JP2002159865A - Titanium oxide photocatalyst for basic gas removal - Google Patents

Titanium oxide photocatalyst for basic gas removal

Info

Publication number
JP2002159865A
JP2002159865A JP2000359859A JP2000359859A JP2002159865A JP 2002159865 A JP2002159865 A JP 2002159865A JP 2000359859 A JP2000359859 A JP 2000359859A JP 2000359859 A JP2000359859 A JP 2000359859A JP 2002159865 A JP2002159865 A JP 2002159865A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
basic gas
gas
silica hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000359859A
Other languages
Japanese (ja)
Other versions
JP4296529B2 (en
Inventor
Seiji Watari
誠司 渡
Kazuhisa Osada
和久 長田
Kenichi Konodera
健一 此寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2000359859A priority Critical patent/JP4296529B2/en
Publication of JP2002159865A publication Critical patent/JP2002159865A/en
Application granted granted Critical
Publication of JP4296529B2 publication Critical patent/JP4296529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the capability of a titanium oxide photocatalyst for removing a basic gas. SOLUTION: This photocatalyst comprises titanium oxide particles having a photocatalytic activity as cores and silica hydrate covering the cores. The amount of the silica hydrate is adjusted so that a selectively adsorbed basic gas is efficiently supplied to the active sites of the cores to enhance the basic gas removal capability of the photocatalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は一般的には酸化チタン光触媒の分
野に属し、詳しくはアンモニアガス、アミン系ガスなど
の塩基性ガスの選択的除去を目的とする酸化チタン光触
媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally belongs to the field of titanium oxide photocatalyst, and more particularly to a titanium oxide photocatalyst for selectively removing basic gases such as ammonia gas and amine-based gas.

【0002】[0002]

【従来技術と課題】酸化チタンが水と酸素の存在下紫外
線による光励起によって光触媒反応を行うことは周知で
ある。この反応に基いて悪臭物質の除去、大気中の汚染
物質の除去、殺菌などを目的とする利用分野の開拓が急
速に進んでいる。酸化チタン光触媒は粉体であるから、
これを上記目的に使用するためには何らかのバインダー
を使用して固定化する必要がある。この場合有機バイン
ダーを使用すると、酸化チタンの強い光触媒活性によっ
てバインダー自体が分解されるので、光触媒粒子がバイ
ンダーと直接接触しないように光触媒を不活性物質で被
覆することが知られている。
It is well known that titanium oxide undergoes a photocatalytic reaction by photoexcitation with ultraviolet light in the presence of water and oxygen. Based on this reaction, the development of application fields for the purpose of removing malodorous substances, removing pollutants in the air, and sterilizing is rapidly progressing. Since the titanium oxide photocatalyst is a powder,
In order to use this for the above purpose, it is necessary to immobilize it using some kind of binder. In this case, when an organic binder is used, it is known that the photocatalyst is coated with an inert substance so that the photocatalyst particles do not come into direct contact with the binder because the strong photocatalytic activity of titanium oxide decomposes the binder itself.

【0003】例えば、特開平9−31335号公報で
は、酸化チタン光触媒とゼオライトなどの無機脱臭吸着
剤の混合物をシリカゾル、アルミナゾルなどで処理し、
多孔質無機物でコーティングしたものを有機樹脂にブレ
ンドし、脱臭機能を有する樹脂組成物を得ている。
For example, in JP-A-9-31335, a mixture of a titanium oxide photocatalyst and an inorganic deodorizing adsorbent such as zeolite is treated with silica sol, alumina sol, or the like.
A resin composition having a deodorizing function is obtained by blending an organic resin coated with a porous inorganic material.

【0004】特開平11−226422号公報は、粒径
が10〜50nmの一次粒子が集合して凝集粒子を形成
した二酸化チタンをコアとし、これをシリカを主成分と
するマトリックス中にマイクロカプセル化した光触媒粉
体を開示している。このマイクロカプセル化粉体を有機
樹脂に分散して塗料化した時、塗膜の紫外線照射による
劣化は殆ど認められないと記載している。
[0004] Japanese Patent Application Laid-Open No. 11-226422 discloses that a core is composed of titanium dioxide in which primary particles having a particle size of 10 to 50 nm are aggregated to form aggregated particles, and this is microencapsulated in a matrix containing silica as a main component. The disclosed photocatalyst powder is disclosed. It is described that when the microencapsulated powder is dispersed in an organic resin to form a coating, deterioration of the coating film due to ultraviolet irradiation is hardly observed.

【0005】これら先行技術に代表されるように、酸化
チタン光触媒の被覆は光触媒の固定化に使用される有機
バインダー樹脂の分解(チョーキング)を抑制すること
を目的としている。このことは酸化チタン光触媒の本来
の光触媒活性を部分的に犠牲にすることを意味し、その
程度が大きければ大きい程バインダー劣化の程度は小さ
くなるが、反対に光触媒活性は低下する。従って十分な
酸素と水の供給が存在しても、これら被覆酸化チタン光
触媒はブラックライト(紫外線ランプ)などの強紫外線
下でなければ満足な光触媒活性を発揮しなかった。また
被覆層のシリカ等は有害物質の除去に積極的に貢献しな
い。
[0005] As represented by these prior arts, the purpose of coating a titanium oxide photocatalyst is to suppress decomposition (chalking) of an organic binder resin used for immobilizing the photocatalyst. This means that the original photocatalytic activity of the titanium oxide photocatalyst is partially sacrificed. The larger the degree, the smaller the degree of binder deterioration, but the lower the photocatalytic activity. Therefore, even if a sufficient supply of oxygen and water is present, these coated titanium oxide photocatalysts did not exhibit satisfactory photocatalytic activity under strong ultraviolet light such as black light (ultraviolet lamp). Further, silica or the like in the coating layer does not actively contribute to removal of harmful substances.

