JPH09225321A - Photocatalyst - Google Patents

Photocatalyst

Info

Publication number
JPH09225321A
JPH09225321A JP8088376A JP8837696A JPH09225321A JP H09225321 A JPH09225321 A JP H09225321A JP 8088376 A JP8088376 A JP 8088376A JP 8837696 A JP8837696 A JP 8837696A JP H09225321 A JPH09225321 A JP H09225321A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
porous
resin
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8088376A
Other languages
Japanese (ja)
Inventor
Takashi Osugi
高志 大杉
Atsushi Doi
淳 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8088376A priority Critical patent/JPH09225321A/en
Publication of JPH09225321A publication Critical patent/JPH09225321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To obtain a photocatalyst which can utilize the good catalytic capacity of anatase-type titanium oxide without deteriorating a base material constituent when mixed into the constituent by coating the anatase-type titanium oxide with a porous substance. SOLUTION: In this photocatalyst which is used for the decomposition and removal of environmental pollutants in water and air, deodorization, sterilization, etc., anatase-type titanium oxide is coated with a porous substance, the direct contact between a photo-semiconducting substance and a base material constituent is prevented by the coating layer, and simultaneously a state in which the photo-semiconducting substance is not cut off from light is materialized. As a form to coat the titanium oxide with the porous substance, for example, a porous microcapsule containing titanium oxide etc., are named. Preferably, a conductive substance which is brought into contact with the anatase-type titanium oxide is made to exist, and a polyolefin, polyurethane, etc., are made to be a matrix component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒体に関す
る。
[0001] The present invention relates to a photocatalyst.

【0002】[0002]

【従来の技術】近年、光半導性物質の光による触媒作用
は、水の光分解等の化学反応の触媒としてのみならず、
水中や空気中の環境汚染物質の分解除去、脱臭、殺菌作
用等多くの分野で注目を集めている。特に殺菌作用につ
いては、主に酸化チタンの光触媒作用を利用した新しい
抗菌手法が提案されている(特開平5−154473号
公報)。従来の抗菌剤による抗菌方法が、抗菌性能の耐
久性、抗菌剤の添加による基材の耐候性の低下、薬剤の
流出による安全性の問題等の多くの課題があるのに対し
て、この手法は薬剤を使用せず触媒作用によって殺菌を
行う方法であるため、安全性や耐久性の点で注目されて
いる。
2. Description of the Related Art In recent years, the photocatalytic action of light from semiconducting materials is not limited to catalysis of chemical reactions such as photolysis of water.
It has attracted attention in many fields such as decomposition and removal of environmental pollutants in water and air, deodorization, and bactericidal action. In particular, regarding the bactericidal action, a new antibacterial method mainly utilizing the photocatalytic action of titanium oxide has been proposed (JP-A-5-154473). While the conventional antibacterial method using antibacterial agents has many problems such as durability of antibacterial performance, deterioration of weather resistance of base material due to addition of antibacterial agents, and safety problems due to outflow of chemicals, this method Is a method of performing sterilization by a catalytic action without using a chemical, and therefore has been attracting attention in terms of safety and durability.

【0003】一方、一般に光半導性物質は微粉末である
ため、環境汚染物質の分解除去、脱臭、殺菌等の分野へ
応用しようとする場合には、当該粉末の固定化が必要で
ある。そこで、光半導性物質を各種基材に担持させて利
用する試みがなされている。光半導性物質を有機ポリマ
ー等の基材構成成分中に分散させて用いる方法が最も簡
便であるが、長期の間に基材構成成分が劣化するという
問題がある。また、アナターゼ型結晶構造の酸化チタン
は光触媒性能が高活性であるものとして知られている
が、光触媒性能の活性が高いことから、材料の劣化も大
きいことが予想される。
On the other hand, since the photo-semiconductor is generally a fine powder, it is necessary to immobilize the powder when it is applied to the fields such as decomposition and removal of environmental pollutants, deodorization and sterilization. Therefore, attempts have been made to use the photo-semiconductor by supporting it on various base materials. The simplest method is to use a light semiconducting substance by dispersing it in a base material constituent such as an organic polymer, but there is a problem that the base material constituent deteriorates over a long period of time. Further, titanium oxide having an anatase type crystal structure is known to have a high photocatalytic performance, but it is expected that the material is largely deteriorated because of its high photocatalytic performance.

【0004】上記劣化は、光触媒作用により発生するラ
ジカルが原因と考えられ、フッ素樹脂を用いた場合は劣
化を避けられるとの開示がある(特開平4−28485
1号公報)が、材料選択の幅を広げるべく、他の有機材
料等を用いる場合の改善が望まれている。
The above-mentioned deterioration is considered to be caused by radicals generated by a photocatalytic action, and there is a disclosure that when a fluororesin is used, the deterioration can be avoided (JP-A-4-28485).
However, in order to widen the range of material selection, improvement in the case of using other organic materials and the like is desired.

【0005】また、酸化チタン等の光触媒作用を有する
粉体を顔料として使用する場合、上記のような材料の劣
化現象を防止するために粉体表面をシリカやアルミナ等
の無機化合物で被覆する手法が用いられている。この方
法で光半導性物質の表面を完全に被覆すれば劣化を防止
することができるが、光半導性物質が光から遮断される
ため、光による触媒作用を得ることも出来ない。
When a powder having a photocatalytic action such as titanium oxide is used as a pigment, a method of coating the surface of the powder with an inorganic compound such as silica or alumina in order to prevent the above-mentioned deterioration phenomenon of the material. Is used. If the surface of the photo-semiconductor is completely covered by this method, the deterioration can be prevented, but since the photo-semiconductor is shielded from the light, the photocatalytic action cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題に
鑑み、基材構成成分に混合した際に、該基材構成成分を
劣化させることなく、アナターゼ型結晶構造の酸化チタ
ンの優れた触媒性能を利用可能な光触媒体を提供するこ
とにある。
In view of the above problems, the present invention provides an excellent catalyst of titanium oxide having anatase type crystal structure without deteriorating the constituent components of the base material when mixed with the constituent components of the base material. The object is to provide a photocatalyst capable of utilizing the performance.

【0007】[0007]

【課題を解決するための手段】本発明の光触媒体は、多
孔性物質でアナターゼ型結晶構造の酸化チタンを被覆し
てなることを特徴とする。上記多孔性物質の被覆層によ
って、光半導性物質と基材構成成分が直接接触すること
を防止すると同時に、光半導性物質が光から遮断されな
い状態を実現するものである。
The photocatalyst body of the present invention is characterized in that it comprises a porous material coated with titanium oxide having an anatase type crystal structure. The coating layer of the porous substance prevents direct contact between the light semiconducting substance and the constituent components of the substrate, and at the same time realizes a state in which the light semiconducting substance is not shielded from light.

【0008】<アナターゼ型結晶構造の酸化チタン>本
発明においては、アナターゼ型結晶構造の酸化チタンを
使用する。酸化チタンには、アナターゼ型、ルチル型、
ブルカイト型の3種の結晶構造があり、さらに非晶質で
あるものも知られているが、アナターゼ型結晶構造の酸
化チタンは光触媒活性が最も高く、特に抗菌、窒素酸化
物の除去を目的として使用する際に優れた効果を発揮す
る。
<Titanium oxide having anatase type crystal structure> In the present invention, titanium oxide having anatase type crystal structure is used. Titanium oxide includes anatase type, rutile type,
It is known that there are three types of brookite-type crystal structures and those that are amorphous, but titanium oxide with anatase-type crystal structure has the highest photocatalytic activity, especially for the purpose of antibacterial and removal of nitrogen oxides. Excellent effect when used.

