JPH10180118A - Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance - Google Patents

Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance

Info

Publication number
JPH10180118A
JPH10180118A JP23055397A JP23055397A JPH10180118A JP H10180118 A JPH10180118 A JP H10180118A JP 23055397 A JP23055397 A JP 23055397A JP 23055397 A JP23055397 A JP 23055397A JP H10180118 A JPH10180118 A JP H10180118A
Authority
JP
Japan
Prior art keywords
photocatalyst
titanium dioxide
immobilized
decomposition
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23055397A
Other languages
Japanese (ja)
Other versions
JP3567693B2 (en
Inventor
Yasuhiro Masaki
康浩 正木
Tadashi Yao
正 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23055397A priority Critical patent/JP3567693B2/en
Publication of JPH10180118A publication Critical patent/JPH10180118A/en
Application granted granted Critical
Publication of JP3567693B2 publication Critical patent/JP3567693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fixed photocatalyst which has high photocatalytic reaction efficiency and indicates good effects for the decomposition, etc., of dirt (sticking dirty substances) on the surface of solids and harmful substances in the air or drainage, a method for preparing the catalyst, and a method for decomposition-removing harmful substances using the catalyst. SOLUTION: In a fixed photocatalyst, a thin film of anatase-type titanium dioxide of 5-30nm average crystal size is fixed on the surface of a base material. Harmful substances in contact with the catalyst are decomposition-removed effectively by being irradiated with high energy light. The catalyst can be prepared by a method in which titania sol applied on the base material is heated at a prescribed temperature (250-800 deg.C) and burned for a short time (within 30min). The use of titania sol added with a prescribed quantity of zirconium dioxide and/or zirconium salt can alleviate the burning conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防臭、防汚(固体
表面の汚れ防止)、殺菌等に効果があり、大気汚染物
質、あるいは排水中の汚染物質等の有害物質を分解・除
去する作用を有し、さらには光電気化学、有機合成等へ
の応用が可能な固定化光触媒とその製造方法およびその
光触媒を用いる有害物質の分解・除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is effective for deodorization, antifouling (prevention of fouling of a solid surface), sterilization, etc., and acts to decompose and remove air pollutants or pollutants in wastewater. Further, the present invention relates to an immobilized photocatalyst which can be applied to photoelectrochemistry, organic synthesis, and the like, a method for producing the same, and a method for decomposing and removing harmful substances using the photocatalyst.

【0002】[0002]

【従来の技術】半導体に光を照射すると、その照射面に
強い還元作用を有する電子と強い酸化作用を有する正孔
が生じ、半導体に接触した分子はその酸化還元作用によ
って分解される。
2. Description of the Related Art When a semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated on the irradiated surface, and molecules in contact with the semiconductor are decomposed by the redox action.

【0003】近年、半導体のこのような作用、すなわち
光触媒作用を、NOx 等の大気汚染物質の分解、防臭、
防汚、殺菌、水の浄化等の様々な環境浄化技術に応用す
る試みが精力的に行われている。しかし、現状では光触
媒反応の効率は低く、実用化されている例は極めて少な
い。
In recent years, such action of the semiconductor, i.e., a photocatalysis, degradation of air pollutants such as NO x, deodorizing,
Attempts to apply to various environmental purification technologies such as antifouling, sterilization, and water purification have been made vigorously. However, at present, the efficiency of the photocatalytic reaction is low, and very few examples have been put to practical use.

【0004】半導体光触媒は、従来から、粉末状で溶液
中に懸濁させた状態、あるいは基材上に薄膜状に固定し
た状態で使用されてきた。光触媒の活性を高く維持する
という観点からは表面積の大きい懸濁状態での使用が望
ましいが、実用面からは、取り扱いが容易で、幅広い応
用性を有する固定した状態での使用の方がはるかに有望
といえる。
Conventionally, semiconductor photocatalysts have been used in a state of being suspended in a solution in powder form or in a state of being fixed in a thin film form on a substrate. From the viewpoint of maintaining a high activity of the photocatalyst, it is desirable to use the suspension in a large surface area, but from a practical point of view, it is far more convenient to use in a fixed state that is easy to handle and has a wide range of applications. Promising.

