JP5090787B2 - Titanium oxide composite particle aqueous dispersion and production method thereof - Google Patents

Titanium oxide composite particle aqueous dispersion and production method thereof Download PDF

Info

Publication number
JP5090787B2
JP5090787B2 JP2007133774A JP2007133774A JP5090787B2 JP 5090787 B2 JP5090787 B2 JP 5090787B2 JP 2007133774 A JP2007133774 A JP 2007133774A JP 2007133774 A JP2007133774 A JP 2007133774A JP 5090787 B2 JP5090787 B2 JP 5090787B2
Authority
JP
Japan
Prior art keywords
titanium oxide
aqueous dispersion
oxide composite
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007133774A
Other languages
Japanese (ja)
Other versions
JP2008285613A (en
Inventor
郁夫 溝口
日男 馬場
真義 山田
英之 正木
芳夫 木村
健史 大脇
憲一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Toyota Tsusho Corp
Toyota Central R&D Labs Inc
Original Assignee
Achilles Corp
Toyota Tsusho Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp, Toyota Tsusho Corp, Toyota Central R&D Labs Inc filed Critical Achilles Corp
Priority to JP2007133774A priority Critical patent/JP5090787B2/en
Publication of JP2008285613A publication Critical patent/JP2008285613A/en
Application granted granted Critical
Publication of JP5090787B2 publication Critical patent/JP5090787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酸化チタン複合粒子水分散液及びその製造方法に関する。   The present invention relates to an aqueous dispersion of titanium oxide composite particles and a method for producing the same.

酸化チタンは、酸素と水の存在下そのバンドギャップ以上のエネルギーを持つ波長380nm以下の光で照射すると物質を酸化分解する光触媒反応を行うことが知られている。また、酸化チタンの結晶の酸素サイトの一部を置換することにより、可視光領域においても光触媒反応を行うことが可能な酸化チタンの研究が行われている。そして、近年このような光触媒反応を利用して環境浄化に役立てる研究が行われており、例えば、自動車や工場の排気ガス中のNO、SO、アンモニア,アルデヒド類、アミン類、メルカプタン等の有害又は悪臭物質の光分解、油、タール、タバコのヤニ等の生活汚染物質の光分解、工業排水に含まれる染料や糊剤の光分解、細菌、カビ、藻類等の有害微生物の殺滅に利用する技術が検討されている。 It is known that titanium oxide undergoes a photocatalytic reaction that oxidizes and decomposes a substance when irradiated with light having a wavelength of 380 nm or less and having energy greater than or equal to its band gap in the presence of oxygen and water. Further, research has been conducted on titanium oxide that can perform a photocatalytic reaction even in the visible light region by substituting a part of the oxygen site of the titanium oxide crystal. In recent years, researches have been conducted to make use of such photocatalytic reactions for environmental purification, such as NO x , SO x , ammonia, aldehydes, amines, mercaptans, etc. in exhaust gases from automobiles and factories. For photodegradation of harmful or offensive odor substances, photodegradation of life pollutants such as oil, tar, tobacco crabs, photodegradation of dyes and pastes contained in industrial wastewater, and killing harmful microorganisms such as bacteria, mold and algae The technology to be used is being studied.

そして、このような酸化チタンを支持体へ固定化して、上記のような用途に用いるための方法の一つとしては、酸化チタン光触媒粒子を含んでいる分散液等のコーティング組成物を支持体へ塗布もしくは含浸し、支持体上に光触媒の膜又は層を形成するコーティング法が用いられている。このようなコーティング法は膜の高温での焼成を必要としないため、支持体が耐熱性材料であることを要求せず、しかも大面積の浄化膜を形成するのに適している。   And as one of the methods for fixing such a titanium oxide to a support and using it for the above uses, a coating composition such as a dispersion containing titanium oxide photocatalyst particles is applied to the support. A coating method is used which is applied or impregnated to form a photocatalyst film or layer on a support. Since such a coating method does not require baking of the film at a high temperature, it does not require the support to be a heat-resistant material, and is suitable for forming a purification film having a large area.

しかしながら、酸化チタンの光触媒作用は強力で、実質上選択作用がないので、有機樹脂を光触媒粒子のバインダーに用いるとバインダー自身が光化学反応の標的となり、バインダーが酸化分解されてしまうという問題があった。さらに、例えば、支持体として繊維等を用いる場合には、支持体も光化学反応の標的となり、支持体が酸化分解されてしまうという問題もあった。   However, the photocatalytic action of titanium oxide is strong and has substantially no selective action. Therefore, when an organic resin is used as the binder of the photocatalyst particles, the binder itself becomes a target of the photochemical reaction and the binder is oxidized and decomposed. . Furthermore, for example, when fibers or the like are used as the support, there is a problem that the support is also a target of the photochemical reaction, and the support is oxidatively decomposed.

このような問題を解決するために、例えば、特開2004−137611号公報(特許文献1)には、繊維布帛に可視光型光触媒がセルロース系バインダー及び/又は多糖類バインダーで固着されてなる機能性繊維布帛が開示され、明細書中に光触媒表面の少なくとも一部がリン酸カルシウムで被覆されている酸化チタンと前記バインダーを含有する水分散液が記載されている。しかしながら、特許文献1に記載されているような水分散液においては、水分散液中における酸化チタンの経時の分散安定性が不十分であるために、生産直後の水分散液が塗布された繊維布帛と貯蔵後の水分散液が塗布された繊維布帛との間でこれらの繊維布帛の色相が変化してしまうという問題があった。また、可視光型光触媒として窒素ドープ型の酸化チタンを用いた場合には、酸化チタンが特に凝集しやすく、その粒子径が著しく増大するため、繊維布帛の色相が黄色に変化してしまうという点で特に問題があった。   In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 2004-137611 (Patent Document 1) discloses a function in which a visible light type photocatalyst is fixed to a fiber fabric with a cellulose binder and / or a polysaccharide binder. An optical fiber fabric is disclosed, and in the specification, an aqueous dispersion containing titanium oxide in which at least a part of the surface of the photocatalyst is coated with calcium phosphate and the binder is described. However, in the aqueous dispersion as described in Patent Document 1, since the dispersion stability of titanium oxide in the aqueous dispersion over time is insufficient, the fiber coated with the aqueous dispersion immediately after production is applied. There was a problem that the hue of these fiber fabrics changed between the fabrics and the fiber fabrics coated with the aqueous dispersion after storage. In addition, when nitrogen-doped titanium oxide is used as a visible light type photocatalyst, titanium oxide is particularly easily aggregated and the particle diameter thereof is remarkably increased, so that the color of the fiber fabric changes to yellow. There was a particular problem.