【0009】なお、本発明で用いるアナターゼ型結晶構
造の酸化チタンとは、厳密にアナターゼ型結晶構造のみ
から構成されるものでなくともよい。主としてアナター
ゼ型結晶構造より構成される酸化チタンであれば、本発
明の目的を達成するに充分な高い触媒活性を示す。以
下、単に「酸化チタン」というときは、アナターゼ結晶
構造型の酸化チタンをいう。
The anatase-type crystal structure titanium oxide used in the present invention does not have to be strictly composed of only anatase-type crystal structure. Titanium oxide mainly composed of anatase type crystal structure exhibits high catalytic activity sufficient to achieve the object of the present invention. Hereinafter, when simply referred to as “titanium oxide”, it means titanium oxide of anatase crystal structure type.

【0010】<導電性物質>上記酸化チタンは、導電性
物質と共に使用されることによってその触媒効果が向上
する。使用される導電性物質としては、一般に導電性を
付与するために用いられるカーボン粉末(繊維)、金属
粉末(繊維)でよい。例として、カーボンブラックや
銀、銅、金、鉄、アルミニウム、ニッケル、白金、パラ
ジウム、酸化錫、酸化インジウム等が挙げられる。ま
た、非導電体を核材として表面に導電体をコーティング
したものでもよい。例として、銀メッキ微粒子、アルミ
ニウムコーティング微粒子、酸化錫で表面がコートされ
た硫酸バリウム微粒子等が挙げられる。
<Conductive Material> The titanium oxide improves the catalytic effect when used together with a conductive material. The conductive substance used may be carbon powder (fiber) or metal powder (fiber) generally used for imparting conductivity. Examples include carbon black, silver, copper, gold, iron, aluminum, nickel, platinum, palladium, tin oxide, indium oxide and the like. Alternatively, the surface may be coated with a non-conductive material as a core material. Examples thereof include silver-plated fine particles, aluminum-coated fine particles, and barium sulfate fine particles whose surface is coated with tin oxide.

【0011】上記導電性物質のうち、実用的な面から
は、入手が容易で比較的安価な酸化錫微粒子や酸化錫で
表面がコートされた硫酸バリウム微粒子等が好ましい。
酸化アンチモンを0.1〜20重量%添加した酸化錫
は、高い導電性を示すため好適に用いられる。
Among the above conductive materials, tin oxide fine particles and barium sulfate fine particles whose surface is coated with tin oxide are preferable from the viewpoint of practical use, because they are easily available and are relatively inexpensive.
Tin oxide to which 0.1 to 20% by weight of antimony oxide is added exhibits high conductivity and is preferably used.

【0012】上記導電性物質は、酸化チタンと接触する
状態となるように用いる。このためには、酸化チタンの
構造の一部に含有させたり、酸化チタンの表面に物理的
又は化学的な作用で担持させたりする方法が可能である
が、単に酸化チタンと導電性物質の混合粉末を用いるだ
けで充分な効果が得られる。
The above conductive material is used so as to be in contact with titanium oxide. For this purpose, it is possible to include it in a part of the structure of titanium oxide or to carry it on the surface of titanium oxide by a physical or chemical action, but it is simply a mixture of titanium oxide and a conductive substance. Sufficient effect can be obtained only by using powder.

【0013】上記導電性物質の酸化チタンに対する添加
量は、酸化チタン100重量部に対して0.01〜10
0重量部であることが好ましい。これより少ないと導電
性物質添加の効果が認めにくい。これより多くしても更
に効果を大きくするものではないが、酸化チタンの担体
の役割を兼ねる場合等は添加量が大きくなっても構わな
い。特に導電性物質と酸化チタンを接触させるための方
法によらず、単に混合して用いる場合は、酸化チタン1
00重量部に対して1〜100重量部であることが好ま
しい。
The amount of the conductive material added to titanium oxide is 0.01 to 10 parts by weight based on 100 parts by weight of titanium oxide.
It is preferably 0 part by weight. If the amount is less than this, the effect of adding the conductive substance is difficult to recognize. If the amount is larger than this, the effect is not further enhanced, but in the case of also serving as a carrier of titanium oxide, the added amount may be large. In particular, when the mixture is simply used without using the method for contacting the conductive substance and titanium oxide, titanium oxide 1
It is preferably 1 to 100 parts by weight with respect to 00 parts by weight.

【0014】<多孔性物質>上記酸化チタンを被覆する
多孔性物質としては、酸化チタンと直接接触しても容易
に劣化しない材料を選択する。この条件を満たす材料と
して、シリカ、アルミナ等の無機物、テフロン樹脂、シ
リコン樹脂等が挙げられる。上記材料を多孔質にする方
法としては、有機物を混入した無機材料を用いて酸化チ
タンの被覆を行った後に、有機物のみを焼成又は溶剤で
溶解する方法、水溶性又は油溶性の塩等を混入してお
き、後にこれを溶解させる方法等が挙げられる。
<Porous substance> As the porous substance for covering the titanium oxide, a material which does not easily deteriorate even when it is brought into direct contact with titanium oxide is selected. Materials that satisfy this condition include inorganic materials such as silica and alumina, Teflon resin, and silicon resin. As a method for making the above material porous, a method of firing titanium oxide after coating titanium oxide using an inorganic material mixed with an organic material, or dissolving the organic material only with a solvent, a water-soluble or oil-soluble salt, etc. is mixed. Then, a method of dissolving this later may be mentioned.

【0015】<被覆の形態>上記多孔性物質で酸化チタ
ンを被覆する形態としては、例えば、酸化チタンを内包
する多孔質マイクロカプセル(図1)、多孔性物質から
なる層の間に酸化チタンを挟み込んだ所謂サンドイッチ
構造物(図2)等が挙げられる。
<Form of coating> As a form of coating titanium oxide with the above-mentioned porous material, for example, porous microcapsules encapsulating titanium oxide (FIG. 1), titanium oxide between layers of porous material A so-called sandwich structure (Fig. 2) sandwiched between them can be mentioned.

【0016】本発明においては、多孔性物質が酸化チタ
ンの全面を被覆している必要はない。図3、図4は光を
受ける面(図の上方)のみを多孔性物質で被覆し、反対
面は多孔性にしていない例である。ただし、上記多孔性
にしていない面も、シリカ、アルミナ、テフロン樹脂、
シリコン樹脂等の劣化が問題とならない材料を用いてい
る。
In the present invention, it is not necessary for the porous material to cover the entire surface of titanium oxide. 3 and 4 are examples in which only the light receiving surface (upper part of the drawing) is coated with a porous material and the opposite surface is not made porous. However, the surface not made porous is silica, alumina, Teflon resin,
A material such as silicon resin that does not cause deterioration is used.

【0017】<マイクロカプセル状光触媒体>利用の便
宜を考慮すると、酸化チタンを内包した多孔質マイクロ
カプセルの形態が最も有利であると思われる。
<Microcapsule Photocatalyst> Considering the convenience of use, the form of porous microcapsules encapsulating titanium oxide seems to be most advantageous.

