメチル
アミン、ジエチルアミン、ジプロピルアミン、ジイソプ
ロピルアミン、トリメチルアミン、トリエチルアミン、
トリプロピルアミン、アリルアミン、ジアリルアミン、
シクロプロピルアミン、シクロブチルアミン、シクロペ
ンチルアミン、シクロヘキシルアミン、アニリン、メチ
ルアニリン、ジメチルアニリン、エチルアニリン、ジエ
チルアニリン、トルイジン、ジベンジルアミン等を例示
することができる。
Examples of the amine compound include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, trimethylamine, triethylamine,
Tripropylamine, allylamine, diallylamine,
Examples thereof include cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, aniline, methylaniline, dimethylaniline, ethylaniline, diethylaniline, toluidine, dibenzylamine and the like.

【0024】アミン化合物の脂肪酸塩類としては、前記
アミン化合物の酢酸塩、プロピオン酸塩、酪酸塩、吉草
酸塩、カプロン酸塩等を例示することができる。アルカ
リ性物質の添加量としては、 30 〜 2000 ppmが好ま
しく、特に 50〜 1000 ppmがより好ましい。アルカ
リ性物質の添加量が少なすぎると加水分解が進行せず、
光触媒微粒子表面にシリカ層を生成することができな
い。一方、アルカリ性物質が多すぎると加水分解が急激
に進行してしまい液が固化する恐れがある。
Examples of the fatty acid salts of the amine compound include acetate, propionate, butyrate, valerate, caproate and the like of the amine compound. The addition amount of the alkaline substance is preferably 30 to 2000 ppm, and more preferably 50 to 1000 ppm. If the addition amount of the alkaline substance is too small, the hydrolysis does not proceed,
A silica layer cannot be formed on the surface of the photocatalyst fine particles. On the other hand, if the amount of the alkaline substance is too large, the hydrolysis proceeds rapidly, and the liquid may be solidified.

【0025】分散液に用いる分散媒としては、極性溶
媒、または水と極性溶媒との混合物を好適に用いること
ができる。極性溶媒としては、メタノール、エタノー
ル、1−プロパノール、2−プロパノールが好適であ
る。
As the dispersion medium used for the dispersion, a polar solvent or a mixture of water and a polar solvent can be suitably used. As the polar solvent, methanol, ethanol, 1-propanol and 2-propanol are preferred.

【0026】極性溶媒を用いるのは、粒子表面に形成す
る電気二重層が非極性溶媒より厚くなり、粒子の反発を
得やすく、分散および分散安定化しやすくなり、また、
蒸気臭が刺激的でないため作業上好ましく、さらにま
た、光触媒微粒子のバインダとして一般的に用いられて
いるテトラアルコキシシラン加水分解物等の無機系結合
材と混合し易い等、実用上多くの利点があるからであ
る。
When a polar solvent is used, the electric double layer formed on the surface of the particles becomes thicker than the non-polar solvent, so that repulsion of the particles can be easily obtained, and dispersion and dispersion can be easily performed.
The steam odor is not irritating and is therefore preferable in terms of work, and has many practical advantages, such as easy mixing with inorganic binders such as tetraalkoxysilane hydrolysates that are generally used as a binder for photocatalytic fine particles. Because there is.

【0027】テトラアルコキシシランの添加量として
は、SiO2 として光触媒粒子の 2〜35 wt%が良
く、より好ましくは 5〜 20 wt%である。SiO2
2wt%未満の場合はアルカリ領域の分散性が不十分と
なり、 35wt%を越えると光触媒活性を阻害する結果
となる。
The addition amount of the tetraalkoxysilane is preferably 2 to 35 wt%, more preferably 5 to 20 wt% of the photocatalyst particles as SiO 2 . SiO 2
If it is less than 2 wt%, the dispersibility of the alkaline region becomes insufficient, and if it exceeds 35 wt%, the photocatalytic activity is impaired.