【0005】そのため、光触媒作用を有する半導体を基
材に固定した光触媒(以下、これを「固定化光触媒」と
いう)の活性を高める種々の方法が提案されており、例
えば、特開平7−100378号公報には、アナタース
型の結晶からなる二酸化チタン固定化光触媒が開示され
ている。この光触媒は、基材上への塗布に用いる二酸化
チタンのゾルにアルコールアミンを添加し、600〜7
00℃の焼成温度までゆっくりと加熱昇温することによ
り製造される。しかしながら、この固定化光触媒では十
分な光触媒活性が得られず、アルコールアミンが飛散し
にくいため、製造時に多量のエネルギーを要するという
問題もある。
[0005] Therefore, various methods have been proposed for increasing the activity of a photocatalyst in which a semiconductor having a photocatalytic action is fixed to a substrate (hereinafter, this is referred to as “immobilized photocatalyst”). The gazette discloses a titanium dioxide-immobilized photocatalyst comprising an anatase-type crystal. This photocatalyst is prepared by adding an alcoholamine to a sol of titanium dioxide used for coating on a substrate,
It is manufactured by slowly heating and raising the temperature to a firing temperature of 00 ° C. However, this immobilized photocatalyst does not provide sufficient photocatalytic activity, and has a problem that a large amount of energy is required during production because alcoholamine is not easily scattered.

【0006】また、特開平6−293519号公報に
は、塗布に用いるチタニアゾルをあらかじめ水熱処理す
ることによって、それに含まれる二酸化チタンの微粒子
を結晶成長させる固定化光触媒の製造方法が開示されて
いる。この光触媒は比較的高い触媒活性を有している
が、結晶成長したチタニアゾルは基材に均一に塗布され
にくく、焼成後剥離しやすいという問題がある。さら
に、水熱処理は高温、高圧下での反応であるとともに、
溶液濃度、温度、圧力等に微妙なコントロールを要する
ため、光触媒の量産には適していない。
Japanese Unexamined Patent Publication (Kokai) No. 6-293519 discloses a method for producing an immobilized photocatalyst in which titania sol used for coating is subjected to hydrothermal treatment in advance to grow titanium dioxide fine particles contained therein in a crystal form. Although this photocatalyst has a relatively high catalytic activity, the crystal-grown titania sol is difficult to apply uniformly to a substrate, and has a problem that it is easily peeled off after firing. Furthermore, hydrothermal treatment is a reaction under high temperature and high pressure,
Since it requires delicate control of solution concentration, temperature, pressure, etc., it is not suitable for mass production of photocatalysts.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述したよ
うな状況下にあって、光触媒反応効率が高く、したがっ
て、防臭、防汚、抗菌、および大気中あるいは排水等に
含まれる有害物質(例えば、NOx 、農薬、有機ハロゲ
ン化合物等)の分解、無害化などに対して優れた効果を
示し、かつ、経済性、安定性、安全性などの面からも好
適な固定化光触媒とその製造方法、およびその光触媒を
用いる有害物質の分解・除去方法を提供することを課題
としてなされたものである。
SUMMARY OF THE INVENTION The present invention has a high photocatalytic reaction efficiency under the above-described circumstances, and therefore has a deodorizing effect, an antifouling effect, an antibacterial effect, and a harmful substance contained in the atmosphere or wastewater. For example, an immobilized photocatalyst which shows an excellent effect on the decomposition and detoxification of NO x , pesticides, organic halogen compounds, etc., and is also suitable from the viewpoint of economy, stability, safety and the like, and its production An object of the present invention is to provide a method and a method for decomposing and removing harmful substances using the photocatalyst.