【0006】本発明の開示 これと対照的に、本発明の酸化チタン光触媒は蛍光灯な
どの弱紫外線下でも塩基性ガスを分解除去する能力があ
り、被覆層のシリカ水和物は塩基性ガスを選択的に吸着
し、酸化チタンの活性サイト近傍へ供給することによっ
て積極的にその除去に関与する。
[0006] disclosure by contrast the present invention, the titanium oxide photocatalyst of the present invention have the ability to decompose and remove the basic gas even under weak ultraviolet light, such as fluorescent lamps, hydrated silica cover layer basic gas Is selectively adsorbed and supplied to the vicinity of the active site of titanium oxide to actively participate in its removal.

【0007】本発明の塩基性ガス除去用酸化チタン光触
媒は、光触媒活性を有する酸化チタン粒子をコアとし、
これにSiO2 およびTiO2 に換算したSiO2 /T
iO 2 の重量比が0.01〜0.5となるようにシリカ
水和物を被覆したものである。
[0007] The titanium oxide phosphor of the present invention for removing basic gas
The medium has a core of titanium oxide particles having photocatalytic activity,
This is SiOTwoAnd TiOTwoSiO converted toTwo/ T
iO TwoSilica so that the weight ratio becomes 0.01 to 0.5
It is coated with hydrate.

【0008】シリカ水和物は弱酸の性質を示すため、ア
ンモニアなどの塩基性ガスを選択的に吸着する能力が高
い。しかしながら未被覆の酸化チタン光触媒の塩基性ガ
ス吸着能力は被覆光触媒に比較して遙かに低い。そして
紫外線照射のもとで両者の塩基性ガス減少速度定数を比
較すると、前者は後者に比較して数倍大きい。このこと
から本発明の被覆酸化チタン光触媒の高い塩基性ガス除
去能力には被覆層のシリカ水和物の塩基性ガス吸着能力
が関係していることは明らかである。しかしながら塩基
性ガスの吸着能力はシリカ水和物の被覆量を大きくする
ことによって高めることが可能であるが、例えばSiO
2 /TiO2 重量比を0.6とした場合は紫外線照射下
の減少速度定数は却って低下し、未被覆のものと殆ど同
程度になることがわかった。このことは被覆層のシリカ
水和物による塩基性ガスの吸着は、単にその量のみでな
く、光触媒の活性サイト近傍に吸着されることが重要で
あることを示唆している。
Since silica hydrate exhibits a weak acid property, it has a high ability to selectively adsorb a basic gas such as ammonia. However, the basic gas adsorption capacity of the uncoated titanium oxide photocatalyst is much lower than that of the coated photocatalyst. When comparing the basic gas reduction rate constants under ultraviolet irradiation, the former is several times larger than the latter. From this, it is clear that the high basic gas removing ability of the coated titanium oxide photocatalyst of the present invention is related to the basic gas adsorption ability of silica hydrate of the coating layer. However, the ability to adsorb basic gases can be increased by increasing the coverage of silica hydrate.
When the 2 / TiO 2 weight ratio was set to 0.6, it was found that the decreasing rate constant under irradiation with ultraviolet rays was rather reduced, and was almost the same as that of the uncoated one. This suggests that the adsorption of the basic gas by the silica hydrate of the coating layer is important not only in its amount but also in the vicinity of the active site of the photocatalyst.

【0009】[0009]

【詳論】光触媒活性を有する酸化チタンは、二酸化チタ
ン、含水酸化チタン、メタチタン酸、オルソチタン酸、
低次酸化チタンなどから選ばれる。結晶形は無定形、ア
ナータス形、ルチル形、ブルカイト形のいずれでもよい
が、光触媒活性が高いアナタース形が好ましい。粒子径
は1〜300nm,特に5〜100nmの範囲が好まし
い。さらに酸化チタン自身の光触媒活性を向上させるた
め、V,Fe,Co,Ni,Cu,Zn,Ru,Rh,
Pt,Pd,Ag等の金属または金属化合物を担持もし
くはドープした酸化チタンを使用してもよい。
[Detailed description] Titanium oxide having photocatalytic activity includes titanium dioxide, hydrous titanium oxide, metatitanic acid, orthotitanic acid,
It is selected from low titanium oxide and the like. The crystal form may be any of an amorphous form, an anatus form, a rutile form, and a brookite form, but an anatase form having high photocatalytic activity is preferable. The particle diameter is preferably in the range of 1 to 300 nm, particularly preferably 5 to 100 nm. In order to further improve the photocatalytic activity of titanium oxide itself, V, Fe, Co, Ni, Cu, Zn, Ru, Rh,
Titanium oxide carrying or doping a metal or metal compound such as Pt, Pd, Ag or the like may be used.