【0028】加水分解のための水分は添加してもしなく
ても良く、好ましくは添加せず、光触媒微粒子の吸着水
のみで加水分解した方が良い。テトラアルコキシシラン
分子は光触媒粒子表面の水分とアルカリ性物質により加
水分解されて、シリケートオリゴマーとなって光触媒粒
子表面に析出し付着する。
Water for hydrolysis may or may not be added, and it is preferable not to add water but to hydrolyze only with water adsorbed on the photocatalyst fine particles. The tetraalkoxysilane molecule is hydrolyzed by water and an alkaline substance on the surface of the photocatalyst particles, and becomes a silicate oligomer, which is precipitated and adhered to the surface of the photocatalyst particles.

【0029】この場合、シリケートオリゴマーが粒子表
面に緻密に付着してしまうと光触媒活性を損なってしま
う。そのために加水分解触媒としてのアルカリ性物質
は、前記濃度範囲にする必要がある。前記濃度範囲であ
れば光触媒微粒子表面に形成するシリカ層は多孔質とな
り光触媒活性を阻害することがない。
In this case, if the silicate oligomer adheres densely to the particle surface, the photocatalytic activity will be impaired. Therefore, the concentration of the alkaline substance as a hydrolysis catalyst must be within the above-mentioned concentration range. When the concentration is within the above range, the silica layer formed on the surface of the photocatalyst fine particles becomes porous and does not hinder the photocatalytic activity.

【0030】光触媒微粒子の分散と加水分解は同時に行
う必要がある。分散が先に行われると、シリカ処理され
る時には、凝集粒子となってしまい、微粒子分散液とな
らない。したがって、微粒子分散液を得るためには、分
散とシリカ処理を同時に行う必要がある。
It is necessary to simultaneously disperse and hydrolyze the photocatalyst fine particles. If the dispersion is performed first, when the silica treatment is performed, the particles become aggregated particles and do not become a fine particle dispersion. Therefore, in order to obtain a fine particle dispersion, it is necessary to simultaneously perform the dispersion and the silica treatment.

【0031】このようにして得られた複合光触媒微粒子
の分散液は、平均粒径 100nm以下の一次粒子にまで高
分散されており、極めて透明性が高い。また、分散安定
化のための助剤として有機系界面活性剤や強酸を用いて
いないため、ほとんど活性を損なうこともなく、また、
鉄等の金属材料を腐食させることがない。
The dispersion of composite photocatalyst fine particles thus obtained is highly dispersed to primary particles having an average particle diameter of 100 nm or less, and has extremely high transparency. In addition, since no organic surfactant or strong acid is used as an auxiliary for dispersion stabilization, the activity is hardly impaired,
Does not corrode metal materials such as iron.

【0032】このようにして得られた複合光触媒微粒子
分散液は、テトラアルコキシシランの加水分解液のよう
な無機系結合材と混合することで、容易に高透明性およ
び高活性の光触媒コーティング液が得られる。
The thus-obtained composite photocatalyst fine particle dispersion is mixed with an inorganic binder such as a hydrolyzate of tetraalkoxysilane to easily form a highly transparent and highly active photocatalyst coating liquid. can get.

【0033】特に、無機系結合材として用いるテトラア
ルコキシシランの加水分解液の加水分解触媒に、有機
酸、有機金属等を用いることで、強酸を含まない光触媒
コーティング液が得られ、腐食や錆の発生に対して特別
な処置を講じることなく、通常のコーティング装置を用
いてコーティングを行うことができる。
In particular, by using an organic acid, an organic metal, or the like as a hydrolysis catalyst for a hydrolysis solution of tetraalkoxysilane used as an inorganic binder, a photocatalyst coating solution containing no strong acid can be obtained, and corrosion and rust can be prevented. Coating can be carried out using conventional coating equipment without taking special measures against occurrence.

