JPH09221408A - Melanin pigment decomposing substance - Google Patents

Melanin pigment decomposing substance

Info

Publication number
JPH09221408A
JPH09221408A JP8027732A JP2773296A JPH09221408A JP H09221408 A JPH09221408 A JP H09221408A JP 8027732 A JP8027732 A JP 8027732A JP 2773296 A JP2773296 A JP 2773296A JP H09221408 A JPH09221408 A JP H09221408A
Authority
JP
Japan
Prior art keywords
substance
melanin pigment
decomposing
melanin
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8027732A
Other languages
Japanese (ja)
Inventor
Atsushi Doi
淳 土居
Takashi Osugi
高志 大杉
Taisuke Nose
泰祐 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8027732A priority Critical patent/JPH09221408A/en
Publication of JPH09221408A publication Critical patent/JPH09221408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Catalysts (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Cosmetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new melanin pigment decomposing substance by using a specific substance having properties capable of acting on a melanin pigment contained in a microorganism, a plant, an animal, etc., and depolymerizing or decomposing the pigment. SOLUTION: An optical semiconductive substance is used. Zinc oxide, titanium dioxide, tungsten oxide, silicone, a polyacetylene, polythiophene, etc., may be cited as the optical semiconductive element. Titanium dioxide is especially preferable. The melanin pigment decomposing effect is improved by further adding a small amount of electroconductive powder to the optical semiconductive substance. Carbon black, silver, copper, etc., may be cited as the electroconductive powder. Tin oxide containing 0.1-20wt.% of antimony oxide is preferable due to high electroconductivity. The amount of the electroconductive substance is preferably about 1-100 pts.wt. based on 100 pts.wt. of the optical semiconductive substance. When the optical semiconductive substance is coated with a porous substance and used, advantageously deterioration caused by contact of the optical semiconductive substance with a base component can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はメラニン色素分解物
質に関する。
TECHNICAL FIELD The present invention relates to a melanin pigment decomposing substance.

【0002】[0002]

【従来の技術】メラニンはチロシンやジヒドロキシフェ
ニルアラニン(ドーパ)等のフェノール性化合物を基質
とし、ポリフェノールオキシダーゼと呼ばれる酸化酵素
の作用により合成される黒色から褐色を呈する高分子物
質であり、微生物、植物及び動物など自然界に幅広く分
布する。従来より、住宅内の壁、タイル、プラスチッ
ク、目地等の表面に付着したカビ等のメラニン色素の脱
色に、次亜塩素酸ナトリウムが配合された製品が数多く
使用されている。上記次亜塩素酸ナトリウムは脱色効果
が高く安価であるが、酸を含む他の製品と混合されると
塩素ガスを発生することがある。この塩素ガスは人体に
とって有害であり、密閉された部屋で発生した場合、人
体に危険が及ぶ可能性があり、その使用にあたっては十
分注意する必要がある。
BACKGROUND OF THE INVENTION Melanin is a high-molecular substance having a black to brown color that is synthesized by the action of an oxidase called polyphenol oxidase using a phenolic compound such as tyrosine or dihydroxyphenylalanine (dopa) as a substrate. Widely distributed in nature such as animals. BACKGROUND ART Conventionally, many products in which sodium hypochlorite is blended are used for decolorizing melanin pigments such as mold attached to the surfaces of walls, tiles, plastics, joints and the like in houses. Although sodium hypochlorite has a high decolorizing effect and is inexpensive, it may generate chlorine gas when mixed with other products containing an acid. This chlorine gas is harmful to the human body, and if it is generated in a closed room, it may be dangerous to the human body, and it is necessary to exercise caution when using it.

【0003】また、人間が強い紫外線に暴露された場合
皮膚にメラニン色素が生成し、有害な紫外線を吸収し深
部への到達を防ぐいわゆる生体防御機構が働く。しかし
局所的なメラニン色素の異常な生成はシミ、ソバカスの
原因となる。従来このメラニン色素の過剰な生成を抑制
するために、アルブチン、コウジ酸、アスコルビン酸等
のメラニン色素の生成に関与する酵素に対する阻害剤が
用いられてきた。これらの物質は一旦生成したメラニン
色素を分解する効果はない。一方、メラニン色素を分解
する低分子化合物としては、海藻から抽出したメラニン
分解物質が開示されている(特開平3−251514号
公報)が、実用化には至っていない。
When human beings are exposed to strong ultraviolet rays, melanin pigments are produced on the skin, which absorbs harmful ultraviolet rays and prevents a deeper area from reaching a so-called biological defense mechanism. However, abnormal production of local melanin pigment causes spots and freckles. In order to suppress the excessive production of this melanin pigment, inhibitors for arbutin, kojic acid, ascorbic acid and other enzymes involved in the production of melanin pigment have been used. These substances do not have the effect of decomposing the melanin pigment once produced. On the other hand, as a low molecular weight compound that decomposes a melanin pigment, a melanin-decomposing substance extracted from seaweed is disclosed (JP-A-3-251514), but it has not been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、新規なメラ
ニン色素分解物質を提供する。
The present invention provides a novel melanin pigment decomposing substance.