【0010】シリカ水和物による被覆は湿式法によって
行われる。これは四塩化チタンまたは硫酸チタニルの熱
加水分解によって得られるメタチタン酸の水性スラリー
か、既製の未被覆酸化チタンの水性スラリーから出発す
る。このスラリーへ水溶性ケイ素化合物を添加し、酸ま
たは塩基によってシリカ水和物が析出するpHへ調節
し、析出したシリカ水和物をもって酸化チタン粒子の被
覆を行う。水溶性ケイ素化合物としては、ケイ酸ナトリ
ウム、ケイ酸カリウム、四塩化ケイ素がある。メタケイ
酸ナトリウム、オルトケイ酸ナトリウム、二ケイ酸ナト
リウム、四ケイ酸ナトリウム、それらの混合物などのケ
イ酸ナトリウムが入手し易く、取扱いが便利である。酸
または塩基としては、硫酸、塩酸、硝酸、水酸化ナトリ
ウム、アンモニア水など使用する。酸または塩基で中和
後のスラリーのpHはシリカ水和物が析出する範囲であ
ればよく、一般にpH2〜9.5の範囲にあり、pH4
がベストである。
The coating with silica hydrate is performed by a wet method. It starts with an aqueous slurry of metatitanic acid obtained by the thermal hydrolysis of titanium tetrachloride or titanyl sulphate or an aqueous slurry of ready-made uncoated titanium oxide. A water-soluble silicon compound is added to the slurry, the pH is adjusted to a value at which silica hydrate is precipitated with an acid or a base, and the precipitated silica hydrate is used to coat the titanium oxide particles. Examples of the water-soluble silicon compound include sodium silicate, potassium silicate, and silicon tetrachloride. Sodium silicate such as sodium metasilicate, sodium orthosilicate, sodium disilicate, sodium tetrasilicate, and mixtures thereof are easily available and convenient to handle. As the acid or base, sulfuric acid, hydrochloric acid, nitric acid, sodium hydroxide, aqueous ammonia or the like is used. The pH of the slurry after neutralization with an acid or a base may be within a range where silica hydrate is precipitated, and is generally in a range of pH 2 to 9.5,
Is the best.

【0011】スラリーへ添加する水溶性ケイ素化合物の
量、従ってシリカ水和物の被覆量はSiO2 およびTi
2 に換算したSiO2 /TiO2 の重量比が0.01
〜0.5、好ましくは0.1〜0.2になるような量で
ある。先に述べたように、被覆した酸化チタン光触媒の
塩基性ガス吸着能力はこの被覆量に比例して増大する
が、その大部分が光触媒の活性サイト近傍に吸着され効
率よく分解されるためには被覆量が過度に多くてはなら
ない。例えばSiO2 /TiO2 重量比0.6に被覆し
た光触媒の塩基性ガス減少速度定数は、ブラックライト
照射時においてさえもSiO2 /TiO2 重量比0.1
の光触媒の蛍光灯照射時のそれに及ばない。これに対
し、塗料のバインダー樹脂の劣化を抑制するようにシリ
カを被覆するためには、SiO2 /TiO2 重量比は
1.0以上でなければならないのと対照的である。
The amount of the water-soluble silicon compound to be added to the slurry, and therefore the coating amount of the silica hydrate, depends on the amount of SiO 2 and Ti
The weight ratio of SiO 2 / TiO 2 converted to O 2 is 0.01
To 0.5, preferably 0.1 to 0.2. As described above, the basic gas adsorption capacity of the coated titanium oxide photocatalyst increases in proportion to the amount of the coating, but in order for most of it to be adsorbed near the active site of the photocatalyst and decomposed efficiently, The coverage should not be too high. For example SiO 2 / TiO 2 weight ratio 0.6 basic gas reduction rate constant of the photocatalyst was coated, even during the black light irradiation SiO 2 / TiO 2 weight ratio of 0.1
Of the photocatalyst at the time of irradiation with a fluorescent lamp. In contrast, in order to coat the silica so as to suppress the deterioration of the binder resin of the paint, the weight ratio of SiO 2 / TiO 2 must be 1.0 or more.

【0012】シリカ水和物で被覆した後、スラリーを濾
過、水洗し、得られたケーキを乾燥し、その後サンプル
ミル、スチーム気流エネルギーミル等の粉砕機を使用し
て粉砕し、本発明のシリカ水和物被覆酸化チタン光触媒
が得られる。好ましい実施態様によれば、スラリーのp
Hを4.0に調節した後濾過前にスラリーを少なくとも
30分間熟成する。このようにして得られる被覆光触媒
は、被覆前の酸化チタンよりも大きい比表面積、例えば
100m2 /g以上の比表面積を持っている。この事実
からも被覆層のシリカ水和物が吸着した塩基性ガスを光
触媒の活性サイトへ効率的に供給することによって塩基
性ガスの除去に関与していることの説明がつく。
After coating with silica hydrate, the slurry is filtered and washed with water, and the obtained cake is dried, and then pulverized using a pulverizer such as a sample mill or a steam-flow energy mill to obtain the silica of the present invention. A hydrate-coated titanium oxide photocatalyst is obtained. According to a preferred embodiment, the slurry p
After adjusting the H to 4.0, the slurry is aged for at least 30 minutes before filtration. The coated photocatalyst thus obtained has a specific surface area larger than that of titanium oxide before coating, for example, 100 m 2 / g or more. This fact also explains that the silica hydrate of the coating layer contributes to the removal of the basic gas by efficiently supplying the adsorbed basic gas to the active site of the photocatalyst.