【0034】このコーティング液をフィルムにコーティ
ングして得られる光触媒フィルムは高い透明性と活性を
有し、特に光触媒微粒子表面に存在する多孔質シリカの
物理吸着能により気体の吸着分解能に優れている。
The photocatalyst film obtained by coating the film with this coating solution has high transparency and activity, and particularly has excellent gas adsorption resolution due to the physical adsorption ability of porous silica present on the surface of photocatalyst fine particles.

【0035】[0035]

【実施例】〔実施例1〕 TiO2 系複合光触媒微粒子
エタノール分散液 下記の配合組成を有する組成物をボールミル(1mm径
ガラスビーズ 100重量部添加)を用いて一昼夜混合分散
し、多孔質シリカにより表面被覆された複合光触媒微粒
子のエタノール分散液を得た。 平均一次粒子径 7nmのアナターゼ型TiO2 粒子 20 重量部 テトラエトキシシラン 7 重量部 エチルアミン 300ppmを含むエタノール 73 重量部
[Example 1] TiO 2 -based composite photocatalyst fine particle ethanol dispersion A composition having the following composition was mixed and dispersed day and night using a ball mill (100 parts by weight of 1 mm diameter glass beads), and the mixture was mixed with porous silica. An ethanol dispersion of the composite photocatalyst fine particles coated on the surface was obtained. Anatase-type TiO 2 particles having an average primary particle diameter of 7 nm 20 parts by weight Tetraethoxysilane 7 parts by weight Ethanol containing 300 ppm of ethylamine 73 parts by weight

【0036】こうして得られた分散液中の複合光触媒微
粒子の平均一次粒子径は 12 nmであった。この分散液
120重量部をテトラエトキシシランを加水分解して得ら
れたシリカバインダ液(SiO2 濃度 20 重量%) 65
重量部と混合してコーティング液を得た。
The average primary particle diameter of the composite photocatalyst fine particles in the dispersion thus obtained was 12 nm. This dispersion
Silica binder liquid obtained by hydrolyzing 120 parts by weight of tetraethoxysilane (SiO 2 concentration 20% by weight) 65
It was mixed with parts by weight to obtain a coating liquid.

【0037】このコーティング液をワイヤーバーにより
ポリエステルフィルムに塗布し 100℃で乾燥して透明な
光触媒フィルムを得た。この光触媒フィルムの光触媒活
性を以下の方法により測定したところ図1に示す結果と
なった。
This coating solution was applied to a polyester film by a wire bar and dried at 100 ° C. to obtain a transparent photocatalyst film. When the photocatalytic activity of this photocatalytic film was measured by the following method, the result shown in FIG. 1 was obtained.

【0038】〔測定方法〕容積 2000 ccのテドラーバ
ック内に 100cm2 の大きさの光触媒フィルムを入れ、
ガス濃度 110ppmになるようにアセトアルデヒドガス
を導入した。袋の外からブラックライトにより照射強度
0.1mw/cm2 の紫外線を照射し、袋内部のガス濃度
の変化を測定した。
[Measurement method] A photocatalytic film having a size of 100 cm 2 was placed in a Tedlar bag having a capacity of 2000 cc.
Acetaldehyde gas was introduced to a gas concentration of 110 ppm. Irradiation intensity with black light from outside the bag
Irradiation with ultraviolet light of 0.1 mw / cm 2 was performed to measure a change in gas concentration inside the bag.

【0039】〔実施例2〕 TiO2 系複合光触媒微粒
子メタノール分散液 エタノールの代わりにメタノールを、テトラエトキシシ
ランの代わりにテトラメトキシシランを用いて実施例1
記載の方法でアナターゼ型TiO2 のメタノール分散
液、光触媒コーティング液、および光触媒フィルムを得
た。このフィルムの光触媒活性を実施例1と同様の方法
により測定したところ、図1に示すように、実施例1と
全く同様の結果となった。
Example 2 TiO 2 -based composite photocatalyst fine particle methanol dispersion A methanol was used instead of ethanol, and tetramethoxysilane was used instead of tetraethoxysilane.
A methanol dispersion of anatase-type TiO 2, a photocatalyst coating solution, and a photocatalyst film were obtained by the methods described. The photocatalytic activity of this film was measured by the same method as in Example 1. As shown in FIG. 1, the result was exactly the same as that of Example 1.