また、特開2000−302422号公報(特許文献2)には、水和リン酸チタン化合物の中性領域にある透明な分散ゾル中に分散した酸化チタン光触媒粒子を含んでいる光触媒膜形成用コーティング組成物が開示されている。しかしながら、特許文献2に記載されているような光触媒膜形成用コーティング組成物は酸化チタンの経時の分散安定性という点で未だ必ずしも十分なものではなかった。また、このような光触媒膜形成用コーティング組成物においては、コーティング組成物中に硝酸、硫酸といった強酸を使用しており、これらの強酸はコーティング組成物を乾燥する際に揮発するために乾燥設備を腐食する恐れがあるため、作業環境という点でも好ましいものではなかった。さらに、このような光触媒膜形成用コーティング組成物は、繊維の固着剤として用いられる弱アルカリ性のアニオン系樹脂又はその水分散液との混和性が著しく欠如しているため、汎用的に使用することができなかった。
特開2004−137611号公報 特開2000−302422号公報
JP 2000-302422 A (Patent Document 2) discloses a coating for forming a photocatalyst film containing titanium oxide photocatalyst particles dispersed in a transparent dispersion sol in a neutral region of a hydrated titanium phosphate compound. A composition is disclosed. However, the coating composition for forming a photocatalyst film as described in Patent Document 2 is not always sufficient in terms of dispersion stability of titanium oxide over time. Further, in such a coating composition for forming a photocatalyst film, strong acids such as nitric acid and sulfuric acid are used in the coating composition, and since these strong acids volatilize when the coating composition is dried, a drying facility is required. Since it may corrode, it was not preferable in terms of working environment. Furthermore, such a coating composition for forming a photocatalyst film should be used for general purposes because of its extremely lack of miscibility with weakly alkaline anionic resin used as a fiber fixing agent or its aqueous dispersion. I could not.
JP 2004-137611 A JP 2000-302422 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、酸化チタンにより繊維等の支持体が酸化分解されることを十分に抑制することができ、しかも酸化チタンの経時の分散安定性に優れる酸化チタン複合粒子水分散液を効率よく且つ確実に得ることが可能な酸化チタン複合粒子水分散液の製造方法、並びにその製造方法により得られた酸化チタン複合粒子水分散液を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and can sufficiently suppress the oxidative decomposition of a support such as a fiber by titanium oxide, and can stabilize dispersion of titanium oxide over time. Provided is a method for producing an aqueous dispersion of titanium oxide composite particles capable of efficiently and reliably obtaining an aqueous dispersion of titanium oxide composite particles having excellent properties, and an aqueous dispersion of titanium oxide composite particles obtained by the production method For the purpose.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定量のポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンを分散剤として用いて、酸化チタンを水に分散した後に、特定のコロイダルシリカを前記酸化チタンに吸着させることにより、驚くべきことに酸化チタンの経時の分散安定性が極めて優れる酸化チタン複合粒子水分散液を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have used a specific amount of ammonium polyacrylate or triethylamine polyacrylate as a dispersant, and after dispersing titanium oxide in water, a specific colloidal Surprisingly, it was found that by adsorbing silica to the titanium oxide, an aqueous dispersion of titanium oxide composite particles having an extremely excellent dispersion stability over time of titanium oxide can be obtained, and the present invention has been completed.

すなわち、本発明の酸化チタン複合粒子水分散液の製造方法は、一次粒子径が2〜40nmであり光触媒反応を行うことができる酸化チタンを、前記酸化チタン100質量部に対して0.3〜3質量部のポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンを分散剤として用いて、水に分散せしめて酸化チタン粒子水分散液を得る工程と、
前記酸化チタン粒子水分散液に動的光散乱法で測定した平均粒子径が1〜30nmのコロイダルシリカを前記酸化チタン100質量部に対して酸化物換算で10〜75質量部添加して、前記コロイダルシリカを前記酸化チタンに吸着させて酸化チタン複合粒子水分散液を得る工程と、
を含むことを特徴とする方法である。
That is, in the method for producing an aqueous dispersion of titanium oxide composite particles of the present invention, the titanium oxide capable of performing a photocatalytic reaction with a primary particle diameter of 2 to 40 nm is 0.3 to 100 parts by mass of the titanium oxide. Using 3 parts by mass of ammonium polyacrylate or triethylamine polyacrylate as a dispersant, and dispersing in water to obtain an aqueous dispersion of titanium oxide particles;
Colloidal silica having an average particle diameter of 1 to 30 nm measured by a dynamic light scattering method is added to the titanium oxide particle aqueous dispersion in an amount of 10 to 75 parts by mass in terms of oxide with respect to 100 parts by mass of the titanium oxide. Adsorbing colloidal silica on the titanium oxide to obtain an aqueous dispersion of titanium oxide composite particles;
It is the method characterized by including.

また、本発明の酸化チタン複合粒子水分散液の製造方法においては、前記酸化チタン粒子水分散液のpHが7〜9の範囲であることが好ましい。   Moreover, in the manufacturing method of the titanium oxide composite particle aqueous dispersion of this invention, it is preferable that the pH of the said titanium oxide particle aqueous dispersion is the range of 7-9.

さらに、本発明の酸化チタン複合粒子水分散液の製造方法においては、前記酸化チタンが窒素ドープ型の酸化チタンであることが好ましい。   Furthermore, in the method for producing an aqueous dispersion of titanium oxide composite particles according to the present invention, the titanium oxide is preferably nitrogen-doped titanium oxide.

本発明の酸化チタン複合粒子水分散液は、前記酸化チタン複合粒子水分散液の製造方法により得られたものであることを特徴とするものである。   The titanium oxide composite particle aqueous dispersion of the present invention is obtained by the method for producing a titanium oxide composite particle aqueous dispersion.