【0013】本発明の塩基性ガス除去用光触媒は、紫外
線、水および酸素が供給され続ける限り生活環境におい
て発生する不快臭のもとである塩基性ガス、例えばアン
モニア、アミンなどを除去する能力を有する。特にその
能力は蛍光灯などの弱紫外線下でも十分に発揮し得るの
で、例えば壁紙、カーテン、障子紙などに担持もしくは
すき込んで、塩基性ガスの脱臭に役立たせることができ
る。勿論ブラックライトなどの強紫外線下においてはよ
り強力に除去効果を発揮するので、ブラックライトが搭
載された空気清浄機のフィルター等に担持させ、塩基性
ガスの除去に役立たせることができる。ただしガスの吸
着が妨げられないように担持方法を工夫することが必要
であろう。
The basic gas removing photocatalyst of the present invention has an ability to remove basic gases, such as ammonia and amines, which are sources of unpleasant odors generated in a living environment as long as ultraviolet rays, water and oxygen are continuously supplied. Have. In particular, the ability can be sufficiently exerted even under weak ultraviolet light such as a fluorescent lamp, so that it can be carried or immersed in, for example, wallpaper, curtain, shoji paper, etc., and can be used for deodorizing basic gas. Of course, under strong ultraviolet light such as black light, the effect is more strongly exerted, so that it can be carried on a filter or the like of an air purifier equipped with black light to help remove basic gas. However, it will be necessary to devise a supporting method so that gas adsorption is not hindered.

【0014】[0014]

【実施例】以下の実施例および比較例によって本発明を
具体的に説明する。これらは例証目的であって限定と解
すべきではない。
The present invention will be specifically described with reference to the following examples and comparative examples. These are for illustrative purposes and should not be construed as limiting.

【0015】実施例1 硫酸チタニル水溶液を熱加水分解して結晶粒子径6nm
のメタチタン酸スラリーを作成した。このメタチタン酸
スラリー(TiO2 換算で100g/l)5,000m
lを40℃に昇温し、SiO2 として200g/lのケ
イ酸ナトリウム水溶液250ml(SiO2 /TiO2
重量比=0.1)を一定速度で10分を要して添加し
た。添加後水酸化ナトリウムでpH4.0に調節し、4
0℃を維持しながら30分攪拌した。その後スラリーを
濾過、水洗し、得られたケーキを110℃で12時間乾
燥し、サンプルミルを用いて粉砕した。得られた粉体の
一般特性をまとめて表1に示す。
Example 1 An aqueous solution of titanyl sulfate was thermally hydrolyzed to give a crystal particle diameter of 6 nm.
Was prepared. This metatitanic acid slurry (100 g / l in terms of TiO 2 ) 5,000 m
The temperature was raised to 40 ° C. l, sodium silicate as SiO 2 200 g / l aqueous solution of 250ml (SiO 2 / TiO 2
(Weight ratio = 0.1) was added at a constant rate over 10 minutes. After the addition, the pH is adjusted to 4.0 with sodium hydroxide, and 4
The mixture was stirred for 30 minutes while maintaining 0 ° C. Thereafter, the slurry was filtered and washed with water, and the obtained cake was dried at 110 ° C. for 12 hours and pulverized using a sample mill. Table 1 summarizes the general characteristics of the obtained powder.

【0016】実施例2 実施例1において、SiO2 として200g/l濃度の
ケイ酸ナトリウム溶液の添加量を25ml(SiO2
TiO2 重量比=0.01)に変更し、それ以外は実施
例1と同じ処理を行った。得られた粉体の一般特性をま
とめて表1に示す。
Example 2 In Example 1, the addition amount of a sodium silicate solution having a concentration of 200 g / l as SiO 2 was 25 ml (SiO 2 /
TiO 2 weight ratio = 0.01), and otherwise the same processing as in Example 1 was performed. Table 1 summarizes the general characteristics of the obtained powder.

【0017】実施例3 実施例1において、結晶粒子径30nmのメタケイ酸ス
ラリーに変更し、それ以外は実施例1と同じ処理を行っ
た。得られた粉体の一般特性をまとめて表1に示す。
Example 3 In Example 1, the same treatment as in Example 1 was performed except that the slurry was changed to a metasilicate slurry having a crystal particle diameter of 30 nm. Table 1 summarizes the general characteristics of the obtained powder.

【0018】比較例1 実施例1において、ケイ酸ナトリウム水溶液を添加しな
かったことを除き、実施例1と同じ処理を行った。得ら
れた粉体の一般特性をまとめて表1に示す。
Comparative Example 1 The same treatment as in Example 1 was performed, except that the aqueous solution of sodium silicate was not added. Table 1 summarizes the general characteristics of the obtained powder.

【0019】比較例2 実施例1において、SiO2 として200g/l濃度の
ケイ酸ナトリウム溶液の添加量を750ml(SiO2
/TiO2 重量比=0.6)に増量したことを除き、実
施例1と同じ処理を行った。得られた粉体の一般特性を
まとめて表1に示す。
[0019] In Comparative Example 2 Example 1, the amount of sodium silicate solution 200 g / l concentration as SiO 2 750 ml (SiO 2
/ TiO 2 weight ratio = 0.6), except that the same treatment as in Example 1 was performed. Table 1 summarizes the general characteristics of the obtained powder.

【0020】比較例3 日本アエロジル社製二酸化チタンP−25(平均粒径1
2nm)をそのまま用いた。
Comparative Example 3 Titanium dioxide P-25 manufactured by Nippon Aerosil Co., Ltd.
2 nm) was used as is.

【0021】[0021]

【表1】 [Table 1]

【0022】粉体の悪臭ガス除去性能評価 実施例および比較例の粉体について塩基ガスとしてアン
モニアの除去性能と、参考のため酸性ガスであるメチル
メルカプタンの除去性能を以下の方法により評価した。
Evaluation of Performance of Removing Odor Gas from Powder The powders of Examples and Comparative Examples were evaluated for the performance of removing ammonia as a base gas and the performance of removing methyl mercaptan as an acid gas for reference.