【0040】〔実施例3〕 TiO2 −電子伝導性微粒
子複合系 実施例1においてアナターゼ型TiO2 微粒子の 30 重
量%を酸化スズで置換したほかは実施例1と同様にして
光触媒フィルムを得た。このフィルムの光触媒活性を実
施例1と同じ方法により測定したところ図1に示す結果
となった。
Example 3 TiO 2 -Electron Conductive Fine Particle Composite System A photocatalytic film was obtained in the same manner as in Example 1 except that 30% by weight of the anatase type TiO 2 fine particles were replaced with tin oxide. . When the photocatalytic activity of this film was measured by the same method as in Example 1, the results shown in FIG. 1 were obtained.

【0041】〔実施例4〕 ZnO系複合光触媒微粒子
エタノール分散液 下記配合を有する組成物をボールミル(1mm径ガラス
ビーズ 100重量部添加)を用いて一昼夜混合分散し、多
孔質シリカにより表面被覆されたZnO系複合光触媒微
粒子のエタノール分散液を得た。 平均一次粒子径 20 nmのZnO微粒子 20 重量部 テトラエトキシシラン 7 重量部 ジメチルアミン 500ppmを含むエタノール 73 重量部
Example 4 Ethanol Dispersion of ZnO-Based Composite Photocatalyst Fine Particles A composition having the following composition was mixed and dispersed day and night using a ball mill (100 parts by weight of 1 mm diameter glass beads), and the surface was coated with porous silica. An ethanol dispersion of ZnO-based composite photocatalyst fine particles was obtained. ZnO fine particles with an average primary particle diameter of 20 nm 20 parts by weight Tetraethoxysilane 7 parts by weight Ethanol containing 500 ppm of dimethylamine 73 parts by weight

【0042】得られた分散液中の複合光触媒微粒子の平
均一次粒子径は 25 nmであった。この分散液 120重量
部を、テトラエトキシシランを加水分解して得られたシ
リカバインダ液 65 重量部と混合してコーティング液を
得た。このコーティング液をワイヤバーによりフィルム
に塗布し、 100℃で乾燥して透明な光触媒フィルムを得
た。このフィルムの光触媒活性を実施例1と同様の方法
により測定したところ、図2に示す結果となった。
The average primary particle diameter of the composite photocatalyst fine particles in the obtained dispersion was 25 nm. 120 parts by weight of this dispersion was mixed with 65 parts by weight of a silica binder liquid obtained by hydrolyzing tetraethoxysilane to obtain a coating liquid. This coating solution was applied to a film by a wire bar and dried at 100 ° C. to obtain a transparent photocatalytic film. When the photocatalytic activity of this film was measured by the same method as in Example 1, the results shown in FIG. 2 were obtained.

【0043】〔実施例5〕 ZnO−電子伝導性微粒子
複合系 実施例4においてZnO微粒子の 30 重量%を銀微粒子
に置換したほかは実施例4と同様にして光触媒フィルム
を得た。このフィルムの光触媒活性を実施例1と同じ方
法により測定したところ図2に示す結果となった。
Example 5 ZnO-electron conductive fine particle composite system A photocatalytic film was obtained in the same manner as in Example 4, except that 30% by weight of the ZnO fine particles were replaced with silver fine particles. When the photocatalytic activity of this film was measured by the same method as in Example 1, the results shown in FIG. 2 were obtained.