本発明によれば、酸化チタン複合粒子水分散液を用いて酸化チタンを繊維等の有機物支持体に担持した際に、酸化チタンの光触媒作用により有機物支持体が酸化分解されることを十分に抑制することができ、しかも酸化チタンの経時の分散安定性に優れる酸化チタン複合粒子水分散液を効率よく且つ確実に得ることが可能な酸化チタン複合粒子水分散液の製造方法、並びにその製造方法により得られた酸化チタン複合粒子水分散液を提供することが可能となる。さらに、本発明の酸化チタン複合粒子水分散液はpHが7〜9の範囲であるため、バインダーや繊維の固着剤等との混和性が優れている。   According to the present invention, when titanium oxide is supported on an organic support such as a fiber using a titanium oxide composite particle aqueous dispersion, the organic support is sufficiently suppressed from being oxidatively decomposed by the photocatalytic action of titanium oxide. And a method for producing an aqueous dispersion of titanium oxide composite particles capable of efficiently and reliably obtaining an aqueous dispersion of titanium oxide composite particles having excellent dispersion stability over time. It is possible to provide the obtained titanium oxide composite particle aqueous dispersion. Furthermore, since the titanium oxide composite particle aqueous dispersion of the present invention has a pH in the range of 7 to 9, it is excellent in miscibility with binders, fiber fixing agents and the like.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の酸化チタン複合粒子水分散液の製造方法について説明する。すなわち、本発明の酸化チタン複合粒子水分散液の製造方法は、酸化チタンを、前記酸化チタン100質量部に対して0.3〜3質量部のポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンを分散剤として用いて、水に分散せしめて酸化チタン粒子水分散液を得る工程(第1の工程)と、
前記酸化チタン粒子水分散液に動的光散乱法で測定した平均粒子径が1〜30nmのコロイダルシリカを前記光触媒酸化チタン100質量部に対して酸化物換算で10〜75質量部添加して、前記コロイダルシリカを前記酸化チタンに吸着させて酸化チタン複合粒子水分散液を得る工程(第2の工程)と、
を含むことを特徴とする方法である。
First, the manufacturing method of the titanium oxide composite particle aqueous dispersion of this invention is demonstrated. That is, in the method for producing an aqueous dispersion of titanium oxide composite particles of the present invention, titanium oxide is dispersed in 0.3 to 3 parts by mass of ammonium polyacrylate or triethylamine polyacrylate with respect to 100 parts by mass of titanium oxide. Used as a step of dispersing in water to obtain a titanium oxide particle aqueous dispersion (first step);
Colloidal silica having an average particle diameter of 1 to 30 nm measured by a dynamic light scattering method is added to the titanium oxide particle aqueous dispersion in an amount of 10 to 75 parts by mass in terms of oxide with respect to 100 parts by mass of the photocatalytic titanium oxide, Adsorbing the colloidal silica on the titanium oxide to obtain an aqueous dispersion of titanium oxide composite particles (second step);
It is the method characterized by including.

第1の工程においては、酸化チタンを、前記酸化チタン100質量部に対して0.3〜3質量部のポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンを分散剤として用いて、水に分散せしめて酸化チタン粒子水分散液を得る。   In the first step, titanium oxide is oxidized by dispersing in water using 0.3 to 3 parts by mass of ammonium polyacrylate or triethylamine polyacrylate as a dispersant with respect to 100 parts by mass of titanium oxide. An aqueous titanium particle dispersion is obtained.

本発明に用いる酸化チタンとしては、紫外線を照射することにより光触媒反応を行うことができる紫外線応答型の酸化チタンの他に、可視光を照射することにより光触媒反応を行うことができる可視光応答型の酸化チタンを挙げることができる。紫外線応答型の酸化チタンとしては、例えば、アナターゼ型の酸化チタン、ブルッカイト型の酸化チタンが挙げられる。これらの中でも、光触媒反応の観点から、アナターゼ型の酸化チタンが好ましい。また、可視光応答型の酸化チタンとしては、アナターゼ型の酸化チタンにおける酸化チタン結晶の酸素原子の一部を置換したもの、或いは酸化チタンに貴金属を更に担持したものを用いることができ、例えば、窒素ドープ型の酸化チタン、硫黄ドープ型の酸化チタン、白金担持酸化チタンを好ましいものとして挙げることができる。これらの中でも、光触媒反応及び分散安定性の観点から、窒素ドープ型の酸化チタンを用いることが好ましい。また、このような窒素ドープ型の酸化チタンを用いる場合には、酸化鉄や酸化銅等を更に担持したものを用いてもよい。   As the titanium oxide used in the present invention, a visible light responsive type capable of performing a photocatalytic reaction by irradiating visible light in addition to an ultraviolet responsive type titanium oxide capable of performing a photocatalytic reaction by irradiating ultraviolet rays. Can be mentioned. Examples of the ultraviolet-responsive titanium oxide include anatase-type titanium oxide and brookite-type titanium oxide. Among these, anatase type titanium oxide is preferable from the viewpoint of photocatalytic reaction. In addition, as the visible light responsive titanium oxide, anatase titanium oxide in which a part of the oxygen atom of the titanium oxide crystal is substituted, or titanium oxide further supported with a noble metal can be used, for example, Preferred examples include nitrogen-doped titanium oxide, sulfur-doped titanium oxide, and platinum-supported titanium oxide. Among these, from the viewpoint of photocatalytic reaction and dispersion stability, it is preferable to use nitrogen-doped titanium oxide. Further, when such nitrogen-doped titanium oxide is used, a material further supporting iron oxide, copper oxide or the like may be used.

さらに、このような酸化チタンの形態は、水分散液を作製するという観点から粒子状の形態であることが好ましい。そして、酸化チタン粒子の一次粒子径は、2〜40nmの範囲であることが好ましく、5〜35nmの範囲であることがより好ましい。一次粒子径は、反応に寄与する表面積が増大するという観点から、より小さいことが好ましいが前記下限未満のものを製造することは困難である傾向にある。他方、一次粒子径が前記上限を超えると、得られる酸化チタン複合粒子水分散液において酸化チタン複合粒子の粒子径が大きくなるために沈殿が生じやすくなる傾向にある。また、酸化チタン粒子の二次粒子径は、0.3〜1.5μmの範囲であることが好ましい。二次粒子径が前記上限を超えると、酸化チタン粒子を水に分散せしめる際に、分散装置の中で粒子の滞留が生じやすくなる傾向にある。なお、二次粒子径が前記上限を超える場合には、ジェットミル等を用いて二次粒子径が上記の範囲となるように、乾式粉砕しておくことが好ましい。   Furthermore, such a form of titanium oxide is preferably a particulate form from the viewpoint of producing an aqueous dispersion. The primary particle diameter of the titanium oxide particles is preferably in the range of 2 to 40 nm, and more preferably in the range of 5 to 35 nm. The primary particle size is preferably smaller from the viewpoint of increasing the surface area contributing to the reaction, but it tends to be difficult to produce a particle having a particle size less than the lower limit. On the other hand, when the primary particle diameter exceeds the above upper limit, the particle diameter of the titanium oxide composite particles is increased in the resulting titanium oxide composite particle aqueous dispersion, and thus precipitation tends to occur. Moreover, it is preferable that the secondary particle diameter of a titanium oxide particle is the range of 0.3-1.5 micrometers. When the secondary particle diameter exceeds the above upper limit, when the titanium oxide particles are dispersed in water, the particles tend to stay in the dispersing device. In addition, when a secondary particle diameter exceeds the said upper limit, it is preferable to dry-grind using a jet mill etc. so that a secondary particle diameter may become said range.