【0008】[0008]

【課題を解決するための手段】本発明者は、二酸化チタ
ンを用いた、高い反応効率を示す固定化光触媒を開発す
べく検討を重ねた結果、チタニアゾルを基材に塗布した
後、焼成し、結晶成長させることにより、平均結晶子サ
イズが5〜30nmのアナタース型二酸化チタンとする
ことができ、固定化された二酸化チタンの比表面積が増
大し、また、配位不飽和点、格子欠陥等の反応活性サイ
トが増加し、さらには、量子サイズ効果発現時には酸化
還元力の増大効果も加わることによって、光触媒活性が
著しく向上することを見いだした。
Means for Solving the Problems As a result of repeated studies to develop an immobilized photocatalyst using titanium dioxide and exhibiting high reaction efficiency, the titania sol was applied to a substrate, and then fired. By growing the crystal, an anatase-type titanium dioxide having an average crystallite size of 5 to 30 nm can be obtained, the specific surface area of the immobilized titanium dioxide increases, and a coordination unsaturated point, a lattice defect and the like can be increased. It has been found that the photocatalytic activity is significantly improved by increasing the number of reaction active sites and further increasing the oxidation-reduction power when the quantum size effect appears.

【0009】また、このような特性を有する固定化光触
媒は、基材表面にチタニアゾルを塗布した後の焼成を短
時間とすることによって製造することができ、さらに、
塗布に用いるチタニアゾルに所定量の二酸化ジルコニウ
ムまたはジルコニウムの塩を添加することによって、一
層容易に製造することが可能であることを知見した。
Further, the immobilized photocatalyst having such properties can be produced by shortening the firing time after coating the titania sol on the substrate surface.
It has been found that by adding a predetermined amount of zirconium dioxide or a salt of zirconium to the titania sol used for coating, it is possible to more easily produce the titania sol.

【0010】本発明はこれらの知見に基づきなされたも
ので、その要旨は、下記(1)の固定化光触媒、(2)
および(3)のその製造方法、ならびに(4)のその固
定化光触媒を用いる有害物質の分解・除去方法にある。
The present invention has been made based on these findings. The gist of the present invention is as follows: (1) an immobilized photocatalyst;
And (3) a method for producing the same, and (4) a method for decomposing and removing harmful substances using the immobilized photocatalyst.

【0011】(1)平均結晶子サイズが5〜30nmの
アナタース型二酸化チタンが基材表面に薄膜状に固定さ
れていることを特徴とする光触媒。
(1) A photocatalyst wherein anatase-type titanium dioxide having an average crystallite size of 5 to 30 nm is fixed on the surface of a substrate in a thin film form.

【0012】(2)基材にチタニアゾルを塗布した後、
250〜800℃まで加熱し、その温度で30分以内保
持する焼成処理を施すことを特徴とする上記(1)に記
載の固定化光触媒の製造方法。
(2) After applying the titania sol to the substrate,
The method for producing an immobilized photocatalyst according to the above (1), wherein a calcination treatment is carried out by heating to 250 to 800 ° C. and holding at that temperature for 30 minutes or less.

【0013】(3)Zr/Ti(モル比)が0.3未満
となるように二酸化ジルコニウムおよびジルコニウム塩
のいずれか一方または両方が添加されたチタニアゾルを
基材に塗布した後、300〜1000℃で焼成処理を施
すことを特徴とする上記(1)に記載の固定化光触媒の
製造方法。
(3) After applying a titania sol to which one or both of zirconium dioxide and zirconium salt are added so that Zr / Ti (molar ratio) is less than 0.3, the substrate is heated to 300 to 1000 ° C. The method for producing an immobilized photocatalyst according to the above (1), wherein a calcination treatment is performed.

【0014】(4)上記(1)に記載の固定化光触媒と
有害物質とが接触した条件下で前記固定化光触媒にバン
ドギャップ以上のエネルギーの光を照射することを特徴
とする有害物質の分解・除去方法。
(4) Decomposition of the harmful substance, wherein the immobilized photocatalyst according to the above (1) is irradiated with light having an energy of a band gap or more under the condition that the harmful substance is in contact with the harmful substance. -Removal method.

【0015】前記の「平均結晶子サイズ」とは、基本的
には透過型電子顕微鏡で直接観察した結晶粒径を意味す
るが、この値は、X線回折によるアナタース(d101
のピークからScherrerの式を用いて算出した結
晶子サイズと良く一致することから、本発明では、平均
結晶子サイズとしてこれらのいずれの値を採用してもよ
い。なお、「平均」に特別の意味(限定)はなく、5n
m未満のもの、あるいは30nmを若干超えるものがあ
ったとしても、複数の結晶子サイズの算術平均が5〜3
0nmの範囲内にあればよい。
[0015] The term "average crystallite size" is basically meant the crystal grain size observed directly by a transmission electron microscope, this value anatase by X-ray diffraction (d 101)
Since the peaks of the peaks well match the crystallite size calculated using the Scherrer equation, any of these values may be adopted as the average crystallite size in the present invention. In addition, there is no special meaning (limitation) in "average" and 5n
m, or slightly over 30 nm, the arithmetic average of a plurality of crystallite sizes is 5 to 3
What is necessary is just to be in the range of 0 nm.