【0005】[0005]

【課題を解決するための手段】本発明のメラニン分解物
質は、光半導性物質を含有させてなることを特徴とす
る。
The melanin-decomposing substance of the present invention is characterized by containing a photo-semiconductor.

【0006】<光半導性物質>本発明の光半導性物質と
しては、酸化亜鉛、二酸化チタン(以下、単に「酸化チ
タン」と言う。)、酸化タングステン、チタン酸スチロ
ンチウム、酸化第二鉄等の金属酸化物;硫化亜鉛、硫化
カドミウム、硫化鉛、セレン化亜鉛、セレン化カドミウ
ム等の金属カルコゲナイド;シリコン、ゲルマニウム等
の第IV属元素;ガリウム−リン、ガリウム−ヒ素、イ
ンジウム−リン等のIII−V属化合物;ポリアセチレ
ン、ホリピロール、ポリチオフェン、ポリアニリン、ポ
リビニルカルバゾール等の有機半導体等が挙げられる。
<Photosemiconductor> As the photosemiconductor of the present invention, zinc oxide, titanium dioxide (hereinafter, simply referred to as "titanium oxide"), tungsten oxide, styrontium titanate, ferric oxide. Metal oxides such as; metal chalcogenides such as zinc sulfide, cadmium sulfide, lead sulfide, zinc selenide, cadmium selenide; Group IV elements such as silicon and germanium; gallium-phosphorus, gallium-arsenic, indium-phosphorus, etc. Group III-V compounds; organic semiconductors such as polyacetylene, folipyrrole, polythiophene, polyaniline, and polyvinylcarbazole.

【0007】上記光半導性物質のうち、実用的な面から
は酸化チタン、酸化タングステン等の金属酸化物が好ま
しい。酸化チタンは入手が容易なことから最も利用しや
すく、その種類としてアモルファス、ルチル型、アナタ
ーゼ型が知られているが、いずれも使用可能であり、抗
菌性の目的に使用する場合、アナターゼ型酸化チタンの
抗菌活性が最も優れている。また、一般に白色顔料とし
て使用される酸化チタンは、多くの場合表面がアルミナ
やシリカで完全に被覆されているため光触媒作用が低下
し、好ましくない。上記光半導性物質は単独でも二種類
以上が併用されてもよい。
Of the above-mentioned photo-semiconductors, metal oxides such as titanium oxide and tungsten oxide are preferable from the practical viewpoint. Titanium oxide is the easiest to use because it is easily available.Amorphous, rutile, and anatase types are known, but any of them can be used, and when used for antibacterial purposes, anatase-type oxidation Titanium has the best antibacterial activity. Further, in many cases, titanium oxide, which is generally used as a white pigment, is not preferable because the surface thereof is completely covered with alumina or silica, which lowers the photocatalytic action. The above-mentioned photo-semiconductors may be used alone or in combination of two or more kinds.

【0008】<導電性物質>上記光半導性物質は、導電
性物質と共に使用されることによってその触媒効果が向
上する。上記導電性物質としては、一般に導電性を付与
するために用いられるカーボン粉末又は繊維状カーボ
ン、金属粉末又は繊維状金属を用いることが出来る。例
として、カーボンブラックや銀、銅、金、鉄、アルミニ
ウム、ニッケル、白金、パラジウム、酸化錫、酸化イン
ジウム等が挙げられる。また、非導電体を核材として表
面に導電体を被覆したものでもよい。例として、銀メッ
キ微粒子、アルミニウム被覆微粒子、酸化錫で表面がコ
ートされた硫酸バリウム微粒子等が挙げられる。
<Conductive Material> The above-mentioned photo-semiconductive material is used together with a conductive material to improve its catalytic effect. As the conductive substance, carbon powder or fibrous carbon, which is generally used for imparting conductivity, metal powder or fibrous metal, can be used. Examples include carbon black, silver, copper, gold, iron, aluminum, nickel, platinum, palladium, tin oxide, indium oxide and the like. Alternatively, a non-conductor may be used as a core material and the surface thereof may be coated with a conductor. Examples thereof include silver-plated fine particles, aluminum-coated fine particles, and barium sulfate fine particles whose surface is coated with tin oxide.

【0009】上記導電性物質のうち、実用的な面から
は、入手が容易で比較的安価な酸化錫微粒子や酸化錫で
表面がコートされた硫酸バリウム微粒子等が好ましい。
酸化アンチモンを0.1〜20重量%添加した酸化錫
は、高い導電性を示すため好適に用いられる。
Among the above conductive materials, tin oxide fine particles, which are easily available and are relatively inexpensive, and barium sulfate fine particles whose surface is coated with tin oxide are preferable from the practical viewpoint.
Tin oxide to which 0.1 to 20% by weight of antimony oxide is added exhibits high conductivity and is preferably used.

【0010】上記導電性物質の光半導性物質に対する添
加量は、光半導性物質100重量部に対して1〜100
重量部であることが好ましい。これより少ないと導電性
物質添加の効果が認めにくい。これより多くしても更に
効果を大きくするものではないが、光触媒効果を阻害す
るものではなく、光半導性物質の担体の役割を兼ねて用
いる場合等は添加量が大きくなっても構わない。
The amount of the conductive material added to the light semiconducting material is 1 to 100 with respect to 100 parts by weight of the light semiconducting material.
It is preferably in parts by weight. If the amount is less than this, the effect of adding the conductive substance is difficult to recognize. If the amount is larger than this, the effect is not further increased, but it does not hinder the photocatalytic effect, and when it is also used as the carrier of the photo-semiconductor, the addition amount may be increased. .

【0011】<多孔性物質による被覆>光半導性物質は
一般に微粉末であるので、使用に際してなんらかの固定
化が必要となる場合が多い。しかし、光半導性物質は、
一般に広く用いられている有機ポリマー等の基材構成成
分に直接接触した状態で長期間おくと、当該有機ポリマ
ー等を劣化させるという問題点を有している。上記劣化
は、光半導性物質による光触媒反応の際に発生するラジ
カルが原因と考えられている。
<Coating with Porous Material> Since the photo-semiconductor material is generally a fine powder, it is often necessary to immobilize it for use. However, the photo-semiconductor is
When left in direct contact with a substrate constituent component such as an organic polymer that is generally widely used, it has a problem of degrading the organic polymer or the like. The above-mentioned deterioration is considered to be caused by radicals generated during the photocatalytic reaction by the photo-semiconductor.

【0012】また、メラニン色素分解の応用分野の一つ
であるシミ、ソバカスの除去の目的で使用する際には、
皮膚に光半導性物質が直接接触するとラジカルが肌荒れ
の原因になることが予想される。
When used for the purpose of removing spots and freckles, which is one of the application fields of melanin pigment decomposition,
It is expected that radicals will cause rough skin when the photoconductive substance comes into direct contact with the skin.

【0013】上記のようなラジカルの発生が好ましくな
い利用の態様にあっては、光半導性物質を基材構成成
分、皮膚等に直接接触させず、かつ、触媒作用を発現さ
せる手段として、多孔性物質で光半導性物質を被覆して
使用することが出来る。例えば、光半導性物質を内包す
る多孔質マイクロカプセル、多孔性物質からなる層の間
に光半導性物質を挟み込んだ所謂サンドイッチ構造物等
が挙げられる。
In a mode of utilization in which the generation of radicals is not preferable as described above, as a means for exerting a catalytic action without directly contacting the photo-semiconductor with the substrate constituent components, skin, etc., A photo-semiconductor material can be coated with a porous material for use. Examples thereof include porous microcapsules containing a photo-semiconductor material, a so-called sandwich structure in which a photo-semiconductor material is sandwiched between layers made of a porous material, and the like.

【0014】利用の態様によっては、多孔性物質が光半
導性物質の全面を被覆している必要はない。基材構成成
分が上記劣化の問題を考慮しなくともよいものであれ
ば、光半導性物質を基材表面に担持させ、当該表面のみ
を多孔性物質で被覆することによって、基材表面にメラ
ニン色素分解性能を与え、かつ、光半導性物質が表面に
露出することを防ぐことが出来る。この方法によれば、
基材全体に光半導体を分散させる場合に比べて少量の光
半導性物質を効率よく利用できる。
Depending on the mode of use, it is not necessary for the porous material to cover the entire surface of the light semiconducting material. If the base component does not need to consider the problem of deterioration, a light semiconducting substance is supported on the surface of the substrate, and the surface of the substrate is coated with a porous substance only on the surface. It can give melanin pigment decomposing ability and prevent the photo-semiconductor from being exposed on the surface. According to this method
Compared with the case where the optical semiconductor is dispersed in the entire base material, a small amount of the light semiconductive material can be efficiently used.

【0015】利用の便宜を考慮すると、光半導性物質を
内包した多孔質マイクロカプセルの形態が適していると
思われる。以下で、上記光半導性物質を内包した多孔質
マイクロカプセルについて詳述する。
Considering the convenience of use, the form of porous microcapsules encapsulating a photo-semiconductor is considered suitable. The porous microcapsules containing the above-mentioned photo-semiconductor will be described in detail below.

【0016】上記多孔質マイクロカプセルは、一般に行
われている、水中油滴型(O/W型)又は油中水滴型
(W/O型)エマルションを調製する方法によって得た
ものを用いることが出来る。特公昭54−6251号公
報に示されるような公知のマイクロカプセル形成方法に
より、粉体の粒径や多孔性等を制御することも可能であ
る。本発明の光半導性物質を内包する多孔質マイクロカ
プセルの多孔性は特に限定されないが、光半導体を完全
に被覆してしまうと触媒作用が低下する。
As the above-mentioned porous microcapsules, those obtained by a generally used method for preparing an oil-in-water type (O / W type) or a water-in-oil type (W / O type) emulsion can be used. I can. It is also possible to control the particle size and porosity of the powder by a known microcapsule forming method as disclosed in Japanese Patent Publication No. 54-6251. The porosity of the porous microcapsules encapsulating the photo-semiconductor of the present invention is not particularly limited, but if the photo-semiconductor is completely covered, the catalytic action is lowered.

【0017】皮膚に接触する場合等には、光半導性物質
が完全に内包化されていることが好ましい。光半導性物
質を完全に内包するために、いわゆる(O/W)/O型
又は(W/O)/W型等の多相エマルションを調製する
方法によって多層構造のマイクロカプセルとすることが
出来る。多層構造のマイクロカプセルは、上記例示のよ
うな公知の方法と、多相エマルションの調製法を組み合
わせて得ることが出来る。
When coming into contact with the skin, it is preferable that the photo-semiconductor is completely encapsulated. In order to completely encapsulate the photo-semiconductor, a microcapsule having a multi-layer structure can be prepared by a method of preparing a multi-phase emulsion of so-called (O / W) / O type or (W / O) / W type. I can. The microcapsules having a multilayer structure can be obtained by combining the known method as exemplified above and the method for preparing a multiphase emulsion.

【0018】多孔質マイクロカプセルの大きさについて
は特に限定されるものではないが、透明性を付与する場
合や、着色が好ましくない場合は直径(長径)0.4μ
m以下のものが好ましい。
The size of the porous microcapsules is not particularly limited, but the diameter (major axis) is 0.4 μm when transparency is imparted or coloring is not preferable.
m or less is preferable.

【0019】上記光半導性物質を内包するマイクロカプ
セルの壁を構成する材料としては、乳濁液の調製に用い
る溶媒中に溶解又は分散することができ、且つ硬化させ
ることが可能な材料の中で、光半導性物質と直接接触し
ても容易に劣化しないものを選択する。この条件を満た
す材料として、シリカ、アルミナ等の無機物、テフロン
樹脂等が挙げられる。より具体的には、水ガラス、塩化
アルミニウムを用いて乳濁液の調製を行い、硬化後、シ
リカ、アルミナの壁を有するマイクロカプセルを得るこ
とが出来る。
The material constituting the wall of the microcapsule containing the above-mentioned photo-semiconductor is a material which can be dissolved or dispersed in a solvent used for preparing an emulsion and can be cured. Among them, those that do not easily deteriorate even if they come into direct contact with the photo-semiconductor are selected. Materials that satisfy this condition include inorganic substances such as silica and alumina, and Teflon resin. More specifically, an emulsion is prepared using water glass and aluminum chloride, and after curing, microcapsules having silica and alumina walls can be obtained.

【0020】マイクロカプセルを多孔質にする方法とし
ては、有機物を混入した無機材料を用いて乳濁液の調製
を行い、マイクロカプセル形成後に有機物のみを焼成又
は溶剤で溶解する方法、壁構成成分に水溶性又は油溶性
の塩等を混入しておき、後にこれを溶解させる方法等が
挙げられる。
As a method of making the microcapsules porous, a method of preparing an emulsion using an inorganic material mixed with an organic substance and baking the organic substance alone after the formation of the microcapsules or dissolving it with a solvent is used. Examples thereof include a method in which a water-soluble or oil-soluble salt or the like is mixed and then this is dissolved.

【0021】該マイクロカプセルに内包する光半導性物
質の量は、多すぎれば内包しきれずマイクロカプセル外
に浮遊し、少なすぎればメラニン色素分解効果が発現さ
れない。適量は壁材構成成分100重量部に対して0.
01〜70重量部である。
If the amount of the photo-semiconductor contained in the microcapsules is too large, the photoconductive substance cannot be completely encapsulated and floats outside the microcapsules. If the amount is too small, the melanin pigment decomposing effect is not exhibited. An appropriate amount is 0.
It is from 01 to 70 parts by weight.

【0022】なお、マイクロカプセルの形態とする場合
以外の、光半導性物質を被覆する多孔性物質の条件、多
孔質とする方法も、上記と同様である。
The conditions of the porous material covering the photo-semiconductor material and the method of making the material porous are the same as described above, except for the case of the microcapsules.

【0023】<利用の方法>本発明の光半導性物質を利
用する方法としては、メラニン色素分解機能を付与した
い目的物を構成する材料に直接添加する、塗料組成物に
添加して目的物に塗布する等が挙げられる。添加量は、
例えば、目的物が合成樹脂から構成される場合、合成樹
脂100重量部に対して1〜1000重量部が好まし
い。1重量部以下であると、メラニン色素分解性が十分
でなく、1000重量部を超えると、樹脂組成物の取扱
が困難になったり、加工、成型等した後の完成品の表面
状態が悪くなったり強度が低下する可能性がある。より
好ましくは、10〜500重量部である。
<Method of Utilization> As a method of utilizing the photo-semiconductor of the present invention, the objective substance is added directly to the material constituting the objective substance to which the melanin pigment decomposing function is added, and the objective substance is added to the coating composition. And the like. The amount of addition
For example, when the target is made of synthetic resin, it is preferably 1 to 1000 parts by weight with respect to 100 parts by weight of the synthetic resin. If it is 1 part by weight or less, the melanin pigment decomposing property is not sufficient, and if it exceeds 1000 parts by weight, the handling of the resin composition becomes difficult, or the surface condition of the finished product after processing, molding, etc. becomes poor. Or strength may decrease. More preferably, it is 10 to 500 parts by weight.

【0024】また、本発明品を化粧材料に用いる場合に
は、肌荒れ等を避けるため光半導性物質を被覆して用い
るのが好ましい。添加量は、上記合成樹脂等の場合に比
して極少量でよい。一般に、化粧材料は同じものを毎日
塗布洗浄を繰り返して使用するため、光半導性物質の添
加量は少量であっても複数回に及ぶ使用によって目的を
達しうる。皮膚刺激を生じる可能性を考慮すると、メラ
ニン色素分解性を示す範囲で出来るだけ少量になるよう
に努めるべきであろう。
When the product of the present invention is used as a cosmetic material, it is preferable to coat it with a light semiconductive substance in order to avoid rough skin. The addition amount may be extremely small compared to the case of the above synthetic resin. In general, the same cosmetic material is used by repeatedly applying and cleaning the same material every day. Therefore, even if the amount of the photoconductive substance added is small, the purpose can be achieved by using it multiple times. Considering the possibility of causing skin irritation, efforts should be made to minimize the amount of melanin degrading.

【0025】[0025]

【実施例】【Example】

実施例1 酸化チタン(石原産業社製、アナターゼ型、粒径7n
m)粉体を使用した。
Example 1 Titanium oxide (manufactured by Ishihara Sangyo Co., anatase type, particle size 7n
m) Powder was used.

【0026】実施例2 酸化チタン(石原産業社製、アナターゼ型、粒径7n
m)50gを珪酸ナトリウム水溶液(二酸化珪素換算で
4mol/l)500mlに添加し、10分間攪拌し均
一な懸濁液を調製した。上記懸濁液をソルビタンモノス
テアレートのトルエン溶液(1重量%)1l中に添加
し、振とう機を用いて5分間振とうを行い、W/O型
(油中水滴型)の乳濁液を調製した。次に上記乳濁液を
硫酸アンモニウム水溶液(1mol/l)4l中に攪拌
しながら添加し、30分間反応させた。反応終了後、濾
過、水洗して、110℃で24時間乾燥させ、内部に酸
化チタンを有し、シリカからなる壁で構成された平均粒
径7μmの球状複合粉体を得た。
Example 2 Titanium oxide (manufactured by Ishihara Sangyo Co., anatase type, particle size 7n
m) (50 g) was added to an aqueous solution of sodium silicate (4 mol / l in terms of silicon dioxide) (500 ml) and stirred for 10 minutes to prepare a uniform suspension. The above suspension was added to 1 l of a sorbitan monostearate solution in toluene (1% by weight), and the mixture was shaken for 5 minutes using a shaker to give a W / O type (water-in-oil type) emulsion. Was prepared. Next, the above emulsion was added to 4 l of an ammonium sulfate aqueous solution (1 mol / l) with stirring and reacted for 30 minutes. After completion of the reaction, the mixture was filtered, washed with water, and dried at 110 ° C. for 24 hours to obtain a spherical composite powder having titanium oxide inside and constituted by a wall made of silica and having an average particle diameter of 7 μm.

【0027】実施例3 酸化チタン(石原産業社製、アナターゼ型、粒径7n
m)9重量部と酸化アンチモン含有酸化錫(三菱マテリ
アル社製「T−1」、粒径0.02μm)1重量部を混
合した粉体を使用した。
Example 3 Titanium oxide (manufactured by Ishihara Sangyo Kaisha, anatase type, particle size 7n
m) 9 parts by weight and 1 part by weight of antimony oxide-containing tin oxide (“T-1” manufactured by Mitsubishi Materials Corporation, particle size 0.02 μm) were mixed to use a powder.

【0028】実施例4 実施例3で使用した酸化チタン/酸化錫混合粉体を用い
たこと以外は、実施例2と同様にして内部に酸化チタン
および酸化錫を有し、シリカからなる壁で構成された平
均粒径7μmの球状複合粉体を得た。
Example 4 A wall made of silica having titanium oxide and tin oxide inside was prepared in the same manner as in Example 2 except that the titanium oxide / tin oxide mixed powder used in Example 3 was used. A spherical composite powder having an average particle size of 7 μm was obtained.

【0029】<メラニン色素分解性評価:粉体>メラニ
ン(ナカライテスク社製)10mgをジメチルスルホキ
シド(DMSO)1mlに溶解して、さらに水9mlを
加えてメラニン溶液を調製した。上記メラニン溶液5m
lに実施例1〜4において製造した酸化チタン粉体又は
複合粉体50mgを添加して25℃で振盪し、2時間
後、18時間後の2回、この溶液1.0mlを回収し
た。回収した溶液を5000rpmで5分間、遠心分離
した後、上澄液0.5mlを採って475nmの吸光度
を測定した(ブランクとしては、10体積%DMSO水
溶液を用いた)。比較として、メラニン溶液に酸化チタ
ン粉体又は複合粉体を添加しないで、上記と同様の評価
を行った。結果を表1に示す。メラニン溶液単独の方は
メラニンの形成が進んでいるが、酸化チタンが添加され
ている実施例においてはメラニンが分解されていること
が確認された。
<Evaluation of Degradability of Melanin Pigment: Powder> 10 mg of melanin (manufactured by Nacalai Tesque, Inc.) was dissolved in 1 ml of dimethyl sulfoxide (DMSO), and 9 ml of water was further added to prepare a melanin solution. 5m of the above melanin solution
50 mg of the titanium oxide powder or the composite powder produced in Examples 1 to 4 was added to 1 l and shaken at 25 ° C., and after 2 hours and 18 hours, 1.0 ml of this solution was recovered. After the collected solution was centrifuged at 5000 rpm for 5 minutes, 0.5 ml of the supernatant was sampled and the absorbance at 475 nm was measured (10% by volume DMSO aqueous solution was used as a blank). For comparison, the same evaluation as above was performed without adding the titanium oxide powder or the composite powder to the melanin solution. The results are shown in Table 1. It was confirmed that although the melanin solution alone progressed in the formation of melanin, the melanin was decomposed in the examples in which titanium oxide was added.

【0030】[0030]

【表1】 [Table 1]

【0031】<試験プレートの作製>上記実施例1〜4
の酸化チタン粉体又は複合粉体10重量部を、不飽和ポ
リエステル(三井東圧化学社製「V−262G」)10
0重量部に配合し、分散機を用いて4時間分散を行っ
た。さらにこれに、熱重合開始剤としてメチルエチルケ
トンパーオキサイド(MEKP)55重量%ジメチルフ
タレート溶液4重量部及び硬化促進剤としてナフテン酸
コバルト(金属分6重量%)2重量部を加えて混合し
た。この組成物を予め離型剤で処理した平板サンプル試
作用のFRP製モールドに約200μmになるよう塗布
し、一旦80℃で15分硬化した。冷却後、得られた被
膜上に上記不飽和ポリエステル樹脂にMEKP55重量
%ジメチルフタレート溶液を加えて混合した樹脂液を型
内に流し込み、硬化した後にFRP型より脱型し、メラ
ニン色素分解性樹脂層を有する試験プレートを作製し
た。
<Preparation of test plate> Examples 1 to 4 above
10 parts by weight of the titanium oxide powder or the composite powder of 10% of unsaturated polyester (“V-262G” manufactured by Mitsui Toatsu Chemicals, Inc.)
It was mixed in 0 part by weight and dispersed for 4 hours using a disperser. Further, 4 parts by weight of methyl ethyl ketone peroxide (MEKP) 55% by weight dimethyl phthalate solution as a thermal polymerization initiator and 2 parts by weight of cobalt naphthenate (metal content 6% by weight) as a curing accelerator were added and mixed. This composition was applied to a FRP mold for trial production of a flat plate sample, which had been previously treated with a release agent, to a thickness of about 200 μm, and was once cured at 80 ° C. for 15 minutes. After cooling, a resin solution obtained by adding 55% by weight of MEKP dimethyl phthalate solution to the above unsaturated polyester resin and mixing it on the obtained coating was poured into a mold, and after curing, the mold was released from the FRP mold to form a melanin pigment decomposable resin layer. A test plate with was prepared.

【0032】<メラニン色素分解性評価:試験プレート
>上記試験プレート上にメラニン溶液5mlを滴下後、
25℃で静置し2時間後、18時間後の2回、この溶液
0.5mlを回収し、475nmの吸光度を測定した
(ブランクとして10重量%DMSO水溶液を用い
た)。比較として酸化チタン粉体又は複合粉体を含まな
いプレートを作製し、上記と同様の評価を行った。結果
を表1に示す。メラニン溶液単独の方はメラニンの形成
が進んでいるが、酸化チタンが添加されている実施例に
おいてはメラニンが分解されていることが確認された。
<Evaluation of Degradability of Melanin Pigment: Test Plate> After dropping 5 ml of the melanin solution on the above test plate,
After standing for 2 hours at 25 ° C. and after 2 hours and 18 hours, 0.5 ml of this solution was collected and the absorbance at 475 nm was measured (10% by weight DMSO aqueous solution was used as a blank). For comparison, a plate containing no titanium oxide powder or composite powder was prepared and evaluated in the same manner as above. The results are shown in Table 1. It was confirmed that although the melanin solution alone progressed in the formation of melanin, the melanin was decomposed in the examples in which titanium oxide was added.

【0033】<耐侯性>JIS−A1415に規定され
るサンシャインカーボンアーク灯を用いる試験装置を用
いて耐候性の促進試験を行い、200時間照射後のプレ
ートの色差を色彩色差計(東京電色社製、カラーアナラ
イザーTC−1800MK)を使用して測定し、試験前
から変化した色差の絶対値を示した。また、試験後のプ
レート表面を指で軽く擦り、チョーキングの有無を観察
した。 ○ チョーキングが認められない × チョーキングが認められる 結果を表1に示す。酸化チタンが内包された多孔質マイ
クロカプセルである実施例2及び4は、酸化チタンを直
接添加している実施例1及び3に比較し、劣化が起こっ
ていないことが確認された。このことは、上記試験プレ
ートに使用した不飽和ポリエステルのような有機ポリマ
ー等の材料に対して光半導性物質を添加する場合、多孔
質マイクロカプセル化によって劣化を抑えることができ
ることを示している。
<Weather resistance> An accelerated weather resistance test was conducted using a test device using a sunshine carbon arc lamp specified in JIS-A1415, and the color difference of the plate after irradiation for 200 hours was measured by a color difference meter (Tokyo Denshoku Co., Ltd.). Manufactured by Color Analyzer TC-1800MK), and the absolute value of the color difference changed from before the test is shown. Further, the surface of the plate after the test was lightly rubbed with a finger to observe the presence or absence of chalking. ○ No chalking is observed × The results of the chalking are shown in Table 1. It was confirmed that Examples 2 and 4, which are porous microcapsules encapsulating titanium oxide, did not deteriorate as compared with Examples 1 and 3 in which titanium oxide was directly added. This indicates that when a photoconductive substance is added to a material such as an organic polymer such as unsaturated polyester used for the test plate, deterioration can be suppressed by encapsulation with porous microcapsules. .

【0034】[0034]

【発明の効果】本発明は、光半導性物質が微生物、植
物、動物等が有するメラニン色素に作用して低分子化又
は分解する性質を利用し、新規なメラニン色素分解物質
を提供する。本発明のメラニン色素分解物質を用いて、
住居内の壁、タイル、プラスチック、目地等の表面に付
着したカビ汚れの脱色や、人に皮膚に生成したシミ、ソ
バカス等の脱色を行うことができる。さらに、少量の導
電粉体を添加することによってメラニン色素分解の効果
が向上する。また、光半導性物質を多孔性物質で被覆し
て使用することにより、光半導性物質と基材構成成分の
接触に起因する劣化を避け、上記劣化による制限を受け
ずに基材構成成分を選択できるため、各種利用形態にお
いて有利である。
INDUSTRIAL APPLICABILITY The present invention provides a novel melanin pigment degrading substance by utilizing the property that a photoconductive substance acts on a melanin pigment possessed by microorganisms, plants, animals and the like to lower the molecular weight or decompose it. Using the melanin pigment-decomposing substance of the present invention,
It is possible to decolor mold stains adhering to the surfaces of walls, tiles, plastics, joints, etc. in houses and to remove stains, freckles, etc. generated on human skin. Furthermore, the effect of melanin pigment decomposition is improved by adding a small amount of conductive powder. In addition, by using the light semiconducting substance coated with a porous substance, deterioration due to contact between the light semiconducting substance and the constituent components of the substrate is avoided, and the substrate constitution is not limited by the above deterioration. Since the components can be selected, it is advantageous in various usage forms.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/02 B01J 35/02 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 35/02 B01J 35/02 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光半導性物質を含有させてなることを特
徴とするメラニン色素分解物質。
1. A melanin pigment decomposing substance comprising a photo-semiconductive substance.
【請求項2】 光半導性物質及び導電性物質を含有させ
てなることを特徴とするメラニン色素分解物質。
2. A melanin pigment decomposing substance comprising a photo-semiconductive substance and a conductive substance.
【請求項3】 光半導性物質が多孔性物質で被覆されて
なることを特徴とする請求項1又は2に記載のメラニン
色素分解物質。
3. The melanin pigment decomposing substance according to claim 1, wherein the photo-semiconductor substance is coated with a porous substance.
【請求項4】 光半導性物質が二酸化チタンである請求
項1から3のいずれかに記載のメラニン色素分解物質。
4. The melanin pigment-decomposing substance according to claim 1, wherein the photo-semiconductor is titanium dioxide.
JP8027732A 1996-02-15 1996-02-15 Melanin pigment decomposing substance Pending JPH09221408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8027732A JPH09221408A (en) 1996-02-15 1996-02-15 Melanin pigment decomposing substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8027732A JPH09221408A (en) 1996-02-15 1996-02-15 Melanin pigment decomposing substance

Publications (1)

Publication Number Publication Date
JPH09221408A true JPH09221408A (en) 1997-08-26

Family

ID=12229204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8027732A Pending JPH09221408A (en) 1996-02-15 1996-02-15 Melanin pigment decomposing substance

Country Status (1)

Country Link
JP (1) JPH09221408A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825619A1 (en) * 2001-10-01 2002-12-13 Oreal Cosmetic composition for creating optical effect, e.g. electrically controlled variation of appearance of skin, lipids or nails, containing electroluminescent and/or electroconductive polyconjugated polymer
WO2003063811A3 (en) * 2002-01-31 2004-05-06 Oreal Use of soluble conducting polymers for the treatment of human keratin fibres
FR2850568A1 (en) * 2003-01-31 2004-08-06 Oreal Use of a conductive polythiophene in a composition for imparting an optical effect to human keratin materials e.g. human keratin fibers
FR2857584A1 (en) * 2003-07-16 2005-01-21 Oreal COMPOSITION COMPRISING AT LEAST ONE CONDUCTIVE POLYMER AND NON-FILMOGENIC RIGID PARTICLES, PROCESS FOR CARRYING OUT AND USING THE SAME
FR2857582A1 (en) * 2003-07-16 2005-01-21 Oreal COMPOSITION COMPRISING A CONDUCTIVE POLYMER AND A REDUCING AGENT, PERMANENT DEFORMATION METHOD IMPLEMENTING THE SAME
WO2004066968A3 (en) * 2003-01-31 2005-02-24 Oreal Use of conductive polythiophenes for the treatment of human keratin materials
JP2006514017A (en) * 2002-11-28 2006-04-27 ルイ・デュベルトレ Cosmetic composition comprising fluorescent nanoparticles as a pigment
US7217295B2 (en) 2002-01-31 2007-05-15 L'oreal S.A. Use of soluble conductive polymers for treating human keratin fibers
JP2008543702A (en) * 2005-06-09 2008-12-04 ヘレラ,アルツロ ソリス Photoelectrochemical method for separating water into hydrogen and oxygen using melanin or its analogues, precursors or derivatives as central electrolytic components

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825619A1 (en) * 2001-10-01 2002-12-13 Oreal Cosmetic composition for creating optical effect, e.g. electrically controlled variation of appearance of skin, lipids or nails, containing electroluminescent and/or electroconductive polyconjugated polymer
WO2003063811A3 (en) * 2002-01-31 2004-05-06 Oreal Use of soluble conducting polymers for the treatment of human keratin fibres
US7217295B2 (en) 2002-01-31 2007-05-15 L'oreal S.A. Use of soluble conductive polymers for treating human keratin fibers
JP2006514017A (en) * 2002-11-28 2006-04-27 ルイ・デュベルトレ Cosmetic composition comprising fluorescent nanoparticles as a pigment
FR2850568A1 (en) * 2003-01-31 2004-08-06 Oreal Use of a conductive polythiophene in a composition for imparting an optical effect to human keratin materials e.g. human keratin fibers
WO2004066968A3 (en) * 2003-01-31 2005-02-24 Oreal Use of conductive polythiophenes for the treatment of human keratin materials
FR2857584A1 (en) * 2003-07-16 2005-01-21 Oreal COMPOSITION COMPRISING AT LEAST ONE CONDUCTIVE POLYMER AND NON-FILMOGENIC RIGID PARTICLES, PROCESS FOR CARRYING OUT AND USING THE SAME
FR2857582A1 (en) * 2003-07-16 2005-01-21 Oreal COMPOSITION COMPRISING A CONDUCTIVE POLYMER AND A REDUCING AGENT, PERMANENT DEFORMATION METHOD IMPLEMENTING THE SAME
JP2008543702A (en) * 2005-06-09 2008-12-04 ヘレラ,アルツロ ソリス Photoelectrochemical method for separating water into hydrogen and oxygen using melanin or its analogues, precursors or derivatives as central electrolytic components
CN106450591A (en) * 2005-06-09 2017-02-22 阿图罗·索利斯埃雷拉 Device utilizing photoelectric reactions to generate electric power
CN106450591B (en) * 2005-06-09 2019-09-03 阿图罗·索利斯埃雷拉 The device produced electricl energy is reacted using optical electro-chemistry

Similar Documents

Publication Publication Date Title
EP1724015A1 (en) Titanium oxide photocatalyst and method for preparation thereof
JPH09221408A (en) Melanin pigment decomposing substance
Joseita dos Santos Costa et al. Photocurrent response and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles
EP1147812A1 (en) Photocatalytic powder, photocatalytic slurry, and polymer composition, coating agent, photocatalytic functional molded article and photocatalytic functional structure using the powder
Charpentier et al. Photocatalytic and antibacterial activities of silver and iron doped titania nanoparticles in solution and polyaspartic coatings
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
KR100521007B1 (en) Functional capsules with photo-degradable activity and enhanced antibacterial and sterilizing activity, and process for preparing them
KR102665495B1 (en) Metal oxide nanoparticle-nanocellulose composite, manufacturing method thereof, sunscreen containing the same, and sunscreen film containing the same
JP3261909B2 (en) Member having catalyst containing fine metal particles and method for producing the same
Habibi et al. Photocatalytic oxidation of four model mercaptans from aquatic environment using Ag-ZnO nanocomposite thin film for odor control
JPH11192290A (en) Antibacterial material
JPH1111927A (en) Composite particle with silica matrix, its production and compounded cosmetic material
JP3250394B2 (en) Member having photocatalytic action, composition for forming photocatalytic thin film, and method for producing member having photocatalytic action
Božič et al. Surface engineering of TiO 2-MWCNT nanocomposites towards tuning of functionalities and minimizing toxicity
JPH09225320A (en) Porous microcapsule-shaped photocatalyst
CN110801401B (en) Preparation method of multifunctional nano material with better sun-screening effect
JPH1119520A (en) Production of functional material having photocatalytic activity
KR101607481B1 (en) Method for manufacturing silica coated zinc oxide nanoparticle, method for manufacturing silica coated zinc oxide - polymer resin matrix using the same and use thereof
JP4386788B2 (en) Method for producing titanium oxide photocatalyst
JPH1157494A (en) Microcapsule-shaped photocatalyst and its manufacture, paint composition, resin composition and resin body
JP3431301B2 (en) Tile with photocatalytic function
JPH09225321A (en) Photocatalyst
JPH06199524A (en) Titanium oxide powder and production thereof
JP5407549B2 (en) Photocatalyst particle dispersion and process for producing the same
JPH09225322A (en) Photocatalysy