本発明において分散剤として使用可能なポリアクリル酸アンモニウムとは、ポリアクリル酸のアンモニウム塩のことをいう。そして、このようなポリアクリル酸アンモニウムとしては、適宜市販されているポリアクリル酸アンモニウムを用いてもよく、また、酸性のポリアクリル酸水溶液をアンモニア水で中和したものを用いてもよい。市販されているポリアクリル酸アンモニウムとしては、例えば、花王製のボイズ532A、大同化成工業製のダイドールELを用いることができる。また、酸性のポリアクリル酸水溶液としては、適宜市販されているものを用いることができ、例えば、大同化成工業製のH−32、C−27;日本触媒製のアクアリックHL又はアクアリックASの水溶液を用いることができる。   The ammonium polyacrylate that can be used as a dispersant in the present invention refers to an ammonium salt of polyacrylic acid. And as such polyammonium acrylate, the commercially available ammonium polyacrylate may be used suitably, and what neutralized acidic polyacrylic acid aqueous solution with ammonia water may be used. As a commercially available ammonium polyacrylate, for example, Boise 532A manufactured by Kao and Daido Chemical Co., Ltd. DAIDOL EL can be used. Moreover, what is marketed suitably can be used as acidic polyacrylic-acid aqueous solution, for example, Daido Kasei Kogyo H-32, C-27; Nippon Shokubai Aquaric HL or Aqualic AS. An aqueous solution can be used.

また、本発明において分散剤として使用可能なポリアクリル酸トリエチルアミンとは、ポリアクリル酸のトリメチルアミン塩のことをいう。そして、このようなポリアクリル酸トリエチルアミンとしては、前記酸性のポリアクリル酸水溶液をトリメチルアミンで、pHが8〜9の範囲となるように、中和したものを用いることができる。   Moreover, the polyethyl acrylate triethylamine which can be used as a dispersing agent in this invention means the trimethylamine salt of polyacrylic acid. And as such polyacrylic acid triethylamine, what neutralized the said acidic polyacrylic acid aqueous solution with trimethylamine so that pH may be in the range of 8-9 can be used.

また、このようなポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンの添加量は、前記酸化チタン100質量部に対して0.3〜3質量部の範囲となる量である必要がある。添加量が0.3質量部未満では酸化チタンの粒子を十分に分散することができず、コロイダルシリカの酸化チタンに対する吸着が不十分となるために、得られる酸化チタン複合粒子水分散液における酸化チタン複合粒子の経時の分散安定性が不十分となる。他方、添加量が3質量部を超えると、酸化チタン表面の抗酸化性有機物の量が多くなり過ぎるため、酸化チタンの光触媒作用が十分に発現しなくなる。また、分散安定性の更なる向上という観点から、このようなポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンの添加量が、前記酸化チタン100質量部に対して0.5〜1.5質量部の範囲となる量であることが好ましい。   Moreover, the addition amount of such an ammonium polyacrylate or a triethylamine polyacrylate needs to be the quantity used as the range of 0.3-3 mass parts with respect to 100 mass parts of said titanium oxides. If the addition amount is less than 0.3 parts by mass, the titanium oxide particles cannot be sufficiently dispersed, and the adsorption of colloidal silica to titanium oxide becomes insufficient. The dispersion stability of the titanium composite particles over time becomes insufficient. On the other hand, when the addition amount exceeds 3 parts by mass, the amount of the antioxidant organic substance on the surface of the titanium oxide becomes too large, so that the photocatalytic action of titanium oxide is not sufficiently exhibited. Further, from the viewpoint of further improving the dispersion stability, the amount of such ammonium polyacrylate or triethylamine polyacrylate added is in the range of 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the titanium oxide. It is preferable that the amount is as follows.

本発明において分散媒として用いる水としては、イオン交換水を特に好適なものとして挙げることができるが、工業用水、水道水でも水質に依っては使用可能である。   As water used as a dispersion medium in the present invention, ion-exchanged water can be mentioned as a particularly suitable one, but industrial water and tap water can also be used depending on the water quality.

第1の工程においては、先ず、前記酸化チタン、水、並びに前記ポリアクリル酸アンモニウム又は前記ポリアクリル酸トリエチルアミンを準備する。そして、前記酸化チタンを所定量のポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンを分散剤として用いて水に分散又は溶解せしめる。酸化チタンを分散せしめる方法としては、水中に前記酸化チタン、並びに前記ポリアクリル酸アンモニウム又は前記ポリアクリル酸トリエチルアミンを添加した後に、ビーズミル、ホモジナイザー、攪拌機、超音波分散機、マイクロ波加熱装置等の分散装置を用いて分散処理及び/又は粉砕処理する方法を挙げることができる。このような方法において、処理時間や処理温度等の処理条件は特に限定されず、用いる装置に応じて適時選択することができる。なお、装置としてビーズミルを用いる場合には、処理時間は60〜600分間であることが好ましい。また、使用するビーズの材質はジルコニアであることが好ましく、使用するビーズの粒子径は30〜300μmの範囲であることが好ましい。   In the first step, first, the titanium oxide, water, and the ammonium polyacrylate or the triethylamine polyacrylate are prepared. Then, the titanium oxide is dispersed or dissolved in water using a predetermined amount of ammonium polyacrylate or polyethylamine polyacrylate as a dispersant. As a method of dispersing titanium oxide, after adding the titanium oxide and the ammonium polyacrylate or the triethylamine polyacrylate in water, dispersion of a bead mill, a homogenizer, a stirrer, an ultrasonic disperser, a microwave heating device, etc. Examples of the method include a dispersion treatment and / or a pulverization treatment using an apparatus. In such a method, processing conditions such as processing time and processing temperature are not particularly limited, and can be selected as appropriate according to the apparatus to be used. In addition, when using a bead mill as an apparatus, it is preferable that processing time is 60 to 600 minutes. Moreover, it is preferable that the material of the bead to be used is zirconia, and the particle diameter of the bead to be used is preferably in the range of 30 to 300 μm.

また、このようにして得られる酸化チタン粒子水分散液のpHは7〜9の範囲であることが好ましく、7〜8.5の範囲であることがより好ましい。pHが前記下限未満では、得られる酸化チタン複合粒子水分散液における酸化チタン複合粒子の経時の分散安定性が不十分となる傾向にあり、他方、前記上限を超えると、得られる酸化チタン複合粒子水分散液における酸化チタン複合粒子の経時の分散安定性が不十分となる傾向にある。   Further, the pH of the titanium oxide particle aqueous dispersion thus obtained is preferably in the range of 7 to 9, and more preferably in the range of 7 to 8.5. If the pH is less than the lower limit, the dispersion stability of the titanium oxide composite particles over time in the obtained titanium oxide composite particle aqueous dispersion tends to be insufficient. On the other hand, if the pH exceeds the upper limit, the resulting titanium oxide composite particles The titanium oxide composite particles in the aqueous dispersion tend to have insufficient dispersion stability over time.