【0023】1. 3L容積におい袋にあらかじめ空気
希釈した対象ガスを注入し、ガス検知管によってガス濃
度を確認する。 2. 注入したガスが逃げないよう注意しながら、にお
い袋内の試料台に粉体を均一に広げる。 3. 温度30℃、相対湿度50%の環境でにおい袋を
暗所に放置する。 4. におい袋内のガス濃度が吸着平衡に達したことを
確認し、吸着後ガス濃度Aを記録する。 5. におい袋をブラックライト(40W)または蛍光
灯(40W)の直下に置き、紫外線強度(TOPCON
UVR−2,受光部UD−25,UD−36により測
定)がブラックライトの場合は1.0mW/cm2 、蛍
光灯の場合は0.03mW/cm2 になるように調整す
る。 6. 光照射を開始し、1時間後、2時間後および3時
間後の各残留ガス濃度Bをガス検知管により測定する。 7. 吸着後光照射前のガス濃度A(ppm)と、光照
射後の残留ガス濃度B(ppm)から、各照射時間にお
ける1n(A/B)を計算し、これを横軸が時間の座標
にプロットし、原点を通過する一次の近似直線で結び、
この直線の傾きをもって減少速度定数とする。この定数
が高い程光触媒反応によるガスの減少速度が大きい。
1. The target gas diluted with air in advance is injected into a 3 L capacity bag, and the gas concentration is confirmed by a gas detection tube. 2. Spread the powder evenly on the sample table in the smell bag, taking care not to let the injected gas escape. 3. The odor bag is left in a dark place at a temperature of 30 ° C. and a relative humidity of 50%. 4. Confirm that the gas concentration in the odor bag has reached the adsorption equilibrium, and record the gas concentration A after adsorption. 5. Place the odor bag directly under the black light (40W) or fluorescent light (40W) and use the UV intensity (TOPCON
UVR-2, measured by the light receiving unit UD-25, UD-36) is the case of the black light 1.0 mW / cm 2, in the case of fluorescent lamp adjusted to be 0.03 mW / cm 2. 6. The light irradiation is started, and the residual gas concentrations B at 1 hour, 2 hours and 3 hours are measured by a gas detector tube. 7. From the gas concentration A (ppm) before the light irradiation after adsorption and the residual gas concentration B (ppm) after the light irradiation, 1n (A / B) at each irradiation time is calculated, and the horizontal axis is represented by the time coordinate. Plot, connect with a first-order approximation straight line passing through the origin,
The slope of this straight line is defined as a decreasing rate constant. The higher the constant, the greater the rate of gas reduction by the photocatalytic reaction.

【0024】表2に上の試験法における対象ガス毎の試
験条件を示し、表3にその結果を示す。
Table 2 shows test conditions for each target gas in the above test method, and Table 3 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】考察 減少速度定数は光触媒活性によるガスの減少速度を示す
もので数値が高い方が高い光触媒活性を有している。粉
体での光触媒評価において塩基性ガスであるアンモニア
ガスの減少速度定数を比較した場合、ブラックライトの
強紫外線下、蛍光灯の弱紫外線下の両条件で実施例の1
〜3は比較例1〜3より高い値を示している。また、比
較例1〜3ではブラックライトの強紫外線下で発現する
除去効果が、実施例1〜3の蛍光灯の弱紫外線下で得ら
れた。
[0027] Discussion reduction rate constant towards numbers in shows the decreasing rate of the gas by the photocatalytic activity is high has a high photocatalytic activity. When comparing the reduction rate constants of ammonia gas, which is a basic gas, in the evaluation of the photocatalyst with powder, the results of Example 1 were obtained under both the conditions of strong ultraviolet light of black light and weak ultraviolet light of fluorescent light.
To 3 show higher values than Comparative Examples 1 to 3. Further, in Comparative Examples 1 to 3, the removal effect developed under strong ultraviolet light of black light was obtained under weak ultraviolet light of the fluorescent lamps of Examples 1 to 3.

【0028】更にアンモニアガス吸着後濃度の結果より
実施例1〜3は比較例1〜3より非常に高いアンモニア
ガス吸着能を有していることが確認できた。
Further, from the results of the concentration after adsorption of ammonia gas, it was confirmed that Examples 1 to 3 have much higher ammonia gas adsorption ability than Comparative Examples 1 to 3.

【0029】しかし酸性ガスであるメチルメルカプタン
ガスで評価した場合は、ブラックライトの強紫外線下、
蛍光灯の弱紫外線下の両条件で、比較例3のP−25よ
りは良好なものの実施例1〜3と比較例1は大差がなか
った。
However, when evaluated with methyl mercaptan gas, which is an acid gas, under strong ultraviolet light of black light,
Under both conditions under the weak ultraviolet light of a fluorescent lamp, although better than P-25 of Comparative Example 3, there was no great difference between Examples 1 to 3 and Comparative Example 1.

【0030】このことから本発明の酸化チタンは塩基性
ガス、特にアンモニアガスに対して非常に高い光触媒活
性及び吸着能を発現することが確認できた。
From these results, it was confirmed that the titanium oxide of the present invention exhibited extremely high photocatalytic activity and adsorption ability with respect to basic gases, particularly ammonia gas.

【0031】実施例4 実施例1で得た光触媒粉体を以下の方法で紙にすき込
み、酸化チタン配合紙を作成した。
Example 4 The photocatalyst powder obtained in Example 1 was rubbed into paper by the following method to prepare a paper containing titanium oxide.