【0018】上記多孔質マイクロカプセルは、公知のマ
イクロカプセル形成方法によって製造することが出来
る。特公昭54−6251号公報に示されるような方法
により、粉体の粒径や多孔性等を制御することも可能で
ある。本発明の酸化チタンを内包する多孔質マイクロカ
プセルの多孔性は特に限定されないが、酸化チタンを完
全に被覆してしまうと、触媒作用が低下する。
The above-mentioned porous microcapsules can be manufactured by a known microcapsule forming method. It is also possible to control the particle size and porosity of the powder by the method described in Japanese Patent Publication No. 54-6251. The porosity of the porous microcapsules encapsulating titanium oxide of the present invention is not particularly limited, but if titanium oxide is completely covered, the catalytic action will decrease.

【0019】内包化マイクロカプセルの製造方法の一例
として、水中油滴型(O/W型)又は油中水滴型(W/
O型)エマルションを調製する方法が挙げられる。さら
に、ることが出来る。さらに、酸化チタンを完全に内包
するための方法として、いわゆる(O/W)/O型又は
(W/O)/W型等の多相エマルションを調製する方法
を挙げることが出来る。この場合、公知のマイクロカプ
セル形成方法と、多相エマルションの調製法を組み合わ
せて行えばよい。特に、有機樹脂等の劣化を防ぐ目的に
鑑みれば、可能な限り酸化チタンが多孔性被覆層の表面
に存在しないように、完全に内包化されていることが好
ましい。
As an example of the method for producing the encapsulated microcapsules, an oil-in-water type (O / W type) or a water-in-oil type (W /
The method of preparing an (O type) emulsion is mentioned. In addition, you can. Further, as a method for completely encapsulating titanium oxide, there can be mentioned a method for preparing a so-called (O / W) / O type or (W / O) / W type multiphase emulsion. In this case, a known microcapsule forming method and a known method for preparing a multiphase emulsion may be combined. In particular, in view of the purpose of preventing the deterioration of the organic resin and the like, it is preferable that titanium oxide is completely encapsulated so that titanium oxide is not present on the surface of the porous coating layer as much as possible.

【0020】上記酸化チタンを内包するマイクロカプセ
ルの壁を構成する材料としては、効果又は乾燥後に上記
多孔性物質として例示した材料となり、かつ、乳濁液の
調製に用いる溶媒中に溶解又は分散可能なものを選択す
る。より具体的には、水ガラス、塩化アルミニウムを用
いて乳濁液の調製を行い、硬化後、シリカ、アルミナの
壁を有するマイクロカプセルを得ることが出来る。
The material forming the wall of the microcapsules encapsulating titanium oxide is the material exemplified as the above-mentioned porous substance after the effect or drying, and can be dissolved or dispersed in the solvent used for preparing the emulsion. Choose the right one. More specifically, an emulsion is prepared using water glass and aluminum chloride, and after curing, microcapsules having silica and alumina walls can be obtained.

【0021】該マイクロカプセルに内包する酸化チタン
の量は、多すぎれば内包しきれずマイクロカプセル外に
浮遊し、少なすぎれば触媒作用による効果が発現されな
い。適量は壁材構成成分100重量部に対して5〜10
0重量部である。
If the amount of titanium oxide contained in the microcapsules is too large, the titanium oxide cannot be completely encapsulated and floats outside the microcapsules. If the amount is too small, the catalytic effect is not exhibited. An appropriate amount is 5-10 with respect to 100 parts by weight of the wall material constituents.
0 parts by weight.

【0022】なお、マイクロカプセルの形態とする場合
以外の、多孔性物質と酸化チタンの割合に関しても、同
様に、被覆可能な量および触媒効果に必要な量を考慮し
て決定する。
The ratio of the porous material to titanium oxide other than the case of the microcapsule form is also determined in consideration of the coatable amount and the amount required for the catalytic effect.

【0023】<光触媒体の利用方法>本発明の光触媒体
を利用する方法としては、マイクロカプセル状光触媒体
を触媒性能を付与したい目的物を構成する材料に直接添
加して成形する方法、塗料組成物に添加して目的物に塗
布する方法、フィルム又はシート状の光触媒体(図2〜
4等)を目的物表面に積層する方法等が挙げられる。適
当な使用量は、利用の形態によって異なるが、例えば合
成樹脂をバインダーとする目的物に添加する場合は、樹
脂組成物の加工性、成形性、成形体又は塗膜の強度、透
明性等を考慮して決定する。
<Method of Utilizing Photocatalyst> As a method of utilizing the photocatalyst of the present invention, a microcapsule-like photocatalyst is directly added to a material constituting a target product to which catalytic performance is desired to be molded, and a coating composition. A method of adding to a product and applying it to a target, a photocatalyst in the form of a film or a sheet (Fig.
4 etc.) on the surface of the object. The appropriate amount of use varies depending on the form of use, but when, for example, a synthetic resin is added to the target product as a binder, the processability of the resin composition, moldability, strength of the molded body or coating film, transparency, etc. Decide in consideration.

【0024】汎用の合成樹脂に上記多孔質マイクロカプ
セル状光触媒体を添加して成形体や塗料として利用する
場合、酸化チタンの添加量が少なすぎると光触媒作用が
充分でないため、マイクロカプセル状光触媒体の酸化チ
タンの含有量を考慮し、成形体や塗料の主成分である合
成樹脂100重量部に対して酸化チタンの量が5重量部
以上となるように添加することが好ましい。一方、多孔
質マイクロカプセルの添加量が多すぎると、当該マイク
ロカプセルの粒径によっても異なるが、成形体や塗装面
の表面状態が悪くなったり強度が低下するため、合成樹
脂100重量部に対してマイクロカプセルが1000重
量部以下となるように添加することが好ましい。
When the above-mentioned porous microcapsule-shaped photocatalyst is added to a general-purpose synthetic resin to be used as a molded body or a paint, if the addition amount of titanium oxide is too small, the photocatalytic action is insufficient. Considering the content of titanium oxide, it is preferable to add the titanium oxide in an amount of 5 parts by weight or more with respect to 100 parts by weight of the synthetic resin which is the main component of the molded product or the paint. On the other hand, if the amount of the porous microcapsules added is too large, the surface condition of the molded body or the coated surface will deteriorate and the strength will decrease, although it depends on the particle size of the microcapsules. It is preferable that the microcapsules be added in an amount of 1000 parts by weight or less.

【0025】さらに、合成樹脂中に練り混み又はドライ
ブレンドを行って成形体を得る場合は、成形体の強度や
作業性の点から、合成樹脂100重量部に対するマイク
ロカプセルの添加量が、100重量部を超えないことが
好ましい。
Further, when a molded product is obtained by kneading or dry blending in a synthetic resin, the addition amount of the microcapsules to 100 parts by weight of the synthetic resin is 100 parts by weight from the viewpoint of strength of the molded product and workability. It is preferable not to exceed a part.