第2の工程においては、第1の工程により得られた酸化チタン粒子水分散液に動的光散乱法で測定した平均粒子径が1〜30nmのコロイダルシリカを前記光触媒酸化チタン100質量部に対して酸化物換算で10〜75質量部添加して、前記コロイダルシリカを前記酸化チタンに吸着させて酸化チタン複合粒子水分散液を得る。   In the second step, colloidal silica having an average particle diameter of 1 to 30 nm measured by the dynamic light scattering method is added to 100 parts by mass of the photocatalytic titanium oxide in the aqueous dispersion of titanium oxide particles obtained in the first step. Then, 10 to 75 parts by mass in terms of oxide is added, and the colloidal silica is adsorbed on the titanium oxide to obtain an aqueous dispersion of titanium oxide composite particles.

本発明に用いるコロイダルシリカとしては、動的光散乱法で測定した平均粒子径が1〜30nmのコロイダルシリカを用いることが必要である。このようなコロイダルシリカを前記酸化チタンに吸着させることにより、酸化チタン複合粒子の経時の分散安定性に優れる酸化チタン複合粒子水分散液を得ることが可能となる。なお、動的光散乱法による平均粒子径は、例えば、日機装(株)製マイクロトラックUP150等の粒子径測定装置を用いて測定することができる。   As the colloidal silica used in the present invention, it is necessary to use colloidal silica having an average particle diameter of 1 to 30 nm measured by a dynamic light scattering method. By adsorbing such colloidal silica to the titanium oxide, it becomes possible to obtain an aqueous dispersion of titanium oxide composite particles having excellent dispersion stability over time of the titanium oxide composite particles. In addition, the average particle diameter by a dynamic light scattering method can be measured using particle diameter measuring apparatuses, such as Nikkiso Co., Ltd. Microtrac UP150, for example.

このようなコロイダルシリカとしては、平均粒子径が1〜30nmの範囲であるものであればよく、適宜市販されているコロイダルシリカを用いることができる。このようなコロイダルシリカとしては、例えば、日産化学製のスノーテックス、旭電化製のアデライトAT、触媒化成工業製のカタロイドを用いることができる。また、このようなコロイダルシリカの添加量は、前記酸化チタン100質量部に対して酸化物換算で10〜75質量部の範囲となる量である必要がある。添加量が10質量部未満では、得られる酸化チタン複合粒子水分散液における酸化チタン複合粒子の経時の分散安定性が不十分となる。他方、添加量が75質量部を超えると、酸化チタン表面のシリカの量が多くなり過ぎるため、酸化チタンの光触媒作用が十分に発現しなくなる。   As such colloidal silica, what is necessary is just an average particle diameter in the range of 1-30 nm, and the commercially available colloidal silica can be used suitably. As such colloidal silica, for example, Snowtex manufactured by Nissan Chemical Co., Adelite AT manufactured by Asahi Denka, and cataroid manufactured by Catalytic Chemical Industry can be used. Moreover, the addition amount of such colloidal silica needs to be the quantity used as the range of 10-75 mass parts in conversion of an oxide with respect to 100 mass parts of said titanium oxides. When the addition amount is less than 10 parts by mass, the dispersion stability of the titanium oxide composite particles over time in the obtained titanium oxide composite particle aqueous dispersion becomes insufficient. On the other hand, when the addition amount exceeds 75 parts by mass, the amount of silica on the surface of the titanium oxide becomes too large, so that the photocatalytic action of titanium oxide is not sufficiently exhibited.

第2の工程においては、先ず、前記コロイダルシリカを準備する。そして、前記酸化チタン粒子水分散液に前記コロイダルシリカを添加して、前記コロイダルシリカを前記酸化チタンに吸着させる。このようにコロイダルシリカを酸化チタンに吸着させる際の条件は特に制限されず、前記酸化チタン粒子水分散液に前記コロイダルシリカを添加することにより、前記コロイダルシリカが前記酸化チタンに吸着して酸化チタン複合粒子となる。また、コロイダルシリカを添加した後に攪拌機等で攪拌してもよい。   In the second step, first, the colloidal silica is prepared. And the said colloidal silica is added to the said titanium oxide particle aqueous dispersion, and the said colloidal silica is made to adsorb | suck to the said titanium oxide. Thus, the conditions for adsorbing colloidal silica to titanium oxide are not particularly limited, and by adding the colloidal silica to the titanium oxide particle aqueous dispersion, the colloidal silica is adsorbed to the titanium oxide and titanium oxide. It becomes a composite particle. Moreover, after adding colloidal silica, you may stir with a stirrer etc.

以上説明したような本発明の酸化チタン複合粒子水分散液の製造方法によれば、酸化チタン複合粒子の経時の分散安定性に優れる酸化チタン複合粒子水分散液を効率よく且つ確実に得ること可能となる。また、このようにして得られる酸化チタン複合粒子水分散液においては、コロイダルシリカを酸化チタンに吸着させており、酸化チタンがコロイダルシリカに覆われているために、酸化チタン複合粒子水分散液を用いて酸化チタンを繊維等の有機物支持体に担持した際に、酸化チタンの光触媒作用により有機物支持体が酸化分解されることを十分に抑制することができる。   According to the method for producing an aqueous dispersion of titanium oxide composite particles of the present invention as described above, it is possible to efficiently and reliably obtain an aqueous dispersion of titanium oxide composite particles having excellent dispersion stability over time of the titanium oxide composite particles. It becomes. Moreover, in the titanium oxide composite particle aqueous dispersion obtained in this way, colloidal silica is adsorbed on titanium oxide, and the titanium oxide is covered with colloidal silica. When titanium oxide is supported on an organic support such as a fiber, the organic support can be sufficiently prevented from being oxidatively decomposed by the photocatalytic action of titanium oxide.