【0044】〔比較例1〕NH3 を含まないエタノール
を用いて実施例1の前半に記載の方法で混合分散を行っ
たところTiO2 微粒子の均一な分散液は得られなかっ
た。
[Comparative Example 1] When mixing and dispersion were carried out by the method described in the first half of Example 1 using ethanol containing no NH 3 , a uniform dispersion of TiO 2 fine particles could not be obtained.

【0045】〔比較例2〕下記の配合組成を有する組成
物をボールミル( 1mm径ガラスビーズ 100重量部添
加)を用いて一昼夜混合分散し、アナターゼ型TiO2
微粒子の水分散液を得た。 平均一次粒子径 7nmのアナターゼ型TiO2 微粒子 20 重量部 硝酸酸性(pH=1)の水 80 重量部 この分散液を用いて、実施例1記載の方法で光触媒コー
ティング液を得た。しかしながら、このコーティング液
は酸性のため、コーティング装置の金属部を腐食し、使
用することができなかった。
Comparative Example 2 A composition having the following composition was mixed and dispersed day and night using a ball mill (100 parts by weight of 1 mm-diameter glass beads) to form an anatase-type TiO 2
An aqueous dispersion of fine particles was obtained. 20 parts by weight of anatase-type TiO 2 fine particles having an average primary particle diameter of 7 nm 80 parts by weight of water nitric acid (pH = 1) Using this dispersion, a photocatalyst coating liquid was obtained by the method described in Example 1. However, since the coating liquid was acidic, it corroded the metal part of the coating apparatus and could not be used.

【0046】〔比較例3〕下記の配合組成を有する組成
物をボールミル( 1mm径ガラスビーズ 100重量部添
加)を用いて一昼夜混合分散し、アナターゼ型TiO2
微粒子のエタノール分散液を得た。 平均一次粒子径 7nmのアナターゼ型TiO2 微粒子 20 重量部 リン酸エステル系界面活性剤 4 重量部 エタノール 76 重量部 この分散液を用いて、実施例1記載の方法で光触媒コー
ティング液および光触媒フィルムを得た。
[0046] Comparative Example 3 The composition having the composition of the following whole day and night mixed and dispersed using a ball mill (1mm diameter glass beads 100 parts by weight added), anatase TiO 2
An ethanol dispersion of the fine particles was obtained. 20 parts by weight of anatase-type TiO 2 fine particles having an average primary particle diameter of 7 nm 20 parts by weight Phosphate ester surfactant 4 parts by weight 76 parts by weight of ethanol Using this dispersion, a photocatalyst coating liquid and a photocatalyst film are obtained by the method described in Example 1. Was.

【0047】このフィルムの光触媒活性を実施例1と同
様の方法で測定したところ、照射後18 時間までは光触
媒活性が発現せず、その後、徐々に光触媒活性が発現し
た。これは、有機物を含んだ分散液を用いて分散した場
合、分散剤が光触媒活性により分解されるまで光触媒活
性が表に現れないことを意味しており、有機物を含んだ
分散剤は光触媒分散液には適さないことが明らかとなっ
た。
When the photocatalytic activity of this film was measured in the same manner as in Example 1, no photocatalytic activity was exhibited until 18 hours after irradiation, and thereafter, the photocatalytic activity gradually developed. This means that when dispersed using a dispersion containing an organic substance, the photocatalytic activity does not appear in the table until the dispersant is decomposed by the photocatalytic activity. It became clear that it was not suitable for.

【0048】[0048]