【0032】1. 300mlのビーカーにパルプ18
gと水80mlを加えて3分間攪拌し、パルプスラリー
とした。 2. Cartarentin F(カチオン性定着
剤)1%希釈液7.2gを添加し、2分間攪拌した。 3. 実施例1の光触媒粉体5%スラリー18gを添加
して1分間攪拌した。 4. EPINOX WS−500(紙力向上剤)1%
希釈溶液7.2gを添加して1分間攪拌した。 5. 硫酸バンド2%スラリー1.8gを添加し、1分
間攪拌した。 6. 懸濁液を水で1500mlに希釈し、シートマシ
ンを使用して抄紙し、乾燥機で1時間乾燥した。
1. Pulp 18 in 300ml beaker
g and 80 ml of water were added and stirred for 3 minutes to obtain a pulp slurry. 2. 7.2 g of a 1% diluted solution of Carterentin F (cationic fixing agent) was added, followed by stirring for 2 minutes. 3. 18 g of a 5% slurry of the photocatalyst powder of Example 1 was added and stirred for 1 minute. 4. EPINOX WS-500 (paper strength improver) 1%
7.2 g of the diluted solution was added and stirred for 1 minute. 5. 1.8 g of a 2% sulfuric acid band slurry was added and stirred for 1 minute. 6. The suspension was diluted to 1500 ml with water, paper-made using a sheet machine, and dried in a dryer for 1 hour.

【0033】比較例4 実施例4において、実施例1の粉体に代えて比較例1の
粉体を用いたことを除き、実施例4と同様にして酸化チ
タン配合紙を作成した。
Comparative Example 4 A titanium oxide-containing paper was prepared in the same manner as in Example 4, except that the powder of Comparative Example 1 was used instead of the powder of Example 1.

【0034】比較例5 実施例4において、実施例1の粉体に代えて比較例3の
粉体(P−25)を用いたことを除き、実施例4と同様
にして酸化チタン配合紙を作成した。
Comparative Example 5 A titanium oxide-containing paper was prepared in the same manner as in Example 4 except that the powder (P-25) of Comparative Example 3 was used instead of the powder of Example 1. Created.

【0035】酸化チタン配合紙の悪臭ガス除去性能評価 先に粉体について行った試験法に準じて酸化チタン配合
紙の悪臭ガス除去性能を評価した。但しこの場合は、サ
ンプルは5×10cm大にカットし、におい袋に直接入
れ、アンモニアおよびメチルメルカプタンガスの初期注
入量をいずれも30ppmとし、ガス検知管はアンモニ
アガスについてはNo.3Lを、メチルメルカプタンガ
スについてNo.71(いずれも(株)GASTEC社
製)を使用した。結果を表4に示す。
Evaluation of the Odor Gas Removal Performance of the Titanium Oxide-Containing Paper The odor gas removal performance of the titanium oxide-containing paper was evaluated according to the test method previously performed on the powder. However, in this case, the sample was cut into a size of 5 × 10 cm, placed directly in an odor bag, and the initial injection amounts of ammonia and methyl mercaptan gas were both set to 30 ppm. No. 3L was prepared as No. 3 for methyl mercaptan gas. 71 (both manufactured by GASTEC) were used. Table 4 shows the results.

【0036】[0036]

【表4】 [Table 4]

【0037】考察 酸化チタン配合紙についても、表3に示した粉体につい
ての試験結果と同様な結果が得られた。
Discussion The same results as the test results for the powders shown in Table 3 were obtained for the paper containing titanium oxide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 此寺 健一 大阪府大阪市大正区船町1丁目3番47号 テイカ株式会社内 Fターム(参考) 4C080 AA07 BB02 CC08 CC09 HH05 JJ04 KK08 LL03 MM02 NN06 QQ20 4D048 AA17 BA06X BA06Y BA07X BA07Y BA41X BA41Y BB17 BC07 EA01 EA04 4G069 AA02 AA03 AA08 BA02A BA02B BA04A BA04B BA48A CA11 EC03X EC03Y EE01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Konoji 1-3-47, Funamachi, Taisho-ku, Osaka City, Osaka Prefecture F-term (reference) 4C080 AA07 BB02 CC08 CC09 HH05 JJ04 KK08 LL03 MM02 NN06 QQ20 4D048 AA17 BA06X BA06Y BA07X BA07Y BA41X BA41Y BB17 BC07 EA01 EA04 4G069 AA02 AA03 AA08 BA02A BA02B BA04A BA04B BA48A CA11 EC03X EC03Y EE01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光触媒活性を有する酸化チタン粒子よりな
るコアと、該コアを取り巻くシリカ水和物の被覆層を有
し、該被覆層は塩基性ガスを選択的に吸着し、これを酸
化チタンコアの活性サイトへ効率的に供給することによ
って光触媒全体の塩基性ガス除去能力を高めるように機
能することを特徴とする塩基性ガス除去用酸化チタン光
触媒。
1. A core comprising titanium oxide particles having photocatalytic activity, and a coating layer of silica hydrate surrounding the core. The coating layer selectively adsorbs a basic gas to form a titanium oxide core. A titanium oxide photocatalyst for removing basic gas, characterized in that it functions to enhance the basic gas removing ability of the entire photocatalyst by efficiently supplying the active site to an active site.
【請求項2】光触媒活性を有する酸化チタン粒子をコア
とし、これにSiO2 およびTiO 2 に換算したSiO
2 /TiO2 の重量比が0.01〜0.5となるように
シリカ水和物を被覆してなる塩基性ガス除去用酸化チタ
ン光触媒。
2. Core comprising titanium oxide particles having photocatalytic activity
And this is replaced by SiOTwoAnd TiO TwoSiO converted to
Two/ TiOTwoSo that the weight ratio becomes 0.01 to 0.5
Silica hydrate coated titanium oxide for removal of basic gas
Photocatalyst.
【請求項3】比表面積が100m2 /g以上である請求
項1または2の塩基性ガス除去用酸化チタン光触媒。
3. The titanium oxide photocatalyst according to claim 1, wherein the specific surface area is at least 100 m 2 / g.
【請求項4】シリカ水和物の被覆は、酸化チタン粒子の
水性スラリーへ溶解したケイ素化合物の酸または塩基に
よるシリカ水和物への分解によって行われる請求項1ま
たは2の塩基性ガス除去用酸化チタン光触媒。
4. The method for removing a basic gas according to claim 1, wherein the coating of the silica hydrate is carried out by decomposing a silicon compound dissolved in an aqueous slurry of titanium oxide particles into a silica hydrate with an acid or a base. Titanium oxide photocatalyst.
【請求項5】請求項1または2の光触媒を酸素と水の存
在下塩基性ガスと接触させ、TiO 2 のバンドギャップ
より大きいエネルギーを有する光で照射することを特徴
とする塩基性ガスの除去方法。
5. The photocatalyst according to claim 1, wherein said photocatalyst is in the presence of oxygen and water.
Contact with basic gas in the presence TwoBand gap
Characterized by irradiating with light having higher energy
Basic gas removal method.
【請求項6】請求項1または2の光触媒を担持した基材
よりなる塩基性ガス除去用光触媒反応エレメント。
6. A photocatalytic reaction element for removing a basic gas, comprising a substrate carrying the photocatalyst according to claim 1.
JP2000359859A 2000-11-27 2000-11-27 Titanium oxide photocatalyst for basic gas removal Expired - Lifetime JP4296529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359859A JP4296529B2 (en) 2000-11-27 2000-11-27 Titanium oxide photocatalyst for basic gas removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359859A JP4296529B2 (en) 2000-11-27 2000-11-27 Titanium oxide photocatalyst for basic gas removal