<酸化チタン複合粒子水分散液>
次に、本発明の酸化チタン複合粒子水分散液について説明する。本発明の酸化チタン複合粒子水分散液は、前記酸化チタン複合粒子水分散液の製造方法により得られたものであることを特徴とするものである。そして、このような酸化チタン複合粒子水分散液を用いることによって、フィルム、ガラス、陶磁器、プラスチック、繊維、金属等の支持体に酸化チタン複合粒子の皮膜を形成し、支持体に光触媒作用を付与することができる。このように皮膜を形成する方法としては、グラビアコート、スピンコート、ディップコート、スプレーコート、はけ塗り等の塗工方法により塗工した後に乾燥し、水を蒸発させて皮膜を形成させる方法を挙げることができる。また、このような方法においては、必要に応じて酸化チタン複合粒子水分散液に、シリカゾル、アルミナゾル、ジルコニアゾル、チタニアゾル、過酸化チタン、アクリルシリカ、酢酸ビニル樹脂、ポリウレタン樹脂、シリコンゴム分散液、ポリビニルアルコール水溶液等のバインダーを添加してもよい。
<Titanium oxide composite particle aqueous dispersion>
Next, the titanium oxide composite particle aqueous dispersion of the present invention will be described. The titanium oxide composite particle aqueous dispersion of the present invention is obtained by the method for producing a titanium oxide composite particle aqueous dispersion. By using such an aqueous dispersion of titanium oxide composite particles, a film of titanium oxide composite particles is formed on a support of film, glass, ceramics, plastic, fiber, metal, etc., and photocatalytic action is imparted to the support can do. As a method for forming a film in this way, a method of forming a film by evaporating water after coating by a coating method such as gravure coating, spin coating, dip coating, spray coating, brush coating, etc. Can be mentioned. In such a method, if necessary, the titanium oxide composite particle aqueous dispersion may be silica sol, alumina sol, zirconia sol, titania sol, titanium peroxide, acrylic silica, vinyl acetate resin, polyurethane resin, silicon rubber dispersion, A binder such as an aqueous polyvinyl alcohol solution may be added.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、分散液中の酸化チタン粒子又は酸化チタン複合粒子の平均粒子径としては、粒子径測定装置(日機装(株)製、製品名「マイクロトラックUP150」)を用いて、動的光散乱法による平均粒子径を測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The average particle size of the titanium oxide particles or titanium oxide composite particles in the dispersion is determined by a dynamic light scattering method using a particle size measuring device (product name “Microtrack UP150” manufactured by Nikkiso Co., Ltd.). The average particle size was measured.

(実施例1)
紫外線応答型の酸化チタン(テイカ(株)製、製品名「AMT100」、一次粒子径:6nm)100質量部と、ポリアクリル酸アンモニウム(花王(株)製、製品名「ボイズ532A」、固形分濃度:40質量%)2.5質量部とを、イオン交換水897.5質量部に投入し、ビーズミル(使用ビーズ:50μmジルコニアビーズ、処理時間:300分間)を用いて、酸化チタンを水に分散せしめて酸化チタン粒子水分散液を得た。
Example 1
UV-responsive titanium oxide (manufactured by Teika Co., Ltd., product name “AMT100”, primary particle size: 6 nm) 100 parts by mass, ammonium polyacrylate (manufactured by Kao Corporation, product name “Boise 532A”, solid content (Concentration: 40% by mass) 2.5 parts by mass into ion-exchanged water 897.5 parts by mass, and using a bead mill (beads used: 50 μm zirconia beads, treatment time: 300 minutes) Dispersion was performed to obtain an aqueous dispersion of titanium oxide particles.

次に、得られた酸化チタン粒子水分散液にコロイダルシリカ(日産化学製、製品名「スノーテックスC」、固形分濃度:20質量%)250質量部を添加した後に攪拌して、コロイダルシリカを酸化チタンに吸着させて酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。   Next, after adding 250 parts by mass of colloidal silica (manufactured by Nissan Chemical Co., Ltd., product name “Snowtex C”, solid content concentration: 20% by mass) to the obtained titanium oxide particle aqueous dispersion, the mixture is stirred to obtain colloidal silica. It was made to adsorb | suck to a titanium oxide, and the titanium oxide composite particle aqueous dispersion was obtained. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(実施例2)
紫外線応答型の酸化チタン100質量部に代えて他の紫外線応答型の酸化チタン(テイカ(株)製、製品名「AMT600」、一次粒子径:30nm)100質量部を用いた以外は実施例1と同様にして酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Example 2)
Example 1 except that 100 parts by mass of UV-responsive titanium oxide was used instead of 100 parts by mass of other UV-responsive titanium oxide (product name “AMT600”, primary particle size: 30 nm) manufactured by Teika Co., Ltd. In the same manner, an aqueous dispersion of titanium oxide composite particles was obtained. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(実施例3)
紫外線応答型の酸化チタン100質量部に代えて窒素ドープ型の酸化チタン((株)豊田通商製、製品名「V−CAT01」)100質量部を用いた以外は実施例1と同様にして酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Example 3)
Oxidation was carried out in the same manner as in Example 1 except that 100 parts by mass of nitrogen-doped titanium oxide (product name “V-CAT01”, manufactured by Toyota Tsusho Co., Ltd.) was used instead of 100 parts by mass of UV-responsive titanium oxide. An aqueous titanium composite particle dispersion was obtained. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(実施例4)
先ず、ポリアクリル酸水溶液(大同化成工業製、製品名「ダイドールC−27」、固形分:50質量%、pH:2.5)100質量部に、トリメチルアミン40質量部を添加してポリアクリル酸トリエチルアミン水溶液を得た。その後、ポリアクリル酸アンモニウム2.5質量部に代えて得られたポリアクリル酸トリエチルアミン水溶液(固形分:64質量%、pH:8.7)1.6質量部を用いた以外は実施例3と同様にして酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
Example 4
First, polyacrylic acid is obtained by adding 40 parts by mass of trimethylamine to 100 parts by mass of an aqueous polyacrylic acid solution (manufactured by Daido Kasei Kogyo, product name “Dydol C-27”, solid content: 50 mass%, pH: 2.5). A triethylamine aqueous solution was obtained. Thereafter, Example 3 was used except that 1.6 parts by mass of a polyacrylic acid triethylamine aqueous solution (solid content: 64% by mass, pH: 8.7) obtained in place of 2.5 parts by mass of ammonium polyacrylate was used. Similarly, an aqueous dispersion of titanium oxide composite particles was obtained. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(比較例1)
窒素ドープ型の酸化チタン((株)豊田通商製、製品名「V−CAT01」)100質量部と、ポリアクリル酸アンモニウム(花王(株)製、製品名「ボイズ532A」、固形分濃度:40質量%)2.5質量部とを、イオン交換水に投入し、ビーズミル(使用ビーズ:50μmジルコニアビーズ、処理時間:240分間)を用いて、酸化チタンを水に分散せしめて比較用の酸化チタン粒子水分散液を得た。そして、得られた酸化チタン粒子水分散液について酸化チタン粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Comparative Example 1)
100 parts by mass of nitrogen-doped titanium oxide (manufactured by Toyota Tsusho, product name “V-CAT01”), ammonium polyacrylate (manufactured by Kao Corporation, product name “Boise 532A”, solid content concentration: 40 (Mass%) 2.5 parts by mass is charged into ion-exchanged water, and titanium oxide is dispersed in water using a bead mill (beads used: 50 μm zirconia beads, treatment time: 240 minutes) for comparison. An aqueous particle dispersion was obtained. And the average particle diameter of the titanium oxide particle was measured about the obtained titanium oxide particle aqueous dispersion. The obtained results are shown in Table 1.