【0016】[0016]

【発明の実施の形態】以下、本発明(上記(1)〜
(4)の発明)について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention (the above (1) to
The invention (4) will be described in detail.

【0017】上記(1)の発明は、チタニアゾルを基材
表面に塗布した後、焼成により薄膜状の二酸化チタンを
結晶成長させた結果得られるもので、その結晶子サイズ
が平均で5〜30nmの範囲内にあることを特徴とする
固定化光触媒(これを、「本発明の固定化光触媒」とい
う)である。
The invention of the above (1) is obtained by applying a titania sol to the surface of a base material and then sintering to grow a thin film of titanium dioxide crystal, the crystallite size of which is 5 to 30 nm on average. An immobilized photocatalyst characterized by being within the range (this is referred to as “immobilized photocatalyst of the present invention”).

【0018】本発明の固定化光触媒においては、まず、
二酸化チタンの結晶構造がアナタース型でなければなら
ない。後述する実施例で示すように、アナタース型でな
ければ光触媒活性の高い光触媒が得られないからであ
る。
In the immobilized photocatalyst of the present invention, first,
The crystal structure of titanium dioxide must be anatase type. This is because a photocatalyst having high photocatalytic activity cannot be obtained unless an anatase type is used, as will be described in Examples described later.

【0019】さらに、その平均結晶子サイズ(以下、単
に「結晶子サイズ」という)が5〜30nmの範囲内に
あることが必要である。結晶子サイズが5nm未満であ
るということは、チタニアゾルに含まれる二酸化チタン
の平均粒子径が5nm程度であることであって、そのよ
うな微粒の二酸化チタンを製造することは実質的に困難
である。一方、結晶子サイズが30nmを超えると、光
触媒活性が著しく低下する。
Further, it is necessary that the average crystallite size (hereinafter, simply referred to as “crystallite size”) is in the range of 5 to 30 nm. The fact that the crystallite size is less than 5 nm means that the average particle diameter of titanium dioxide contained in the titania sol is about 5 nm, and it is substantially difficult to produce such fine titanium dioxide particles. . On the other hand, when the crystallite size exceeds 30 nm, the photocatalytic activity is significantly reduced.

【0020】二酸化チタンを固定する基材としては、ス
テンレス鋼、炭素鋼、亜鉛等のめっきを施した鋼板、あ
るいはアルミニウム板、チタン板等の各種の金属材料
や、セラミックス、陶磁器、ガラス等の無機材料、樹
脂、木材、活性炭等の有機材料から選択される任意の材
料、あるいはその中の2種以上からなる複合材料など、
広範囲にわたる材料が使用できる。既に塗装が施されて
いる部材を用いることもできる。また、基材の形状につ
いても何等限定はなく、厚板、薄板などの板状、ビーズ
のような球状、あるいはそのまま製品として供される複
雑な形状であってもよい。また、表面が多孔質でも緻密
質でもよい。
The base material to which titanium dioxide is fixed is a steel plate plated with stainless steel, carbon steel, zinc, or the like, or various metal materials such as an aluminum plate or a titanium plate, or an inorganic material such as ceramics, ceramics, or glass. Material, resin, wood, any material selected from organic materials such as activated carbon, or a composite material consisting of two or more of them,
A wide range of materials can be used. A member that has already been painted can also be used. The shape of the base material is not limited at all, and may be a plate shape such as a thick plate or a thin plate, a spherical shape such as a bead, or a complicated shape provided as a product as it is. Further, the surface may be porous or dense.