Publications (2)

Publication Number Publication Date
JP2002159865A true JP2002159865A (en) 2002-06-04
JP4296529B2 JP4296529B2 (en) 2009-07-15

Family

ID=18831560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359859A Expired - Lifetime JP4296529B2 (en) 2000-11-27 2000-11-27 Titanium oxide photocatalyst for basic gas removal

Country Status (1)

Country Link
JP (1) JP4296529B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088022A1 (en) * 2005-02-15 2006-08-24 Mitsui Chemicals, Inc. Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
WO2007039985A1 (en) * 2005-09-30 2007-04-12 Mitsui Chemicals, Inc. Inorganic sintered material containing photocatalyst covered with silicon oxide film
WO2007039984A1 (en) * 2005-09-30 2007-04-12 Mitsui Chemicals, Inc. Photocatalyst-containing organic material
JP2007224600A (en) * 2006-02-23 2007-09-06 Nippon Soda Co Ltd Humidity-conditioning building material
JP2008036589A (en) * 2006-08-09 2008-02-21 Nippon Soda Co Ltd Photocatalyst liquid composition
JP2008126100A (en) * 2006-11-16 2008-06-05 Seishichi Kishi Photocatalytic substance and its manufacturing method
WO2011108684A1 (en) * 2010-03-04 2011-09-09 住友化学株式会社 Method for manufacturing supported ruthenium oxide and method for manufacturing chlorine
JP5633371B2 (en) * 2008-07-07 2014-12-03 旭硝子株式会社 Method for producing core-shell particles
WO2015186725A1 (en) * 2014-06-04 2015-12-10 株式会社 東芝 Carbon dioxide recovery device, and method for treating exhaust gas
KR20180008690A (en) * 2015-05-15 2018-01-24 훈츠만 피앤에이 저머니 게엠베하 Powdered titanium oxide, its production method and use