(比較例2)
ポリアクリル酸アンモニウムを用いなかった以外は実施例3と同様にして比較用の酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Comparative Example 2)
A comparative titanium oxide composite particle aqueous dispersion was obtained in the same manner as in Example 3 except that ammonium polyacrylate was not used. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(比較例3)
ポリアクリル酸アンモニウム2.5質量部に代えてポリアクリル酸ソーダ(大同化成工業製、製品名「ダイドールDL」、固形分:40質量%)2.5質量部を用いた以外は実施例3と同様にして比較用の酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Comparative Example 3)
Example 3 except that 2.5 parts by mass of polyacrylic acid soda (manufactured by Daido Kasei Kogyo, product name “Daidoll DL”, solid content: 40% by mass) was used instead of 2.5 parts by mass of ammonium polyacrylate. Similarly, a titanium oxide composite particle aqueous dispersion for comparison was obtained. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(比較例4)
コロイダルシリカの添加量を400質量部とした以外は実施例3と同様にして比較用の酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Comparative Example 4)
A comparative titanium oxide composite particle aqueous dispersion was obtained in the same manner as in Example 3 except that the amount of colloidal silica added was 400 parts by mass. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

(比較例5)
コロイダルシリカの添加量を25質量部とした以外は実施例3と同様にして比較用の酸化チタン複合粒子水分散液を得た。そして、得られた酸化チタン複合粒子水分散液について酸化チタン複合粒子の平均粒子径を測定した。得られた結果を表1に示す。
(Comparative Example 5)
A comparative titanium oxide composite particle aqueous dispersion was obtained in the same manner as in Example 3 except that the amount of colloidal silica added was 25 parts by mass. And the average particle diameter of the titanium oxide composite particle was measured about the obtained titanium oxide composite particle aqueous dispersion. The obtained results are shown in Table 1.

<分散安定性の評価>
実施例1〜4及び比較例1〜5で得られた分散液を常温にて30日間及び60日間保存した後における、酸化チタン粒子又は酸化チタン複合粒子の平均粒子径を測定した。得られた結果、並びに製造後の平均粒子径に対する平均粒子径の変化率を表1に示す。
<Evaluation of dispersion stability>
The average particle diameter of the titanium oxide particles or the titanium oxide composite particles after the dispersions obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were stored at room temperature for 30 days and 60 days was measured. Table 1 shows the results obtained and the rate of change of the average particle size relative to the average particle size after production.

Figure 0005090787
Figure 0005090787

表1に示した結果から明らかなように、本発明の酸化チタン複合粒子水分散液(実施例1〜4)においては、酸化チタン複合粒子の平均粒子径の経時の変化が少なかった。したがって、本発明の酸化チタン複合粒子水分散液は経時の分散安定性に優れることが確認された。なお、酸化チタンとして窒素ドープ型の酸化チタンを用いた場合(実施例3、4)においては、酸化チタン複合粒子の平均粒子径の経時の変化が特に少なかった。   As is clear from the results shown in Table 1, in the titanium oxide composite particle aqueous dispersions (Examples 1 to 4) of the present invention, there was little change with time in the average particle diameter of the titanium oxide composite particles. Therefore, it was confirmed that the titanium oxide composite particle aqueous dispersion of the present invention is excellent in dispersion stability over time. In the case where nitrogen-doped titanium oxide was used as titanium oxide (Examples 3 and 4), the change in the average particle diameter of the titanium oxide composite particles with time was particularly small.

一方、コロイダルシリカが吸着されていない酸化チタン粒子水分散液(比較例1)においては、酸化チタン粒子の平均粒子径が時間の経過と共に小さくなる傾向にあり、酸化チタン粒子の分散安定性が劣ったものであった。また、本発明にかかるポリアクリル酸アンモニウム等を用いなかった酸化チタン複合粒子水分散液(比較例2)においては、製造後60日が経過した際に酸化チタン複合粒子が凝集し沈殿してしまった。さらに、分散剤としてポリアクリル酸ソーダを用いた酸化チタン複合粒子水分散液(比較例3)においては、製造後30日が経過した際に酸化チタン複合粒子が凝集し沈殿してしまった。また、コロイダルシリカの添加量が多すぎる場合や少なすぎる場合(比較例4、5)には、酸化チタン粒子の平均粒子径が時間の経過と共に小さくなる傾向にあり、酸化チタン粒子の分散安定性が劣ったものであった。   On the other hand, in the titanium oxide particle aqueous dispersion in which colloidal silica is not adsorbed (Comparative Example 1), the average particle diameter of the titanium oxide particles tends to decrease with time, and the dispersion stability of the titanium oxide particles is poor. It was. In addition, in the titanium oxide composite particle aqueous dispersion (Comparative Example 2) that did not use ammonium polyacrylate or the like according to the present invention, the titanium oxide composite particles aggregated and precipitated when 60 days had passed after production. It was. Furthermore, in the titanium oxide composite particle aqueous dispersion (Comparative Example 3) using polyacrylic acid soda as a dispersant, the titanium oxide composite particles aggregated and precipitated when 30 days had passed after the production. In addition, when the amount of colloidal silica added is too large or too small (Comparative Examples 4 and 5), the average particle size of the titanium oxide particles tends to decrease with time, and the dispersion stability of the titanium oxide particles. Was inferior.

以上説明したように、本発明によれば、酸化チタン複合粒子水分散液を用いて酸化チタンを繊維等の有機物支持体に担持した際に、酸化チタンの光触媒作用により有機物支持体が酸化分解されることを十分に抑制することができ、しかも酸化チタンの経時の分散安定性に優れる酸化チタン複合粒子水分散液を効率よく且つ確実に得ることが可能な酸化チタン複合粒子水分散液の製造方法、並びにその製造方法により得られた酸化チタン複合粒子水分散液を提供することが可能となる。   As described above, according to the present invention, when titanium oxide is supported on an organic support such as fibers using an aqueous dispersion of titanium oxide composite particles, the organic support is oxidized and decomposed by the photocatalytic action of titanium oxide. And a method for producing an aqueous dispersion of titanium oxide composite particles capable of efficiently and reliably obtaining an aqueous dispersion of titanium oxide composite particles excellent in dispersion stability of titanium oxide over time In addition, it is possible to provide a titanium oxide composite particle aqueous dispersion obtained by the production method.