【発明の効果】以上のように本発明では、請求項1に係
る複合光触媒微粒子分散液では、光触媒微粒子を多孔質
シリカにより表面被覆して得られる複合光触媒微粒子が
アルカリ条件下に分散し安定化してなることにより、液
性が酸性を示さずかつ有機系界面活性剤を用いずに光触
媒微粒子を高分散させた分散液を得ることができ、さら
に、コーティング装置等の金属を腐食させることなくコ
ーティングできるようになり、腐食対策を講じることな
く、通常のコーティング装置を用いて通常のコーティン
グ方法により、容易に透明性および光触媒活性の高い光
触媒膜を得ることができる。
As described above, according to the present invention, in the composite photocatalyst fine particle dispersion according to the first aspect, the composite photocatalyst fine particles obtained by coating the surface of the photocatalyst fine particles with porous silica are dispersed and stabilized under alkaline conditions. As a result, it is possible to obtain a dispersion in which the photocatalytic fine particles are highly dispersed without using an acidic liquid and without using an organic surfactant, and furthermore, coating can be performed without corroding metals such as a coating apparatus. Thus, a photocatalytic film having high transparency and high photocatalytic activity can be easily obtained by an ordinary coating method using an ordinary coating apparatus without taking measures against corrosion.

【0049】また、請求項2に係る複合光触媒微粒子分
散液では、前記複合光触媒微粒子の平均一次粒子径が 1
〜100 nmであることにより、可視光線の散乱を生じさ
せずに高い透明性を発揮させることができる。
In the composite photocatalyst fine particle dispersion according to claim 2, the composite photocatalyst fine particles have an average primary particle diameter of 1%.
When it is 100100 nm, high transparency can be exhibited without causing visible light scattering.

【0050】また、請求項3に係る複合光触媒微粒子分
散液は、前記光触媒微粒子がアナターゼ型TiO2 微粒
子またはZnO微粒子であることにより、高い光触媒活
性を得ることができる。
In the composite photocatalyst fine particle dispersion according to the third aspect, high photocatalytic activity can be obtained because the photocatalyst fine particles are anatase type TiO 2 fine particles or ZnO fine particles.

【0051】また、請求項4に係る複合光触媒微粒子分
散液では、前記光触媒微粒子の一部を電子伝導性微粒子
に置換してなることにより、光触媒効果を向上させるこ
とができる。
In the composite photocatalyst fine particle dispersion according to the fourth aspect, the photocatalytic effect can be improved by replacing a part of the photocatalyst fine particles with electron conductive fine particles.

【0052】また、請求項5に係る複合光触媒微粒子分
散液は、分散媒として極性溶媒または極性溶媒と水との
混合物を用いたことにより、分散および分散安定化が容
易となり、また、シリカバインダ等の無機系結合材との
混合も容易となる。
In the composite photocatalyst fine particle dispersion according to the fifth aspect, since a polar solvent or a mixture of a polar solvent and water is used as a dispersion medium, dispersion and dispersion stabilization are facilitated, and a silica binder or the like is used. With the inorganic binder.

【0053】また、請求項6に係る複合光触媒微粒子分
散液の製造方法では、分散媒中に光触媒微粒子とテトラ
アルコキシシランとアルカリ性物質とを添加し、分散機
を用いて解砕力を加えることにより、光触媒微粒子への
多孔質シリカの表面被覆と分散安定化とを1工程で行う
ことにより、光触媒活性の高い複合光触媒微粒子を高分
散させて、安価で、腐食性がなく、透明性が極めて高
く、光触媒活性が高い複合光触媒微粒子分散液を得るこ
とができる。
Further, in the method for producing a composite photocatalyst fine particle dispersion according to claim 6, the photocatalyst is prepared by adding photocatalyst fine particles, tetraalkoxysilane and an alkaline substance to a dispersion medium and applying a crushing force using a dispersing machine. By performing the surface coating of the porous silica on the fine particles and the dispersion stabilization in one step, the composite photocatalytic fine particles having high photocatalytic activity are highly dispersed, and the photocatalyst is inexpensive, non-corrosive, and extremely high in transparency. A composite photocatalyst fine particle dispersion having high activity can be obtained.