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199524A (en) * 1992-06-03 1994-07-19 Ishihara Sangyo Kaisha Ltd Titanium oxide powder and production thereof
JPH08266898A (en) * 1995-03-30 1996-10-15 Mitsubishi Materials Corp Titanium oxide-based oxidation catalyst and its production
JPH0931335A (en) * 1995-07-20 1997-02-04 Goyo Paper Working Co Ltd Resin composition with deodorizing function
JPH09225321A (en) * 1995-04-14 1997-09-02 Sekisui Chem Co Ltd Photocatalyst
JPH105598A (en) * 1996-06-27 1998-01-13 Ishihara Sangyo Kaisha Ltd Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH10180115A (en) * 1996-12-24 1998-07-07 Nitto Denko Corp Photocatalyst particle body and production thereof
JPH10230169A (en) * 1996-09-13 1998-09-02 Furukawa Co Ltd Photocatalyst powder, production of titanium dioxide fine particles, coating and building material
JPH10230133A (en) * 1997-02-21 1998-09-02 Shimizu Corp Outgas-generation inhibitor including photocatalyst and method for inhibiting outgas generation
JPH11226422A (en) * 1998-02-16 1999-08-24 Titan Kogyo Kk Powdery photocatalyst body, composition for photocatalyst, photocatalyst body and its use
JPH11285635A (en) * 1997-12-26 1999-10-19 Nihon Yamamura Glass Co Ltd Photochemical reactor element containing microencapsulated titanium dioxide photocatalyst
JP2000144015A (en) * 1998-11-18 2000-05-26 Sumitomo Osaka Cement Co Ltd Photocatalytic coating material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199524A (en) * 1992-06-03 1994-07-19 Ishihara Sangyo Kaisha Ltd Titanium oxide powder and production thereof
JPH08266898A (en) * 1995-03-30 1996-10-15 Mitsubishi Materials Corp Titanium oxide-based oxidation catalyst and its production
JPH09225321A (en) * 1995-04-14 1997-09-02 Sekisui Chem Co Ltd Photocatalyst
JPH0931335A (en) * 1995-07-20 1997-02-04 Goyo Paper Working Co Ltd Resin composition with deodorizing function
JPH105598A (en) * 1996-06-27 1998-01-13 Ishihara Sangyo Kaisha Ltd Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH10230169A (en) * 1996-09-13 1998-09-02 Furukawa Co Ltd Photocatalyst powder, production of titanium dioxide fine particles, coating and building material
JPH10180115A (en) * 1996-12-24 1998-07-07 Nitto Denko Corp Photocatalyst particle body and production thereof
JPH10230133A (en) * 1997-02-21 1998-09-02 Shimizu Corp Outgas-generation inhibitor including photocatalyst and method for inhibiting outgas generation
JPH11285635A (en) * 1997-12-26 1999-10-19 Nihon Yamamura Glass Co Ltd Photochemical reactor element containing microencapsulated titanium dioxide photocatalyst
JPH11226422A (en) * 1998-02-16 1999-08-24 Titan Kogyo Kk Powdery photocatalyst body, composition for photocatalyst, photocatalyst body and its use
JP2000144015A (en) * 1998-11-18 2000-05-26 Sumitomo Osaka Cement Co Ltd Photocatalytic coating material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088022A1 (en) * 2005-02-15 2006-08-24 Mitsui Chemicals, Inc. Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
JPWO2006088022A1 (en) * 2005-02-15 2008-07-03 三井化学株式会社 Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
US7863215B2 (en) 2005-02-15 2011-01-04 Mitsui Chemicals, Inc. Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
JP4686536B2 (en) * 2005-02-15 2011-05-25 三井化学株式会社 Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
WO2007039985A1 (en) * 2005-09-30 2007-04-12 Mitsui Chemicals, Inc. Inorganic sintered material containing photocatalyst covered with silicon oxide film
WO2007039984A1 (en) * 2005-09-30 2007-04-12 Mitsui Chemicals, Inc. Photocatalyst-containing organic material
JP2007224600A (en) * 2006-02-23 2007-09-06 Nippon Soda Co Ltd Humidity-conditioning building material
JP2008036589A (en) * 2006-08-09 2008-02-21 Nippon Soda Co Ltd Photocatalyst liquid composition
JP2008126100A (en) * 2006-11-16 2008-06-05 Seishichi Kishi Photocatalytic substance and its manufacturing method
JP5633371B2 (en) * 2008-07-07 2014-12-03 旭硝子株式会社 Method for producing core-shell particles
JP2011183238A (en) * 2010-03-04 2011-09-22 Sumitomo Chemical Co Ltd Method of producing carried ruthenium oxide and method of producing chlorine
WO2011108684A1 (en) * 2010-03-04 2011-09-09 住友化学株式会社 Method for manufacturing supported ruthenium oxide and method for manufacturing chlorine
WO2015186725A1 (en) * 2014-06-04 2015-12-10 株式会社 東芝 Carbon dioxide recovery device, and method for treating exhaust gas
GB2541339A (en) * 2014-06-04 2017-02-15 Toshiba Kk Carbon dioxide recovery device, and method for treating exhaust gas
CN106457139A (en) * 2014-06-04 2017-02-22 株式会社东芝 Carbon dioxide recovery device, and method for treating exhaust gas
JPWO2015186725A1 (en) * 2014-06-04 2017-04-20 株式会社東芝 Carbon dioxide recovery device and exhaust gas treatment method
AU2015269515B2 (en) * 2014-06-04 2018-05-10 Kabushiki Kaisha Toshiba Carbon dioxide recovery device, and method for treating exhaust gas
CN106457139B (en) * 2014-06-04 2019-11-05 株式会社东芝 Carbon dioxide recovering apparatus and the processing method of exhaust
GB2541339B (en) * 2014-06-04 2021-03-31 Toshiba Kk Carbon dioxide recovery apparatus and method for treating exhaust gas
KR20180008690A (en) * 2015-05-15 2018-01-24 훈츠만 피앤에이 저머니 게엠베하 Powdered titanium oxide, its production method and use
JP2018520870A (en) * 2015-05-15 2018-08-02 ハンツマン ピィアンドエー ジャーマニー ゲーエムベーハー Powdered titanium oxide, method for producing and using the same
KR102557332B1 (en) * 2015-05-15 2023-07-18 베나토 저머니 게엠베하 Powdered titanium oxide, manufacturing method and use thereof

Also Published As

Publication number Publication date
JP4296529B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4256070B2 (en) Photocatalyst composition
JP5845385B2 (en) Air purifier
JP5809417B2 (en) Adsorbent capable of regenerating light and its use
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP4296529B2 (en) Titanium oxide photocatalyst for basic gas removal
JP4112661B2 (en) Photocatalyst and its use
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP5610329B2 (en) Titanium oxide volatile organic compound decomposition material coated with silicate
WO2012036231A1 (en) Glass with photocatalytic function
JP3276297B2 (en) Photocatalyst
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
RU2482912C1 (en) Method of producing filtering-sorbing material with photo catalytic properties
JP2001170497A (en) Catalyst for cleaning air
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP4577682B2 (en) Photocatalyst carrying platinum compound and method for producing the same
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
CN106512593A (en) Photocatalyst high-efficiency filter
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film
JP3521748B2 (en) Air purification filter and air purifier
JP4580197B2 (en) Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
JP2003013390A (en) Sheet for removing harmful material
JP4190762B2 (en) Method for producing gas processing material having excellent CO removal capability
JP3456587B2 (en) Deodorizing material
JPH11253755A (en) Environment purifying agent, environment purification material and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4296529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term