Claims (4)

一次粒子径が2〜40nmであり光触媒反応を行うことができる酸化チタンを、前記酸化チタン100質量部に対して0.3〜3質量部のポリアクリル酸アンモニウム又はポリアクリル酸トリエチルアミンを分散剤として用いて、水に分散せしめて酸化チタン粒子水分散液を得る工程と、
前記酸化チタン粒子水分散液に動的光散乱法で測定した平均粒子径が1〜30nmのコロイダルシリカを前記酸化チタン100質量部に対して酸化物換算で10〜75質量部添加して、前記コロイダルシリカを前記酸化チタンに吸着させて酸化チタン複合粒子水分散液を得る工程と、
を含むことを特徴とする酸化チタン複合粒子水分散液の製造方法。
Titanium oxide having a primary particle diameter of 2 to 40 nm and capable of performing photocatalytic reaction is used with 0.3 to 3 parts by mass of ammonium polyacrylate or triethylamine polyacrylate as a dispersant with respect to 100 parts by mass of titanium oxide. And using the step of dispersing in water to obtain a titanium oxide particle aqueous dispersion,
Colloidal silica having an average particle diameter of 1 to 30 nm measured by a dynamic light scattering method is added to the titanium oxide particle aqueous dispersion in an amount of 10 to 75 parts by mass in terms of oxide with respect to 100 parts by mass of the titanium oxide. Adsorbing colloidal silica on the titanium oxide to obtain an aqueous dispersion of titanium oxide composite particles;
The manufacturing method of the titanium oxide composite particle aqueous dispersion characterized by including this.
前記酸化チタン粒子水分散液のpHが7〜9の範囲であることを特徴とする請求項1に記載の酸化チタン複合粒子水分散液の製造方法。   The method for producing a titanium oxide composite particle aqueous dispersion according to claim 1, wherein the titanium oxide particle aqueous dispersion has a pH of 7 to 9. 前記酸化チタンが窒素ドープ型の酸化チタンであることを特徴とする請求項1又は2に記載の酸化チタン複合粒子水分散液の製造方法。   The method for producing an aqueous dispersion of titanium oxide composite particles according to claim 1, wherein the titanium oxide is nitrogen-doped titanium oxide. 請求項1〜3のうちのいずれか一項に記載の酸化チタン複合粒子水分散液の製造方法により得られたものであることを特徴とする酸化チタン複合粒子水分散液。   A titanium oxide composite particle aqueous dispersion, which is obtained by the method for producing a titanium oxide composite particle aqueous dispersion according to any one of claims 1 to 3.
JP2007133774A 2007-05-21 2007-05-21 Titanium oxide composite particle aqueous dispersion and production method thereof Expired - Fee Related JP5090787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133774A JP5090787B2 (en) 2007-05-21 2007-05-21 Titanium oxide composite particle aqueous dispersion and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133774A JP5090787B2 (en) 2007-05-21 2007-05-21 Titanium oxide composite particle aqueous dispersion and production method thereof

Publications (2)

Publication Number Publication Date
JP2008285613A JP2008285613A (en) 2008-11-27
JP5090787B2 true JP5090787B2 (en) 2012-12-05

Family

ID=40145658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133774A Expired - Fee Related JP5090787B2 (en) 2007-05-21 2007-05-21 Titanium oxide composite particle aqueous dispersion and production method thereof

Country Status (1)

Country Link
JP (1) JP5090787B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123787B2 (en) * 2008-08-20 2013-01-23 アキレス株式会社 A method for supporting functional particles on a fiber or fiber product, and a fiber or fiber product obtained by the method.
JP5422973B2 (en) * 2008-11-18 2014-02-19 株式会社豊田中央研究所 Spherical oxide semiconductor particles, and integrated body and photoelectrode using the same
KR101450389B1 (en) * 2012-05-25 2014-10-14 (주)엘지하우시스 Photocatalyst, method for preparing the same and photocatalyst device
KR102278420B1 (en) * 2017-11-16 2021-07-16 (주)엘엑스하우시스 Method for manufacturing vehicle exhaust gas treatment catalyst and vehicle exhaust gas treatment catalyst prepared by the same
KR102209190B1 (en) * 2017-11-16 2021-01-28 (주)엘지하우시스 Method for manufacturing vehicle exhaust gas treatment catalyst and vehicle exhaust gas treatment catalyst prepared by the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318634A (en) * 1976-08-04 1978-02-21 Dainichi Seika Kogyo Kk Aqueous pigment dispersions
CA1151499A (en) * 1979-03-06 1983-08-09 Tioxide Group Limited Aqueous dispersions
JPH0925431A (en) * 1995-07-07 1997-01-28 Kansai Paint Co Ltd Aqueous pigment dispersion
US5886069A (en) * 1995-11-13 1999-03-23 E. I. Du Pont De Nemours And Company Titanium dioxide particles having substantially discrete inorganic particles dispersed on their surfaces
US5650002A (en) * 1995-11-13 1997-07-22 E. I. Du Pont De Nemours And Company TiO2 light scattering efficiency when incorporated in coatings
JPH11138015A (en) * 1997-11-10 1999-05-25 Toto Ltd Photocatalytic hydrophilic composition
JP4679790B2 (en) * 2002-10-15 2011-04-27 小松精練株式会社 Functional fiber fabric
JP4793302B2 (en) * 2007-03-29 2011-10-12 日本製紙株式会社 A method for dispersing powdered titanium oxide having a photocatalytic action and a method for producing coated paper for printing using powdered titanium oxide obtained by the dispersing method.

Also Published As

Publication number Publication date
JP2008285613A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4256070B2 (en) Photocatalyst composition
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
Channei et al. Adsorption and photocatalytic processes of mesoporous SiO2-coated monoclinic BiVO4
TWI665015B (en) Antibacterial photocatalyst material, method for manufacturing the same, and photocatalyst component using the same
JP2013530923A (en) Doped material
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
Abedini et al. One-step oxidative-adsorptive desulfurization of DBT on simulated solar light-driven nano photocatalyst of MoS2-C3N4-BiOBr@ MCM-41
JPH11169727A (en) Photocatalyst body and application thereof
JP4296529B2 (en) Titanium oxide photocatalyst for basic gas removal
KR102081740B1 (en) Manufacturing Method of Air Cleaning Filter containing Plasmonics Matter of Ag/TiO2 core/shell nano structure
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP4814048B2 (en) Photocatalyst production method
JP2005170687A (en) Neutral titanium oxide sol and method for producing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
Kwon et al. Novel immobilization of titanium dioxide (TiO2) on the fluidizing carrier and its application to the degradation of azo-dye
RU2482912C1 (en) Method of producing filtering-sorbing material with photo catalytic properties
JPWO2008146711A1 (en) Composite, method for producing the same, and composition containing the same
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP2003340289A (en) Photocatalyst composition
CN109365005B (en) Photocatalyst hydrosol with high catalytic degradation performance and production process thereof
JP2006007156A (en) Functional coating film and producing method thereof
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate
TWM472058U (en) Tungsten oxide-titania anticorrosion photocatalyst film structure
Abdul Ghani et al. Water-based immobilized Ag-doped TiO₂ photocatalyst for photocatalytic degradation of RR4 dye

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees