JP2003340289A - Photocatalyst composition - Google Patents

Photocatalyst composition

Info

Publication number
JP2003340289A
JP2003340289A JP2002158095A JP2002158095A JP2003340289A JP 2003340289 A JP2003340289 A JP 2003340289A JP 2002158095 A JP2002158095 A JP 2002158095A JP 2002158095 A JP2002158095 A JP 2002158095A JP 2003340289 A JP2003340289 A JP 2003340289A
Authority
JP
Japan
Prior art keywords
photocatalyst
visible light
titanium oxide
light responsive
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158095A
Other languages
Japanese (ja)
Inventor
Hiroshi Okaniwa
宏 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002158095A priority Critical patent/JP2003340289A/en
Publication of JP2003340289A publication Critical patent/JP2003340289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a photocatalyst composition having high photocatalytic activity by visible light as well as by ultraviolet rays. <P>SOLUTION: A titanium oxide type visible light responsive photocatalyst such as a metal-doped type titanium oxide into which a metal such as chromium or vanadium is introduced, an oxygen deficient type titanium oxide modified by plasma method, anion-doped titanium oxide into which anions such as nitrogen or sulfur are introduced and a photocatalyst such as titanium oxide, zinc oxide or strontium titanate having a specific surface area higher than that of the visible light responsive photocatalyst are contained in a weight ratio of 5:95-99:1 to obtain the photocatalyst composition. This composition is dispersed in a solvent such as water or an alcohol to prepare a coating agent. This coating argent is formed on the surface of an article. The high photocatalytic activity can be developed indoors or outdoors. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は可視光によっても、
紫外光によっても高い光触媒活性を有する光触媒組成物
に関する。
TECHNICAL FIELD The present invention also relates to visible light,
The present invention relates to a photocatalyst composition having a high photocatalytic activity even with ultraviolet light.

【0002】[0002]

【従来の技術】近年、酸化チタンは、その酸化分解能、
親水化能などの光触媒作用が注目され、環境浄化、有害
物分解、汚れの分解、抗菌、防汚など様々な用途で応用
されている。しかしながら、これらの光触媒作用は紫外
光の吸収がなければ作用しないため、太陽光の当たらな
い屋内では機能せず、屋内用途には別途紫外線を放射す
る水銀ランプ、紫外線ランプなどの紫外線源を設置しな
ければならなかった。
2. Description of the Related Art In recent years, titanium oxide has a
The photocatalytic action such as hydrophilicity has attracted attention and has been applied in various applications such as environmental purification, decomposition of harmful substances, decomposition of dirt, antibacterial and antifouling. However, since these photocatalytic actions do not work without absorption of ultraviolet light, they do not work indoors where the sunlight does not hit, and for indoor use a separate ultraviolet source such as a mercury lamp or ultraviolet lamp that emits ultraviolet rays is installed. I had to.

【0003】これらの問題点を解決するため、特別な紫
外線源を必要とせず可視光によっても光触媒作用を発揮
する可視光応答性光触媒が提案され始めている。
In order to solve these problems, a visible light responsive photocatalyst that does not require a special ultraviolet ray source and exhibits a photocatalytic action even by visible light has been proposed.

【0004】例えば、特開平11−333301号公報
に、市販の酸化チタンを水素及びメタンガスの存在する
雰囲気下プラズマ処理することにより可視光応答性を付
与する方法が提案されている。また、特開2000−1
40636号公報には、窒素ガス雰囲気下プラズマ処理
することにより可視光応答性を付与する方法が提案され
ている。しかしながらこれらの方法は高価なプラズマ処
理装置を必要とし、また一度に大量の酸化チタンを処理
できないため、工業的に有利ではなかった。
For example, Japanese Patent Laid-Open No. 11-333301 proposes a method of imparting visible light responsiveness by subjecting commercially available titanium oxide to plasma treatment in an atmosphere containing hydrogen and methane gas. In addition, JP 2000-1
Japanese Patent No. 40636 proposes a method of imparting visible light responsiveness by performing plasma treatment in a nitrogen gas atmosphere. However, these methods require an expensive plasma processing apparatus and cannot process a large amount of titanium oxide at one time, which is not industrially advantageous.

【0005】更に、特開2001−207082号公報
には酸化チタンの微粒子をアンモニアの雰囲気下700
℃で熱処理することにより可視光応答性を付与する方法
が提案されている。この方法は比較的大量の酸化チタン
を一度にまたは連続的に処理することを可能とするもの
で工業的に有利である。しかしながら、この方法により
製造された光触媒は可視光応答性は有するものの、酸化
チタンが本来有していた紫外光による光触媒活性が大き
く低下するという問題があった。
Further, in Japanese Patent Laid-Open No. 2001-207082, fine particles of titanium oxide are treated in an ammonia atmosphere at 700
A method of imparting visible light responsiveness by heat treatment at ℃ has been proposed. This method is industrially advantageous because it allows a relatively large amount of titanium oxide to be treated at once or continuously. However, although the photocatalyst produced by this method has visible light responsiveness, there was a problem that the photocatalytic activity due to ultraviolet light, which titanium oxide originally had, was greatly reduced.

【0006】また、これら従来の可視光応答性光触媒
は、確かに可視光により酸化分解能、親水化能などの光
触媒作用を示すものの、紫外光による光触媒活性と比較
すると、更なる活性の改善が要求されている。
[0006] Although these conventional visible light-responsive photocatalysts certainly show photocatalytic activity such as oxidative decomposition and hydrophilicity by visible light, further improvement in activity is required as compared with photocatalytic activity by ultraviolet light. Has been done.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、可視光によっても、紫外
光によっても高い光触媒活性を有する光触媒組成物を提
供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a photocatalyst composition having a high photocatalytic activity both by visible light and ultraviolet light.

【0008】[0008]

【課題を解決するための手段】本発明は、可視光によっ
ても紫外光によっても高い光触媒活性を有する、可視光
応答性光触媒と該可視光応答性光触媒より高い比表面積
を有する光触媒とを含んでなることを特徴とする光触媒
組成物に関する。
The present invention comprises a visible light responsive photocatalyst having a high photocatalytic activity both by visible light and ultraviolet light and a photocatalyst having a specific surface area higher than that of the visible light responsive photocatalyst. The present invention relates to a photocatalyst composition.

【0009】本発明で原料とする可視光応答性光触媒と
は、400nm以上の波長の可視光によっても酸化分解
能、親水化能などの光触媒作用を示すものであり、その
構成成分としては特に限定はされないが、クロム、バナ
ジウムなどの金属を導入した金属ドープ型酸化チタン
や、プラズマ法などにより修飾処理された酸素欠陥型酸
化チタン、窒素やイオウなどのアニオンを導入したアニ
オンドープ型酸化チタンなどの酸化チタン系光触媒をは
じめ、タンタル、ニオブ、チタンなどのオキシナイトラ
イド、酸化タングステン、酸化鉄、セレン化カドミウ
ム、硫化カドミウムなどが有用に使用できる。
The visible light responsive photocatalyst used as a raw material in the present invention exhibits a photocatalytic action such as an oxidative decomposition ability and a hydrophilizing ability even with visible light having a wavelength of 400 nm or more, and its constituent components are not particularly limited. Oxidation of metal-doped titanium oxide containing metals such as chromium and vanadium, oxygen-defective titanium oxide modified by plasma method, and anion-doped titanium oxide containing anions such as nitrogen and sulfur. Titanium-based photocatalysts, tantalum, niobium, oxynitrides such as titanium, tungsten oxide, iron oxide, cadmium selenide, and cadmium sulfide can be used effectively.

【0010】例えば、窒素をドープしたアニオンドープ
型酸化チタンとしては、酸化チタンを希釈されていても
よいアンモニアガス等と接触させながら、400〜70
0℃で1分〜10時間加熱することにより得ることがで
きる。但し、上記温度と加熱時間は、酸化チタンの量、
ガス濃度、ガス流量によって適宜変化させることは言う
までもない。
For example, as the anion-doped titanium oxide doped with nitrogen, 400 to 70 is obtained by contacting titanium oxide with ammonia gas which may be diluted.
It can be obtained by heating at 0 ° C. for 1 minute to 10 hours. However, the above temperature and heating time are the amount of titanium oxide,
It goes without saying that it is appropriately changed depending on the gas concentration and the gas flow rate.

【0011】上述の可視光応答性光触媒と該可視光応答
性光触媒より高い比表面積を有する光触媒を混合するこ
とにより、可視光によっても紫外光によっても高い光触
媒活性を有する光触媒組成物を得ることができる。ここ
で用いる該可視光応答性光触媒より高い比表面積を有す
る光触媒とは、原料とする可視光応答性光触媒よりも高
い比表面積を有する光触媒を指し、その構成成分として
は特に限定されないが、酸化チタン、酸化亜鉛、チタン
酸ストロンチウムなど一般的な光触媒材料が有用に使用
できる。高い表面積のものほど高い可視光活性向上効果
が得られるので、200m2/gを超えるような高表面
積の酸化チタンを用いることが特に望ましい。
By mixing the above-mentioned visible light responsive photocatalyst with a photocatalyst having a specific surface area higher than that of the visible light responsive photocatalyst, a photocatalyst composition having a high photocatalytic activity under both visible light and ultraviolet light can be obtained. it can. The photocatalyst having a higher specific surface area than the visible light responsive photocatalyst used herein refers to a photocatalyst having a higher specific surface area than the visible light responsive photocatalyst used as a raw material, and its constituent components are not particularly limited, but titanium oxide General photocatalytic materials such as zinc oxide, zinc oxide, and strontium titanate can be usefully used. It is particularly desirable to use titanium oxide having a high surface area of more than 200 m 2 / g, because the higher the surface area, the higher the effect of improving visible light activity.

【0012】本発明の光触媒組成物は、上述の可視光応
答性光触媒と該可視光応答性光触媒より高い比表面積を
有する光触媒を、好ましくは重量比で5:95から9
9:1の範囲で混合することにより得ることができる。
可視光応答性光触媒の割合が5部よりも少ないと可視光
応答性を得ることができない場合があり、また99部よ
りも多いと可視光活性を向上させる効果を得ることがで
きない場合がある。より好ましくは10:90から9
0:10、さらに好ましくは10:90から75:25
の範囲で混合する。
The photocatalyst composition of the present invention comprises the above-mentioned visible light responsive photocatalyst and a photocatalyst having a higher specific surface area than the visible light responsive photocatalyst, preferably in a weight ratio of 5:95 to 9.
It can be obtained by mixing in the range of 9: 1.
If the proportion of the visible light responsive photocatalyst is less than 5 parts, visible light responsiveness may not be obtained, and if it is more than 99 parts, the effect of improving visible light activity may not be obtained. More preferably 10:90 to 9
0:10, more preferably 10:90 to 75:25
Mix in the range.

【0013】本発明の光触媒組成物は、水やアルコール
などの溶媒に分散させてコーティング剤を調製し、常法
により物品の表面に成膜することにより、可視光によっ
ても紫外光によっても高い光触媒活性を有し、屋内、屋
外を問わず、環境浄化、有害物分解、汚れの分解、抗
菌、防汚など様々な用途で有用に使用できる。
The photocatalyst composition of the present invention is a photocatalyst which is high in both visible light and ultraviolet light by dispersing it in a solvent such as water or alcohol to prepare a coating agent and forming a film on the surface of an article by a conventional method. It has activity and can be used effectively in various applications such as environmental purification, decomposition of harmful substances, decomposition of dirt, antibacterial and antifouling indoors and outdoors.

【0014】[0014]

【実施例】以下に実施例を用いて本発明をさらに詳しく
説明するが、本発明はこれら実施例のみに制限されるも
のではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0015】実施例1 市販の酸化チタン(石原産業製、商品名「ST−0
1」、BET表面積:300m2/g)1.5gを流速
毎分1リットルのアンモニアガス流中で600℃10分
間熱処理し、流速毎分1リットルの窒素ガス流中で放冷
して可視光応答性光触媒を得た。得られた可視光応答性
光触媒のBET表面積は105m2/gであった。
Example 1 Commercially available titanium oxide (manufactured by Ishihara Sangyo, trade name "ST-0"
1 ”, BET surface area: 300 m 2 / g) 1.5 g was heat-treated at 600 ° C. for 10 minutes in a flow rate of 1 liter / min of ammonia gas, and was left to cool in a nitrogen gas flow of 1 liter / min of visible light. A responsive photocatalyst was obtained. The BET surface area of the obtained visible light responsive photocatalyst was 105 m 2 / g.

【0016】この可視光応答性光触媒と高比表面積光触
媒として原料として使用した市販の酸化チタンを種々の
割合で混合し、可視光および紫外光によるNO酸化反応
をおこなった結果を表1に示した。結果は1時間の反応
の間に転化されたNOxの割合で示した。
Table 1 shows the results obtained by mixing the visible light responsive photocatalyst with commercially available titanium oxide used as a raw material as a high specific surface area photocatalyst in various ratios and performing NO oxidation reaction with visible light and ultraviolet light. . The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0017】NO酸化反応は、光触媒組成物50mgに
対し空気で希釈した濃度10ppmのNOガスを流速毎
分0.4リットルで流通させておこなった。反応には、
紫外光源としては27Wのブラックライトを、可視光源
としては27Wの蛍光灯を用いた。なお、可視光による
反応では、410nm以下の紫外光を吸収する紫外線カ
ットフィルム(富士フィルム製、商品名「UV Gua
rd」)により紫外線を除去した光により反応をおこな
った。反応ガスの分析は、化学発光式窒素酸化物分析計
によりおこなった。
The NO oxidation reaction was carried out by circulating 50 mg of the photocatalyst composition with 10 ppm of NO gas diluted with air at a flow rate of 0.4 liters per minute. The reaction is
A 27 W black light was used as the ultraviolet light source, and a 27 W fluorescent lamp was used as the visible light source. In the reaction with visible light, an ultraviolet cut film that absorbs ultraviolet light of 410 nm or less (manufactured by Fuji Film, trade name “UV Gua
The reaction was carried out by the light obtained by removing the ultraviolet rays by "rd"). The reaction gas was analyzed by a chemiluminescence type nitrogen oxide analyzer.

【0018】比較例1 実施例1で調製した可視光応答性光触媒単独で可視光お
よび紫外光によるNO酸化反応をおこなった結果を同じ
く表1中に示した。結果は1時間の反応の間に転化され
たNOxの割合で示した。
Comparative Example 1 The results of NO oxidation reaction by visible light and ultraviolet light using the visible light responsive photocatalyst prepared in Example 1 alone are also shown in Table 1. The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0019】比較例2 実施例1で調製した可視光応答性光触媒(BET表面
積:105m2/g)と、高比表面積光触媒に代えて可
視光応答性光触媒より表面積の低い酸化チタン(触媒学
会提供、参照触媒「JRC−TIO−004」、BET
表面積:49m2/g)を等量ずつ混合し、可視光およ
び紫外光によるNO酸化反応をおこなった結果を同じく
表1中に示した。結果は1時間の反応の間に転化された
NOxの割合で示した。
Comparative Example 2 The visible light responsive photocatalyst (BET surface area: 105 m 2 / g) prepared in Example 1 and titanium oxide having a surface area lower than that of the visible light responsive photocatalyst in place of the high specific surface area photocatalyst (provided by The Catalysis Society of Japan) , Reference catalyst "JRC-TIO-004", BET
A surface area: 49 m 2 / g) was mixed in equal amounts, and the results of NO oxidation reaction by visible light and ultraviolet light were also shown in Table 1. The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0020】[0020]

【表1】 実施例2 アナターゼ型の酸化チタン(触媒学会提供、参照触媒
「JRC−TIO−004」)1.5gを流速毎分1リ
ットルのアンモニアガス流中で600℃1時間間熱処理
し、流速毎分1リットルの窒素ガス流中で放冷して可視
光応答性光触媒を得た。得られた可視光応答性光触媒の
BET表面積は43m2/gであった。
[Table 1] Example 2 1.5 g of anatase type titanium oxide (reference catalyst “JRC-TIO-004” provided by The Society of Catalysis, Japan) was heat-treated at 600 ° C. for 1 hour in an ammonia gas flow having a flow rate of 1 liter / min, and the flow rate was 1 / min. The mixture was allowed to cool in a stream of nitrogen gas to obtain a visible light responsive photocatalyst. The BET surface area of the obtained visible light responsive photocatalyst was 43 m 2 / g.

【0021】この可視光応答性光触媒と高比表面積光触
媒として市販の酸化チタン(石原産業製、商品名「ST
−01」、BET表面積:300m2/g)を等量ずつ
混合し、可視光および紫外光によるNO酸化反応をおこ
なった結果を表2に示した。結果は1時間の反応の間に
転化されたNOxの割合で示した。
This visible light responsive photocatalyst and commercially available titanium oxide as a high specific surface area photocatalyst (made by Ishihara Sangyo, trade name "ST
-01 ", BET surface area: 300 m 2 / g) were mixed in equal amounts, and the NO oxidation reaction by visible light and ultraviolet light was performed. The results are shown in Table 2. The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0022】実施例3 ルチル型の酸化チタン(触媒学会提供、参照触媒「JR
C−TIO−003」)1.5gを流速毎分1リットル
のアンモニアガス流中で600℃1時間間熱処理し、流
速毎分1リットルの窒素ガス流中で放冷して可視光応答
性光触媒を得た。得られた可視光応答性光触媒のBET
表面積は45m2/gであった。
Example 3 Rutile type titanium oxide (provided by the Society of Catalysis, Reference catalyst "JR
C-TIO-003 ") (1.5 g) was heat-treated in a flow of 1 liter / min of ammonia gas at 600 ° C. for 1 hour, and allowed to cool in a flow of 1 liter / min of nitrogen gas, and a visible light responsive photocatalyst. Got BET of the obtained visible light responsive photocatalyst
The surface area was 45 m 2 / g.

【0023】この可視光応答性光触媒と高比表面積光触
媒として市販の酸化チタン(石原産業製、商品名「ST
−01」、BET表面積:300m2/g)を等量ずつ
混合し、可視光および紫外光によるNO酸化反応をおこ
なった結果を同じく表2中に示した。結果は1時間の反
応の間に転化されたNOxの割合で示した。
This visible light responsive photocatalyst and commercially available titanium oxide as a high specific surface area photocatalyst (made by Ishihara Sangyo, trade name "ST
-01 ", BET surface area: 300 m 2 / g) were mixed in equal amounts, and the results of NO oxidation reaction with visible light and ultraviolet light are also shown in Table 2. The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0024】比較例3 実施例2で調製した可視光応答性光触媒単独で可視光お
よび紫外光によるNO酸化反応をおこなった結果を同じ
く表2中に示した。結果は1時間の反応の間に転化され
たNOxの割合で示した。
Comparative Example 3 The results of NO oxidation reaction by visible light and ultraviolet light using the visible light responsive photocatalyst prepared in Example 2 alone are also shown in Table 2. The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0025】比較例4 実施例3で調製した可視光応答性光触媒単独で可視光お
よび紫外光によるNO酸化反応をおこなった結果を同じ
く表2中に示した。結果は1時間の反応の間に転化され
たNOxの割合で示した。
Comparative Example 4 The results of NO oxidation reaction by visible light and ultraviolet light using the visible light responsive photocatalyst prepared in Example 3 alone are also shown in Table 2. The results are expressed as the percentage of NOx converted during the 1 hour reaction.

【0026】[0026]

【表2】 [Table 2]

【発明の効果】表1,2および図1,2より明らかなよ
うに、本発明の光触媒組成物は、紫外光反応において
も、可視光反応においても、原料可視光応答性光触媒を
単独で用いるよりも顕著に高い活性を示した。
As is clear from Tables 1 and 2 and FIGS. 1 and 2, the raw material visible light responsive photocatalyst is used alone in the photocatalyst composition of the present invention in both the ultraviolet light reaction and the visible light reaction. It showed significantly higher activity.

【0027】以上のように、本発明の光触媒組成物は可
視光によっても紫外光によっても高い光触媒活性を有
し、屋内、屋外を問わず、環境浄化、有害物分解、汚れ
の分解、抗菌、防汚など様々な用途で有用に使用でき
る。
As described above, the photocatalyst composition of the present invention has a high photocatalytic activity under both visible light and ultraviolet light, and can be used for environmental purification, decomposition of harmful substances, decomposition of stains, antibacterial property, whether indoors or outdoors. It can be usefully used in various applications such as antifouling.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1および比較例1,2で得た可視光応
答性光触媒のNO酸化反応の結果を示す図である。
FIG. 1 is a diagram showing results of NO oxidation reaction of visible light responsive photocatalysts obtained in Example 1 and Comparative Examples 1 and 2.

【図2】 実施例2,3および比較例3,4で得た可視
光応答性光触媒のNO酸化反応の結果を示す図である。
FIG. 2 is a diagram showing results of NO oxidation reaction of visible light responsive photocatalysts obtained in Examples 2 and 3 and Comparative Examples 3 and 4.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 可視光応答性光触媒と該可視光応答性光
触媒より高い比表面積を有する光触媒とを含んでなる光
触媒組成物。
1. A photocatalyst composition comprising a visible light responsive photocatalyst and a photocatalyst having a higher specific surface area than the visible light responsive photocatalyst.
【請求項2】 可視光応答性光触媒と該可視光応答性光
触媒より高い比表面積を有する光触媒の割合が重量比で
5:95から99:1の範囲にある請求項1に記載の光
触媒組成物。
2. The photocatalyst composition according to claim 1, wherein the weight ratio of the visible light responsive photocatalyst to the photocatalyst having a higher specific surface area than the visible light responsive photocatalyst is in the range of 5:95 to 99: 1. .
【請求項3】 可視光応答性光触媒が酸化チタン系光触
媒である請求項1または請求項2に記載の光触媒組成
物。
3. The photocatalyst composition according to claim 1, wherein the visible light responsive photocatalyst is a titanium oxide photocatalyst.
【請求項4】 酸化チタン系光触媒が、アニオンを導入
したアニオンドープ型酸化チタンである請求項3に記載
の光触媒組成物。
4. The photocatalyst composition according to claim 3, wherein the titanium oxide photocatalyst is an anion-doped titanium oxide into which an anion has been introduced.
【請求項5】 アニオンが窒素である請求項4記載の光
触媒組成物。
5. The photocatalyst composition according to claim 4, wherein the anion is nitrogen.
【請求項6】 高い比表面積を有する光触媒が酸化チタ
ンである請求項1〜5の何れかに記載の光触媒組成物。
6. The photocatalyst composition according to claim 1, wherein the photocatalyst having a high specific surface area is titanium oxide.
【請求項7】 溶媒に、請求項1〜6のいずれか1項に
記載の光触媒組成物を分散させてなるコーティング剤。
7. A coating agent obtained by dispersing the photocatalyst composition according to any one of claims 1 to 6 in a solvent.
JP2002158095A 2002-05-30 2002-05-30 Photocatalyst composition Pending JP2003340289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158095A JP2003340289A (en) 2002-05-30 2002-05-30 Photocatalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158095A JP2003340289A (en) 2002-05-30 2002-05-30 Photocatalyst composition

Publications (1)

Publication Number Publication Date
JP2003340289A true JP2003340289A (en) 2003-12-02

Family

ID=29773607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158095A Pending JP2003340289A (en) 2002-05-30 2002-05-30 Photocatalyst composition

Country Status (1)

Country Link
JP (1) JP2003340289A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089941A1 (en) 2004-03-18 2005-09-29 Patent Technology Development Inc. Novel photocatalyst and method for producing same
JP2006218411A (en) * 2005-02-10 2006-08-24 Sumitomo Seika Chem Co Ltd Nitrogen-doped titanium oxide having photocatalyst action and its production method
JP2010179285A (en) * 2009-02-09 2010-08-19 Catarise Corp Photocatalyst, photocatalyst carrier, and photocatalyst kit
TWI494159B (en) * 2012-11-02 2015-08-01 Ind Tech Res Inst Photocatalyst material and method for fabricating the same
US9203052B2 (en) 2009-11-18 2015-12-01 Samsung Display Co., Ltd. Organic light emitting diode display and method of manufacturing the same
WO2016005760A1 (en) * 2014-07-11 2016-01-14 University Court Of The University Of Aberdeen A method of photocatalytically oxidising nitrogen oxides
US20160302422A1 (en) * 2011-05-04 2016-10-20 WELL Shield LLC Titanium Dioxide Photocatalytic Compositions and Uses Thereof
US9724675B2 (en) 2012-11-02 2017-08-08 Industrial Technology Research Institute Photocatalyst material and method for fabricating the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089941A1 (en) 2004-03-18 2005-09-29 Patent Technology Development Inc. Novel photocatalyst and method for producing same
US8404616B2 (en) 2004-03-18 2013-03-26 Patent Technology Development Inc. Photocatalyst and method for producing same
JP2006218411A (en) * 2005-02-10 2006-08-24 Sumitomo Seika Chem Co Ltd Nitrogen-doped titanium oxide having photocatalyst action and its production method
JP4587831B2 (en) * 2005-02-10 2010-11-24 住友精化株式会社 Nitrogen-doped titanium oxide having photocatalytic action and method for producing the same
JP2010179285A (en) * 2009-02-09 2010-08-19 Catarise Corp Photocatalyst, photocatalyst carrier, and photocatalyst kit
US9203052B2 (en) 2009-11-18 2015-12-01 Samsung Display Co., Ltd. Organic light emitting diode display and method of manufacturing the same
US20160302422A1 (en) * 2011-05-04 2016-10-20 WELL Shield LLC Titanium Dioxide Photocatalytic Compositions and Uses Thereof
US9833003B2 (en) * 2011-05-04 2017-12-05 WELL Shield LLC Titanium dioxide photocatalytic compositions and uses thereof
TWI494159B (en) * 2012-11-02 2015-08-01 Ind Tech Res Inst Photocatalyst material and method for fabricating the same
US9724675B2 (en) 2012-11-02 2017-08-08 Industrial Technology Research Institute Photocatalyst material and method for fabricating the same
WO2016005760A1 (en) * 2014-07-11 2016-01-14 University Court Of The University Of Aberdeen A method of photocatalytically oxidising nitrogen oxides

Similar Documents

Publication Publication Date Title
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
JP2007098294A (en) Composite photocatalyst body
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP4140770B2 (en) Titanium dioxide fine particles, method for producing the same, and method for producing visible light active photocatalyst
JP2003340289A (en) Photocatalyst composition
JP4135907B2 (en) Visible light active photocatalyst particles
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
RU2627496C1 (en) Method for producing photocatalizer based on a mechanoactivated powder of zinc oxide
JP2004209472A (en) Visible ray response type photocatalyst
KR102362760B1 (en) Photocatalyst and preparing method of the same
US20060034752A1 (en) Visible-light-activated photocatalyst and method for producing the same
CN1269568C (en) Composite nano-photo-catalyst used for purifying air
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
KR101817855B1 (en) Photocatalyst for water treatment containing graphene oxide supported with Ag doped zinc oxide, preparation method thereof and using thereof
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2005206412A (en) Titanium dioxide particulate and titanium dioxide porous material
JP3043321B1 (en) Method for producing titanium oxide fine particles
KR20220095952A (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
CN110639611B (en) Polyethylene glycol thermal reduction grafting modified graphene photocatalyst and preparation and application thereof
JP3933640B2 (en) photocatalyst
JP3799822B2 (en) Manufacturing method of complex oxide thin film
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP2003340288A (en) Visible light responsive photocatalyst and manufacturing method therefor
JP4496427B2 (en) Method for producing titanium oxide for visible light responsive photocatalyst