【0054】また、請求項7に係る光触媒膜では、請求
項1記載の複合光触媒微粒子分散液を用いて形成したこ
とにより、透明性および光触媒活性の高い膜を得ること
ができる。
The photocatalyst film according to claim 7 is formed by using the composite photocatalyst fine particle dispersion liquid according to claim 1, whereby a film having high transparency and photocatalytic activity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1〜3における光触媒フィルム
の光触媒活性を示すグラフである。
FIG. 1 is a graph showing the photocatalytic activity of photocatalyst films in Examples 1 to 3 of the present invention.

【図2】本発明の実施例4,5における光触媒フィルム
の光触媒活性を示すグラフである。
FIG. 2 is a graph showing the photocatalytic activity of photocatalyst films in Examples 4 and 5 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/14 B01J 23/66 A 23/66 31/06 A 31/06 B01D 53/36 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/14 B01J 23/66 A 23/66 31/06 A 31/06 B01D 53/36 J

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光触媒微粒子を多孔質シリカにより表面被
覆することにより得られる複合光触媒微粒子が、アルカ
リ条件下に分散し安定化してなることを特徴とする複合
光触媒微粒子分散液。
1. A composite photocatalyst fine particle dispersion, wherein the composite photocatalyst fine particles obtained by coating the surface of the photocatalyst fine particles with porous silica are dispersed and stabilized under alkaline conditions.
【請求項2】前記複合光触媒微粒子の平均一次粒子径が
1〜100 nmであることを特徴とする請求項1記載の複
合光触媒微粒子分散液。
2. An average primary particle diameter of said composite photocatalyst fine particles is
2. The composite photocatalyst fine particle dispersion according to claim 1, which has a thickness of 1 to 100 nm.
【請求項3】前記光触媒微粒子がアナターゼ型TiO2
微粒子またはZnO微粒子であることを特徴とする請求
項1記載の複合光触媒微粒子分散液。
3. The photocatalytic fine particles are anatase type TiO 2
The composite photocatalyst fine particle dispersion according to claim 1, which is fine particles or ZnO fine particles.
【請求項4】前記光触媒微粒子の一部を電子伝導性微粒
子に置換してなることを特徴とする請求項1記載の複合
光触媒微粒子分散液。
4. The composite photocatalyst fine particle dispersion according to claim 1, wherein a part of the photocatalyst fine particles is replaced with electron conductive fine particles.
【請求項5】分散媒として極性溶媒または極性溶媒と水
との混合物を用いたことを特徴とする請求項1記載の複
合光触媒微粒子分散液。
5. The composite photocatalyst fine particle dispersion according to claim 1, wherein a polar solvent or a mixture of a polar solvent and water is used as the dispersion medium.
【請求項6】分散媒中に光触媒微粒子とテトラアルコキ
シシランとアルカリ性物質とを添加し、分散機を用いて
解砕力を加えることにより、光触媒微粒子への多孔質シ
リカの表面被覆と分散安定化とを1工程で行うことを特
徴とする複合光触媒微粒子分散液の製造方法。
6. The photocatalytic fine particles, tetraalkoxysilane, and an alkaline substance are added to a dispersion medium, and a crushing force is applied using a dispersing machine. A method for producing a composite photocatalyst fine particle dispersion, which is performed in one step.
【請求項7】請求項1記載の複合光触媒微粒子分散液を
用いて形成したことを特徴とする光触媒膜。
7. A photocatalyst film formed by using the composite photocatalyst fine particle dispersion according to claim 1.
JP10145189A 1998-05-12 1998-05-12 Dispersion of composite photocatalyst particle and its preparation and photocatalyst film Pending JPH11319577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10145189A JPH11319577A (en) 1998-05-12 1998-05-12 Dispersion of composite photocatalyst particle and its preparation and photocatalyst film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10145189A JPH11319577A (en) 1998-05-12 1998-05-12 Dispersion of composite photocatalyst particle and its preparation and photocatalyst film

Publications (1)

Publication Number Publication Date
JPH11319577A true JPH11319577A (en) 1999-11-24

Family

ID=15379493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10145189A Pending JPH11319577A (en) 1998-05-12 1998-05-12 Dispersion of composite photocatalyst particle and its preparation and photocatalyst film

Country Status (1)

Country Link
JP (1) JPH11319577A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169160A (en) * 2003-12-05 2005-06-30 Ishihara Sangyo Kaisha Ltd Liquid photocatalyst composition and photocatalytic body formed by using the same
JP2007136342A (en) * 2005-11-18 2007-06-07 Tokai Senko Kk Fiber fabric exhibiting photocatalytic function to visible light and its manufacturing method
CN100455976C (en) * 2007-10-31 2009-01-28 西安工程大学 Reinforced tube type indirect evaporation cooler heat exchanging tube outer heat and mass transfer method
CN102226665A (en) * 2011-05-17 2011-10-26 西安工程大学 Method for improving heat and moisture transfer efficiency of tubular indirect evaporative cooler
WO2016084921A1 (en) * 2014-11-28 2016-06-02 サンエス製薬株式会社 Particulate composition for emitting terahertz waves

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169160A (en) * 2003-12-05 2005-06-30 Ishihara Sangyo Kaisha Ltd Liquid photocatalyst composition and photocatalytic body formed by using the same
JP4522082B2 (en) * 2003-12-05 2010-08-11 石原産業株式会社 Photocatalyst liquid composition and photocatalyst formed using the same
JP2007136342A (en) * 2005-11-18 2007-06-07 Tokai Senko Kk Fiber fabric exhibiting photocatalytic function to visible light and its manufacturing method
CN100455976C (en) * 2007-10-31 2009-01-28 西安工程大学 Reinforced tube type indirect evaporation cooler heat exchanging tube outer heat and mass transfer method
CN102226665A (en) * 2011-05-17 2011-10-26 西安工程大学 Method for improving heat and moisture transfer efficiency of tubular indirect evaporative cooler
WO2016084921A1 (en) * 2014-11-28 2016-06-02 サンエス製薬株式会社 Particulate composition for emitting terahertz waves

Similar Documents

Publication Publication Date Title
JP3080162B2 (en) Titanium oxide sol and method for producing the same
US7300710B2 (en) Film containing a photo-catalyst apatite, its formation method, coating liquid, and electronic device having portion coated with photo-catalyst apatite-containing film
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
KR20080063784A (en) Aqueous carbon black dispersion and process for producing the same
JP2006182604A (en) Method for producing metal oxide sol and metal oxide sol
JPH1057818A (en) Photocatalyst composition, photocatalyst element containing the same and organic compound decomposing method thereof
KR20130079306A (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP2011240247A (en) Visible light-responsive titanium oxide particle dispersion liquid and method for manufacturing the same
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
JPH11319577A (en) Dispersion of composite photocatalyst particle and its preparation and photocatalyst film
JPH11278838A (en) Nonaqueous dispersion of superfine zinc oxide particles and its preparation
JP4026041B2 (en) Neutral titania sol
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
JP2011240246A (en) Visible light-responsive titanium oxide particle dispersion liquid and method for manufacturing the same
JP2002159865A (en) Titanium oxide photocatalyst for basic gas removal
JP2003327920A (en) Electroconductive coating material, method for producing electroconductive coat using the same, electroconductive coating film and element having electroconductive coating film
JP3472982B2 (en) Method for producing silica / carbon black composite particles and method for producing coating solution containing the composite particles
JPH11278844A (en) Nonaqueous dispersion of superfine titanium dioxide particles and its preparation
JP4522082B2 (en) Photocatalyst liquid composition and photocatalyst formed using the same
CN110256893A (en) It can assist the guardrail coating additive and preparation method thereof of purification vehicle exhaust
JP2001198474A (en) Carrier for photocatalyst and its production method
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP2000119019A (en) Production of titanium oxide sol
JPH11347418A (en) Photocatalyst coating liquid and photocatalyst coating film
JP5070002B2 (en) Manufacturing method of far infrared radiation composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211