【0026】本発明の光触媒体を用いれば、酸化チタン
と基材構成成分の接触に起因する劣化を避け、当該劣化
による制限を受けずに基材構成成分を選択できるため、
各種利用形態において有利である。汎用されている樹脂
に酸化チタンを添加して成形体、塗料等として利用する
場合、従来技術では上記劣化は避けられず、実用化の大
きな障害となっていたものである。光触媒性能が高いも
のほど上記劣化が問題となるため、本発明の基材構成成
分に制約を受けないという利点は、工業上極めて大きな
意義を有する。
By using the photocatalyst of the present invention, it is possible to avoid deterioration due to contact between titanium oxide and the base component and to select the base component without being limited by the deterioration.
It is advantageous in various usage forms. When titanium oxide is added to a general-purpose resin and used as a molded product, a paint, or the like, the above-mentioned deterioration cannot be avoided by the conventional techniques, which is a major obstacle to practical use. The higher the photocatalytic performance, the more the deterioration becomes a problem. Therefore, the advantage of not being restricted by the constituent components of the base material of the present invention has an extremely great industrial significance.

【0027】上記のように、本発明の光触媒体は有機物
樹脂と組み合わせて使用する際に大きな優位性を有す
る。汎用されている合成樹脂のほとんどが、本発明の光
触媒体によらなければ劣化が問題となり、酸化チタンを
担持させることの出来ない材質である。このような材質
の具体例としては、ポリエチレン樹脂、ポリプロピレン
樹脂等のポリオレフィン樹脂;ポリウレタン樹脂;アル
キド樹脂、不飽和ポリエステル等のポリエステル樹脂;
ポリ(メタ)アクリル樹脂;ポリアミド樹脂;ポリスチ
レン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、
ポリビニルアルコール樹脂等のビニル化合物(共)重合
体;フェノール樹脂、アミノ樹脂等のホルムアルデヒド
樹脂(ホルムアルデヒドで架橋するタイプの樹脂を言
う。);アリル樹脂;エポキシ樹脂等が挙げられる。
As described above, the photocatalyst of the present invention has a great advantage when used in combination with an organic resin. Most of the commonly used synthetic resins are materials that cannot support titanium oxide, because deterioration is a problem unless the photocatalyst body of the present invention is used. Specific examples of such materials include polyolefin resins such as polyethylene resin and polypropylene resin; polyurethane resin; polyester resins such as alkyd resin and unsaturated polyester;
Poly (meth) acrylic resin; polyamide resin; polystyrene resin, polyvinyl chloride resin, polyvinyl acetate resin,
Examples thereof include vinyl compound (co) polymers such as polyvinyl alcohol resin; formaldehyde resins such as phenol resins and amino resins (referred to as a formaldehyde-crosslinking type resin); allyl resins; epoxy resins.

【0028】<光触媒体の利用分野>酸化チタンは、空
気中に存在する水と反応し、過酸化水素、ヒドロキシラ
ジカル等の活性酸素を生成すると推測されており、この
活性酸素の酸化還元作用を利用して建物の内外装におけ
る抗菌防カビ処理、院内感染防止等の殺菌処理、窒素酸
化物、硫黄酸化物、トリハロメタン等の環境汚染物質の
分解除去処理、アンモニア、アルデヒド、各種有機酸等
の悪臭原因物質の分解除去処理、外装材に自己清浄作用
を付与する防汚処理、触媒作用を利用した廃液処理等を
行うことが出来る。
<Field of Use of Photocatalyst> Titanium oxide is presumed to react with water present in the air to produce active oxygen such as hydrogen peroxide and hydroxy radicals. By using it, antibacterial and antifungal treatments on the interior and exterior of buildings, sterilization treatments such as nosocomial infection prevention, decomposition and removal treatment of environmental pollutants such as nitrogen oxides, sulfur oxides and trihalomethanes, odors such as ammonia, aldehydes and various organic acids It is possible to perform decomposition and removal treatment of the causative substance, antifouling treatment for imparting a self-cleaning action to the exterior material, waste liquid treatment utilizing a catalytic action, and the like.

【0029】本発明の光触媒体は、上記処理のなかで
も、特に抗菌防カビ処理、および、環境汚染物質、悪臭
原因物質等の気体成分の除去処理に適している。抗菌防
カビ処理においては、薬剤等の溶出を伴う従来技術と異
なり、持続性および安全性に優れる。気体成分の除去処
理においては、酸化チタンの触媒作用に加えて、多孔性
物質が被処理気体の吸着効果を高める。本発明の酸化チ
タンによる気体処理は、光触媒作用を利用しているた
め、単に多孔性物質の吸着のみを利用している従来技術
と比較し、気体吸着効果が大きいのみならず、その持続
性が極めて良好である。さらに、酸化チタンが剥き出し
で存在する状態と比較し、触媒表面の非毒による活性低
下を抑制することが出来る。
Among the above-mentioned treatments, the photocatalyst of the present invention is particularly suitable for antibacterial and antifungal treatment, and treatment for removing gaseous components such as environmental pollutants and malodorous substances. In the antibacterial and antifungal treatment, unlike the conventional techniques involving the elution of chemicals and the like, the durability and safety are excellent. In the gas component removal treatment, in addition to the catalytic action of titanium oxide, the porous substance enhances the adsorption effect of the gas to be treated. Since the gas treatment with titanium oxide of the present invention utilizes a photocatalytic action, the gas adsorption effect is large as compared with the prior art which only utilizes the adsorption of the porous material, and its sustainability is long. Very good. Furthermore, as compared with the state in which titanium oxide is exposed, it is possible to suppress the activity decrease due to non-poisoning of the catalyst surface.

【0030】本発明の光触媒体は、アナターゼ型結晶構
造の酸化チタンを多孔性物質で被覆してなるため、当該
多孔性物質からなる被覆層の外に露出している酸化チタ
ンの量が内包量に比較して非常に少ないか全くない状態
にあるため、光触媒体に光が照射されて発生するヒドロ
キシラジカル等の短寿命成分の大部分は、当該被覆層を
通過する間に消失し、光触媒体外に漏出せず、過酸化水
素等の長寿命成分が光触媒体外へ透過して作用するもの
と推測される。
Since the photocatalyst of the present invention is formed by coating titanium oxide having an anatase type crystal structure with a porous substance, the amount of titanium oxide exposed outside the coating layer made of the porous substance is the amount of inclusion. Since most of short-lived components such as hydroxy radicals generated when the photocatalyst is irradiated with light disappears while passing through the coating layer, the photocatalyst is out of the photocatalyst since It is presumed that long-lived components such as hydrogen peroxide permeate outside the photocatalyst and act without leaking to the photocatalyst.

【0031】[0031]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0032】実施例1 酸化チタン(和光純薬社製、アナターゼ型、1次粒径
0.3μm)4gをケイ酸ナトリウム水溶液(二酸化ケ
イ素にして4mol/l)50mlに添加し、10分間
攪拌し均一な懸濁液を調製した。上記懸濁液をソルビタ
ンモノオレートのベンゼン溶液(1重量%)150ml
中に添加し、振とう機で5分間振とうし、W/O型の乳
濁液を調製した。次に上記乳濁液油を硫酸アンモニウム
水溶液(1mol/l)500ml中に攪拌しながら添
加し、30分間反応させた。反応終了後、濾過、水洗、
乾燥(110℃、24時間)の各操作を行い、酸化チタ
ンを内包し、多孔性シリカからなる壁を有する平均粒径
7μmのマイクロカプセル状光触媒体を得た。
Example 1 4 g of titanium oxide (manufactured by Wako Pure Chemical Industries, anatase type, primary particle size 0.3 μm) was added to 50 ml of an aqueous sodium silicate solution (4 mol / l of silicon dioxide) and stirred for 10 minutes. A homogeneous suspension was prepared. 150 ml of the above suspension containing sorbitan monooleate in benzene (1% by weight)
The resulting mixture was shaken with a shaker for 5 minutes to prepare a W / O type emulsion. Next, the above emulsion oil was added to 500 ml of an ammonium sulfate aqueous solution (1 mol / l) with stirring and reacted for 30 minutes. After completion of the reaction, filtration, washing with water,
Each operation of drying (110 ° C., 24 hours) was performed to obtain a microcapsule-shaped photocatalyst body containing titanium oxide and having a wall made of porous silica and having an average particle diameter of 7 μm.

【0033】実施例2 実施例1で使用した酸化チタン4gの代わりに、酸化チ
タン(和光純薬社製、アナターゼ型、1次粒径0.3μ
m)9重量部と酸化アンチモン含有酸化錫(三菱マテリ
アル社製「T−1」、粒径0.02μm)1重量部を混
合した粉末(以下、「酸化チタン/酸化錫混合粉末」
という。)4gを使用したこと以外は、実施例1と同様
にして、酸化チタンを内包し、多孔性シリカからなる壁
を有する平均粒径5μmのマイクロカプセル状光触媒体
を得た。
Example 2 Instead of 4 g of titanium oxide used in Example 1, titanium oxide (manufactured by Wako Pure Chemical Industries, anatase type, primary particle size 0.3 μm) was used.
m) 9 parts by weight and 1 part by weight of antimony oxide-containing tin oxide (“T-1” manufactured by Mitsubishi Materials, particle size 0.02 μm) were mixed (hereinafter, “titanium oxide / tin oxide mixed powder”).
That. ) In the same manner as in Example 1 except that 4 g was used, a microcapsule-shaped photocatalyst body containing titanium oxide and having a wall made of porous silica and having an average particle size of 5 μm was obtained.

【0034】実施例3 酸化チタン(石原産業社製、アナターゼ型、1次粒径7
nm)9重量部と酸化アンチモン含有酸化錫(三菱マテ
リアル社製「T−1」、粒径0.02μm)1重量部を
混合した粉末(以下、「酸化チタン/酸化錫混合粉末
」という。)をメタノール中に懸濁してスラリー状と
し、粉体処理用シリコーンオイル(信越化学工業社製
AFP−1)を粉体に対して2重量%添加して親油性処
理を行った。これを乾燥、解砕して得た粉体6gをトル
エン10mlに懸濁し、懸濁液を得た。次に上記懸濁液
を、1重量%ポリオキシエチレンソルビタンモノオレー
ト水ガラス水溶液(二酸化ケイ素にして2mol/l)
70ml中に添加した後ホモジナイザーで1分間分散
し、O/W型の乳濁液を調製した。その後、得られた乳
濁液をソルビタンモノステアレートのトルエン溶液(2
重量%)150ml中に添加した後、振とう機で5分間
振とうし、(O/W)/O型の乳濁液を調製した。次に
上記乳濁液を塩化カルシウム水溶液(2mol/l)5
00ml中に攪拌しながら添加し、30分間反応させ
た。反応終了後、濾過、水洗、110℃で24時間乾燥
を行い、酸化チタンを内包し、多孔性シリカからなる壁
を有する平均粒径2μmのマイクロカプセル状光触媒体
を得た。
Example 3 Titanium oxide (manufactured by Ishihara Sangyo Co., anatase type, primary particle size 7
nm) 9 parts by weight and 1 part by weight of antimony oxide-containing tin oxide (“T-1” manufactured by Mitsubishi Materials Corporation, particle size 0.02 μm) (hereinafter referred to as “titanium oxide / tin oxide mixed powder”). Silicone oil for powder treatment (made by Shin-Etsu Chemical Co., Ltd.)
AFP-1) was added to the powder in an amount of 2% by weight to perform a lipophilic treatment. 6 g of powder obtained by drying and crushing this was suspended in 10 ml of toluene to obtain a suspension. Next, the above suspension was treated with a 1 wt% polyoxyethylene sorbitan monooleate water glass aqueous solution (2 mol / l as silicon dioxide).
After adding to 70 ml, the mixture was dispersed for 1 minute with a homogenizer to prepare an O / W type emulsion. Then, the obtained emulsion was added to a sorbitan monostearate solution in toluene (2
(Wt%) was added to 150 ml and shaken for 5 minutes with a shaker to prepare an (O / W) / O type emulsion. Next, the above emulsion was treated with an aqueous solution of calcium chloride (2 mol / l) 5
The mixture was added to 00 ml with stirring and reacted for 30 minutes. After completion of the reaction, filtration, washing with water, and drying at 110 ° C. for 24 hours were carried out to obtain a microcapsule-shaped photocatalyst body containing titanium oxide and having a wall made of porous silica and having an average particle diameter of 2 μm.

【0035】実施例4 テトラメトキシシラン15.2g(0.1mol)とジ
メチルホルムアミド7.3g(0.1mol)を混合し
たものに、アンモニア水溶液(2×10-3mol/l)
18gとメタノール7g(0.22mol)の混合溶液
を室温で滴下し、さらに、酸化チタン/酸化錫混合粉末
6gを加えて混合して、35℃の乾燥機中で8時間ゲ
ル化を行わせた。さらに150℃に昇温して一日間乾燥
させた後に得られたゲル体を粉砕し、多孔性シリカ中に
酸化チタンを含有する光触媒体を作成した。
Example 4 A mixture of 15.2 g (0.1 mol) of tetramethoxysilane and 7.3 g (0.1 mol) of dimethylformamide was added to an aqueous ammonia solution (2 × 10 −3 mol / l).
A mixed solution of 18 g and methanol 7 g (0.22 mol) was added dropwise at room temperature, 6 g of titanium oxide / tin oxide mixed powder was further added and mixed, and gelation was performed in a dryer at 35 ° C. for 8 hours. . After further heating to 150 ° C. and drying for one day, the gel body obtained was pulverized to prepare a photocatalyst body containing titanium oxide in porous silica.

【0036】比較例1 実施例のマイクロカプセル状光触媒体の代わりに、酸化
チタン(和光純薬社製、アナターゼ型、1次粒径0.3
μm)粉体をそのまま使用した。
Comparative Example 1 Instead of the microcapsule-shaped photocatalyst of Example 1, titanium oxide (manufactured by Wako Pure Chemical Industries, anatase type, primary particle size 0.3) was used.
μm) The powder was used as is.

【0037】比較例2 実施例のマイクロカプセル状光触媒体の代わりに、酸化
チタン(和光純薬社製、ルチル型、1次粒径0.3μ
m)粉体をそのまま使用した。
Comparative Example 2 Instead of the microcapsule-shaped photocatalyst of Example, titanium oxide (manufactured by Wako Pure Chemical Industries, rutile type, primary particle size 0.3 μm) was used.
m) The powder was used as is.

【0038】比較例3 酸化チタン/酸化錫混合粉末4gを水36g中で懸濁
させ、スラリーとした後、0.1gの塩化アルミニウム
を溶解した水溶液を加えた。この混合液を静かに攪拌し
ながら、水酸化ナトリウム水溶液をゆっくりと滴下して
中和を行い、スラリー中の混合粉末表面に水酸化アルミ
ニウムを沈積させた。その後、沈殿物を濾過し、乾燥、
粉砕を行って表面をアルミナでコートした粉体を得た。
Comparative Example 3 4 g of the titanium oxide / tin oxide mixed powder was suspended in 36 g of water to prepare a slurry, and then an aqueous solution in which 0.1 g of aluminum chloride was dissolved was added. While gently stirring this mixed solution, an aqueous solution of sodium hydroxide was slowly added dropwise for neutralization to deposit aluminum hydroxide on the surface of the mixed powder in the slurry. Then, the precipitate is filtered and dried,
The powder was pulverized to obtain a powder whose surface was coated with alumina.

【0039】比較例4 酸化チタン(アナターゼ型)の代わりに、酸化チタン
(和光純薬社製、ルチル型、1次粒径0.3μm)4g
を使用したこと以外は、実施例2と同様にして、ルチル
型酸化チタンを内包し、多孔性シリカからなる壁を有す
る平均粒径6μmのマイクロカプセル状粉体を得た。
Comparative Example 4 4 g of titanium oxide (manufactured by Wako Pure Chemical Industries, rutile type, primary particle size 0.3 μm) instead of titanium oxide (anatase type)
In the same manner as in Example 2 except that the above was used, a microcapsule-like powder having a mean particle diameter of 6 μm and having a wall made of porous silica and encapsulating rutile-type titanium oxide was obtained.

【0040】比較例5 酸化チタン(アナターゼ型)の代わりに、酸化鉄(和光
純薬社製、1次粒径0.6μm)4gを使用したこと以
外は、実施例2と同様にして、酸化鉄を内包し、多孔性
シリカからなる壁を有する平均粒径11μmのマイクロ
カプセル状粉体を得た。
Comparative Example 5 Oxidation was performed in the same manner as in Example 2 except that 4 g of iron oxide (Wako Pure Chemical Industries, Ltd., primary particle size: 0.6 μm) was used in place of titanium oxide (anatase type). Microcapsule-like powder having an average particle diameter of 11 μm, which contained iron and had a wall made of porous silica, was obtained.

【0041】<成形体>上記実施例で得た光触媒体及び
比較例で得た粉体を、不飽和ポリエステル(三井東圧化
学社製、「V−262G」)に表1に示す量で配合し、
分散機を用いて2時間分散を行った。さらにこれに、熱
重合開始剤としてメチルエチルケトンパーオキサイド5
5重量%ジメチルフタレート溶液4重量部及び硬化促進
剤としてナフテン酸コバルト(金属分6重量%)2重量
部を加えて混合した。この組成物を予め離型剤で処理し
た平板サンプル試作用のFRP製モールドに約200μ
mになるよう塗布し、一旦80℃で15分硬化した。冷
却後、得られた被膜上に上記と同様の不飽和ポリエステ
ル樹脂にMEKP55重量%ジメチルフタレート溶液を
加えて混合した樹脂液を型内に流し込み、硬化した後に
FRP型より脱型し、実施例の光触媒体又は比較例の粉
体を含有するポリエステル樹脂層を有する成形体を得
た。
<Molded Article> The photocatalysts obtained in the above Examples and the powders obtained in Comparative Examples were blended with unsaturated polyester (Mitsui Toatsu Chemical Co., Ltd., “V-262G”) in the amounts shown in Table 1. Then
Dispersion was performed for 2 hours using a disperser. In addition to this, methyl ethyl ketone peroxide 5 was added as a thermal polymerization initiator.
4 parts by weight of a 5% by weight dimethyl phthalate solution and 2 parts by weight of cobalt naphthenate (metal content: 6% by weight) as a curing accelerator were added and mixed. Approximately 200μ in a FRP mold for trial production of a flat plate sample in which this composition was previously treated with a release agent.
It was applied so as to have a thickness of m, and once cured at 80 ° C. for 15 minutes. After cooling, a resin solution prepared by adding 55% by weight MEKP dimethyl phthalate solution to an unsaturated polyester resin similar to the above on the obtained coating was mixed and poured into the mold, and after curing, the mold was released from the FRP mold. A molded product having a polyester resin layer containing the photocatalyst or the powder of the comparative example was obtained.

【0042】以下に示す方法により、上記成形体につい
て抗細菌性、抗真菌性、耐侯性の評価、実施例2及び比
較例1、3の粉体について気体分解性の評価を行った。
結果を表1に示す。
The following methods were used to evaluate the antibacterial properties, antifungal properties, and weather resistance of the above molded products, and the gas decomposability of the powders of Example 2 and Comparative Examples 1 and 3.
The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】<抗細菌性評価>滅菌シャーレ中に、実施
例及び比較例で製造した成形体を入れ、この上に試験菌
液(Heart Infusion Broth培地
(以下BHI培地、DIFCO社製、25g/l)を生
理食塩水で100倍希釈したものの中に、試験菌が1×
107 CFU/mlになるように調製したもの)を分注
して蓋をした。シャーレを密封して、蛍光灯点灯下、3
0℃で1日間培養した後、培養後の試験菌の生菌数を通
常のコロニーカウント法により測定した。
<Evaluation of antibacterial property> The molded bodies produced in Examples and Comparative Examples were placed in a sterile petri dish, and a test bacterial solution (Heart Infusion Broth medium (hereinafter referred to as BHI medium, manufactured by DIFCO, 25 g / l) was placed thereon. ) Was diluted 100 times with physiological saline, and 1 ×
10 7 CFU / ml) was dispensed and the lid was closed. Seal the petri dish and turn on the fluorescent lamp for 3
After culturing at 0 ° C. for 1 day, the viable cell count of the test bacterium after culturing was measured by an ordinary colony counting method.

【0045】<抗真菌性評価>予めポテトデキストロー
ス寒天培地(以下PDA培地、日水製薬社製)上で培養
したカビ、酵母について白金耳を用いて菌体をかきと
り、0.05%Tween80添加生理食塩水中に入
れ、分散および攪拌後、ガラスフィルターを用いて濾過
を行った。得られた濾液を10000rpm、15分間
遠心操作して、上澄み液を除去して沈殿物(胞子)を得
た。これにポテトデキストロース液体培地(以下PDB
培地、DIFCO社製)を適量加えて胞子懸濁液を調製
した。
<Evaluation of antifungal properties> Molds and yeasts previously cultivated on potato dextrose agar medium (hereinafter referred to as PDA medium, manufactured by Nissui Pharmaceutical Co., Ltd.) were scraped off with a platinum loop, and 0.05% Tween 80-added physiology was added. The mixture was placed in saline, dispersed and stirred, and then filtered using a glass filter. The obtained filtrate was centrifuged at 10,000 rpm for 15 minutes to remove the supernatant liquid to obtain a precipitate (spores). In addition to this, potato dextrose liquid medium (hereinafter PDB
A spore suspension was prepared by adding an appropriate amount of medium, manufactured by DIFCO.

【0046】PDA培地をオートクレーブ滅菌後、寒天
が固まらないように45℃にてインキュベートし、これ
に上記の胞子懸濁液をPDA培地の1/10量加えて攪
拌した。滅菌シャーレに実施例および比較例で製造した
成形体を入れ、これに上記の胞子懸濁液入PDA培地を
50μlずつ滴下し、半球状に固化させた。シャーレを
密封して、蛍光灯点灯下、30℃にて3〜5日培養した
後、目視にて菌の生育を判定した。 ○ 試験菌の生育が認められない × 試験菌の生育が認められる
After sterilizing the PDA medium by autoclave, it was incubated at 45 ° C. so that the agar did not solidify, and 1/10 volume of the above spore suspension was added to this and stirred. The molded bodies produced in Examples and Comparative Examples were placed in a sterilized petri dish, and 50 μl of the spore suspension-containing PDA medium was added dropwise to each to solidify into a hemisphere. After the petri dish was sealed and cultured at 30 ° C. for 3 to 5 days under lighting of a fluorescent lamp, the growth of the bacteria was visually determined. ○ Growth of test bacterium is not observed × Growth of test bacterium is recognized

【0047】<耐侯性評価>JIS−A1415に規定
されるサンシャインカーボンアーク灯を用いる試験装置
を用いて耐候性の促進試験を行い、200時間照射後の
プレートの色差を色彩色差計(東京電色社製、カラーア
ナライザーTC−1800MK)を使用して測定し、試
験前から変化した色差の絶対値を示した。また、試験後
のプレート表面を指で軽く擦り、チョーキングの有無を
観察した。 ○ チョーキングが認められない × チョーキングが認められる
<Evaluation of weather resistance> A weather resistance accelerated test was carried out using a test device using a sunshine carbon arc lamp specified in JIS-A1415, and the color difference of the plate after irradiation for 200 hours was measured by a color difference meter (Tokyo Denshoku Co., Ltd.). (Manufactured by Color Analyzer TC-1800MK), and the absolute value of the color difference changed from before the test is shown. Further, the surface of the plate after the test was lightly rubbed with a finger to observe the presence or absence of chalking. ○ No chalking allowed × Choking allowed

【0048】<気体分解性評価>実施例2のマイクロカ
プセル状光触媒体、比較例1、2の粉体を水に懸濁して
スラリー状にしたものを、内面を粗面化した円筒状ガラ
スカラム(内径:3cm、長さ30cm)中に塗布、乾
燥して、内面に光半導性粉体を担持したガラスカラムを
得た。このカラム管の周囲5cmのところにプラックラ
イトブルー蛍光灯(10W)4本を設置し、濃度10p
pmの試験ガスを速度50ml/minでカラム内を通
過させ、カラム通過後の試験ガスの濃度を測定した。試
験ガスとしては、二酸化窒素、悪臭成分であるアセトア
ルデヒドの2種類を用いた。
<Evaluation of Gas Decomposability> A microcapsule-shaped photocatalyst of Example 2 and powders of Comparative Examples 1 and 2 suspended in water to form a slurry were used as a cylindrical glass column having a roughened inner surface. (Inner diameter: 3 cm, length 30 cm) was applied and dried to obtain a glass column having an inner surface carrying a photo-semiconductive powder. Four plaque light blue fluorescent lamps (10 W) were installed at a distance of 5 cm around this column tube, and the concentration was 10 p
A test gas of pm was passed through the column at a speed of 50 ml / min, and the concentration of the test gas after passing through the column was measured. Two types of test gas were used: nitrogen dioxide and acetaldehyde, which is a malodorous component.

【0049】試験ガスの減少率を、以下の式によって求
めた。 試験ガスの減少率(%)=[1−(通過後の試験ガス濃
度/通過前の試験ガス濃度)]×100(%) 結果を表1に示す。この結果から、多孔性物質で被覆さ
れた光触媒体は、単に光半導性物質をそのまま用いる場
合に比較し、これらのガスの除去性能に優れていること
が確認された。
The reduction rate of the test gas was calculated by the following formula. Reduction rate (%) of test gas = [1- (test gas concentration after passage / test gas concentration before passage)] × 100 (%) The results are shown in Table 1. From this result, it was confirmed that the photocatalyst body coated with the porous material is excellent in the removal performance of these gases as compared with the case where the photosemiconductor material is used as it is.

【0050】[0050]

【発明の効果】本発明の光触媒体は、アナターゼ型結晶
構造の酸化チタンを多孔性物質で被覆してなるため、酸
化チタンが光触媒体表面に露出しない状態若しくは露出
している量が内包量に比較して非常に少ない状態にあ
り、光触媒体に光が照射されて発生するヒドロキシラジ
カル等の短寿命成分の大部分は、多孔性物質からなる被
覆層を通過する際に消失して光触媒体外に漏出せず、過
酸化水素等の長寿命成分が光触媒体外へ透過して作用す
るものと推測される。
Since the photocatalyst of the present invention comprises titanium oxide having an anatase type crystal structure coated with a porous material, the amount of titanium oxide not exposed or exposed on the surface of the photocatalyst is the inclusion amount. It is in a very small amount in comparison, and most of short-lived components such as hydroxy radicals generated by irradiation of light on the photocatalyst are lost when passing through the coating layer made of a porous substance, and are left outside the photocatalyst. It is presumed that the long-lived component such as hydrogen peroxide does not leak and permeates out of the photocatalyst to act.

【0051】よって、上記単寿命成分によって起こると
考えられる基材構成成分の劣化を防止しながら、物品に
抗菌性能を付与することが出来る。また、少量の導電性
物質を光半導性物質とともに内包することによって触媒
効果が向上する。
Therefore, it is possible to impart the antibacterial property to the article while preventing the deterioration of the constituent components of the base material which is considered to be caused by the above-mentioned single life component. In addition, the catalytic effect is improved by including a small amount of the conductive substance together with the photo-semiconductive substance.

【0052】本発明によれば、劣化が生じることによる
制限を受けずに、光触媒作用を付与する対象となる基材
を構成する成分を選択できるため、抗菌防カビ処理、殺
菌処理、環境汚染物質、悪臭原因物質の分解除去処理、
水の光分解、触媒等のいずれの分野に利用する場合も有
利である。
According to the present invention, the components constituting the base material to which the photocatalytic action is imparted can be selected without being restricted by deterioration, so that antibacterial and antifungal treatment, sterilization treatment, and environmental pollutants can be performed. , Decomposition and removal of substances that cause offensive odors,
It is advantageous when used in any field such as photolysis of water and catalyst.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月24日[Submission date] June 24, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】また、酸化チタン等の光触媒作用を有する
粉体を顔料として使用する場合、上記のような材料の劣
化現象を防止するために粉体表面をシリカやアルミナ等
の無機化合物で被覆する手法が用いられている。この方
法で光半導性物質の表面を完全に被覆すれば劣化を防止
することができるが、光による触媒作用を得ることも出
来ない。
When a powder having a photocatalytic action such as titanium oxide is used as a pigment, a method of coating the surface of the powder with an inorganic compound such as silica or alumina in order to prevent the above-mentioned deterioration phenomenon of the material. Is used. If the surface of the photoconductive material is completely covered by this method, the deterioration can be prevented, but the catalytic action by light cannot be obtained.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【課題を解決するための手段】本発明の光触媒体は、多
孔性物質でアナターゼ型結晶構造の酸化チタンを被覆し
てなることを特徴とする。上記多孔性物質の被覆層によ
って、光半導性物質と基材構成成分が直接接触すること
を防止するものである。
The photocatalyst body of the present invention is characterized in that it comprises a porous material coated with titanium oxide having an anatase type crystal structure. The coating layer of the porous material, the semi-conducting material and the substrate component is to be you prevent direct contact.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0043[Correction target item name] 0043

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0043】[0043]

【表1】 [Table 1]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の多孔質マイクロカプセルの模式図FIG. 1 is a schematic diagram of a porous microcapsule of the present invention.

【図2】 本発明の多孔質積層体の第一の例を示す模式
FIG. 2 is a schematic diagram showing a first example of a porous laminate of the present invention.

【図3】 本発明の多孔質積層体の第二の例を示す模式
FIG. 3 is a schematic diagram showing a second example of the porous laminate of the present invention.

【図4】 本発明の多孔質積層体の第三の例を示す模式
FIG. 4 is a schematic diagram showing a third example of the porous laminate of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 31/06 B01D 53/36 J C02F 1/30 ZABH C12N 1/00 B01J 13/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 31/06 B01D 53/36 J C02F 1/30 ZABH C12N 1/00 B01J 13/02 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多孔性物質でアナターゼ型結晶構造の酸
化チタンを被覆してなる光触媒体。
1. A photocatalyst body obtained by coating titanium oxide having an anatase type crystal structure with a porous material.
【請求項2】 アナターゼ型結晶構造の酸化チタンを内
包し、多孔性物質からなる壁を有する多孔質マイクロカ
プセル状光触媒体。
2. A porous microcapsule photocatalyst body containing titanium oxide having an anatase type crystal structure and having a wall made of a porous material.
【請求項3】 アナターゼ型結晶構造の酸化チタンに接
触して、導電性物質を存在させることを特徴とする請求
項1又は2に記載の光触媒体。
3. The photocatalyst body according to claim 1, wherein a conductive substance is present in contact with titanium oxide having an anatase type crystal structure.
【請求項4】 請求項1から3のいずれかに記載の光触
媒体を含有し、ポリオレフィン樹脂、ポリウレタン樹
脂、ポリエステル樹脂、ポリ(メタ)アクリル樹脂、ポ
リアミド樹脂、ビニル化合物(共)重合体、ホルムアル
デヒド樹脂、アリル樹脂、エポキシ樹脂からなる群から
選ばれる少なくとも1種以上をマトリクス成分とする樹
脂組成物。
4. A polyolefin resin, a polyurethane resin, a polyester resin, a poly (meth) acrylic resin, a polyamide resin, a vinyl compound (co) polymer, and formaldehyde containing the photocatalyst according to any one of claims 1 to 3. A resin composition containing at least one selected from the group consisting of resins, allyl resins and epoxy resins as a matrix component.
【請求項5】 請求項1から3のいずれかに記載の光触
媒体が、該光触媒体の少なくとも一部が表面に露出した
状態で固定されてなる、抗菌機能を有する物品。
5. An article having an antibacterial function, comprising the photocatalyst according to any one of claims 1 to 3 fixed with at least a part of the photocatalyst being exposed on the surface.
【請求項6】 請求項1から3のいずれかに記載の光触
媒体に、窒素酸化物を含有する気体を接触させることに
よって、窒素酸化物の分解を行わせることを特徴とする
窒素酸化物除去方法。
6. Nitrogen oxide removal, characterized in that the photocatalyst according to any one of claims 1 to 3 is contacted with a gas containing nitrogen oxides to decompose the nitrogen oxides. Method.
JP8088376A 1995-04-14 1996-04-10 Photocatalyst Pending JPH09225321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8088376A JPH09225321A (en) 1995-04-14 1996-04-10 Photocatalyst

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8916395 1995-04-14
JP33064795 1995-12-19
JP7-330647 1995-12-19
JP7-89163 1995-12-19
JP8088376A JPH09225321A (en) 1995-04-14 1996-04-10 Photocatalyst

Publications (1)

Publication Number Publication Date
JPH09225321A true JPH09225321A (en) 1997-09-02

Family

ID=27305797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8088376A Pending JPH09225321A (en) 1995-04-14 1996-04-10 Photocatalyst

Country Status (1)

Country Link
JP (1) JPH09225321A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090736A (en) * 1997-12-25 2000-07-18 Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same
JP2002159865A (en) * 2000-11-27 2002-06-04 Tayca Corp Titanium oxide photocatalyst for basic gas removal
WO2010021552A1 (en) 2008-08-18 2010-02-25 Sinvent As Process and system for removal of organics in liquids
WO2010097432A1 (en) 2009-02-26 2010-09-02 Basf Se Self-cleaning polymers
WO2011115237A1 (en) * 2010-03-15 2011-09-22 株式会社キャタラー Photocatalyst filter, and deodorizing device equipped with same
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090736A (en) * 1997-12-25 2000-07-18 Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same
US6291067B1 (en) 1997-12-25 2001-09-18 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Photocatalytic powder for environmental clarification and powder-containing polymer composition thereof
JP2002159865A (en) * 2000-11-27 2002-06-04 Tayca Corp Titanium oxide photocatalyst for basic gas removal
WO2010021552A1 (en) 2008-08-18 2010-02-25 Sinvent As Process and system for removal of organics in liquids
US20110210080A1 (en) * 2008-08-18 2011-09-01 Sinvent As Process and System for Removal of Organics in Liquids
WO2010097432A1 (en) 2009-02-26 2010-09-02 Basf Se Self-cleaning polymers
US8748527B2 (en) 2009-02-26 2014-06-10 Styrolution GmbH Self-cleaning polymers
WO2011115237A1 (en) * 2010-03-15 2011-09-22 株式会社キャタラー Photocatalyst filter, and deodorizing device equipped with same
WO2014097309A1 (en) 2012-12-17 2014-06-26 Asian Paints Ltd. Stimuli responsive self cleaning coating

Similar Documents

Publication Publication Date Title
JP3592727B2 (en) Photocatalyst
Qiu et al. Hybrid Cu x O/TiO2 nanocomposites as risk-reduction materials in indoor environments
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
CN1222580C (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same
JP5570006B2 (en) Virus inactivating agent
WO2016042913A1 (en) Antibacterial/antiviral composition, antibacterial/antiviral agent, photocatalyst, and bacteria/virus inactivation method
CA2117397A1 (en) Photocatalyst and process for purifying water with same
Boutra et al. Solar photodegradation of a textile azo dye using synthesized ZnO/Bentonite
Lanjwani et al. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: a review
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JPH09225321A (en) Photocatalyst
Lakshmi et al. Photocatalytic decontamination of organic pollutants using advanced materials
CN114308050B (en) Base material with photocatalyst and photocatalytic device
JP2900307B2 (en) Fixing method of photocatalyst
JPH08266897A (en) Fixed photocatalyst and its production
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JPH09225322A (en) Photocatalysy
KR100521007B1 (en) Functional capsules with photo-degradable activity and enhanced antibacterial and sterilizing activity, and process for preparing them
JP2006089858A (en) Photocatalytic wallpaper and porous photocatalytic wallpaper derived from the same
KR100353242B1 (en) A new type photocatalyst dopped and coated on silicagel and its method of preparation
JPH10180118A (en) Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance
JPH09225320A (en) Porous microcapsule-shaped photocatalyst
JPH09221408A (en) Melanin pigment decomposing substance
JPH10156190A (en) Production of functional material having photocatalytic performance