【0021】二酸化チタンの膜厚について特に限定はな
い。一般に、厚くなるほど高い光触媒活性を示す傾向が
ある。しかし、膜厚が2μmを超えると光触媒活性の向
上効果が認められず、膜の剥離などが起こりやすくなる
ので、2μm以下であることが好ましい。
The thickness of the titanium dioxide is not particularly limited. In general, thicker films tend to exhibit higher photocatalytic activity. However, if the film thickness exceeds 2 μm, the effect of improving the photocatalytic activity is not recognized, and the film is liable to peel off. Therefore, the thickness is preferably 2 μm or less.

【0022】この固定化光触媒は、太陽光や蛍光灯、ブ
ラックライト、水銀灯、キセノン灯等からの光によっ
て、光触媒作用を発現し、抗菌、防臭、防汚、ならびに
大気中あるいは排水などに含まれる有害物質等の分解、
無害化等に対して優れた効果を示す。また、この固定化
光触媒は、安定性、安全性(毒性がない)などにも優れ
ており、内装材、建材、ガラス、化粧板、タイル等とし
て好適に利用でき、使用するに際し何等エネルギーを必
要とせず(省エネルギー)、メンテナンスフリーである
という利点も有している。
The immobilized photocatalyst exhibits a photocatalytic action by light from sunlight, fluorescent light, black light, mercury lamp, xenon lamp, etc., and is contained in antibacterial, deodorant, antifouling, and in the atmosphere or wastewater. Decomposition of harmful substances,
Excellent effect on detoxification. In addition, this immobilized photocatalyst is excellent in stability, safety (no toxicity), etc., and can be suitably used as interior materials, building materials, glass, decorative boards, tiles, etc., and requires some energy when used. It also has the advantage of being energy-saving and maintenance-free.

【0023】前記(2)の発明は上記(1)の固定化光
触媒の製造方法で、チタニアゾルを基材に塗布した後、
250〜800℃(焼成温度)まで加熱し、その温度で
短時間(30分以内)保持する焼成処理を施す方法であ
る。
The invention of the above (2) is a method for producing an immobilized photocatalyst according to the above (1), wherein a titania sol is applied to a substrate,
This is a method of heating to 250 to 800 ° C. (firing temperature) and performing a firing process for maintaining the temperature for a short time (within 30 minutes).

【0024】チタニアゾルの調製は、超微粒の二酸化チ
タン(5〜10nm)を水に懸濁させたり、チタンテト
ラメトキシド、チタンテトラエトキシド、チタンテトラ
−n−プロポキシド、チタンテトラ−i−プロポキシ
ド、チタンテトラ−n−ブトキシド等のチタンテトラア
ルコキシドや、チタンアセチルアセトネート、四塩化チ
タン等を加水分解することによって行うことができる。
また、ゾルには、ジエタノールアミン、トリエタノール
アミン等のアルコールアミン類や、1,3プロパンジオ
ール等の乾燥抑制剤を添加してもよい。
The titania sol is prepared by suspending ultrafine titanium dioxide (5 to 10 nm) in water, titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetra-i-propoxy. , Titanium tetraalkoxide such as titanium tetra-n-butoxide, titanium acetylacetonate, titanium tetrachloride and the like.
Further, an alcohol amine such as diethanolamine or triethanolamine, or a drying inhibitor such as 1,3 propanediol may be added to the sol.

【0025】このようにして得られたチタニアゾルに含
まれる二酸化チタンの平均粒子径は5〜10nm程度で
あり、これを基材表面に塗布し、焼成し、結晶成長させ
ることによって所望の結晶子サイズ(5〜30nm)の
二酸化チタン固定化光触媒とする。
The titanium dioxide contained in the titania sol thus obtained has an average particle size of about 5 to 10 nm. The titanium dioxide is applied to the surface of a base material, baked, and crystal-grown to obtain a desired crystallite size. (5 to 30 nm) titanium dioxide-immobilized photocatalyst.

【0026】基材へのチタニアゾルの塗布は、スピンコ
ーティング、ディップコーティング、スプレーコーティ
ング、バーコーティング等によって行うことができる。
The titania sol can be applied to the substrate by spin coating, dip coating, spray coating, bar coating or the like.

【0027】チタニアゾルを基材に塗布した後、焼成す
ることによって固定化光触媒が得られるが、基材表面に
薄膜状に固定化した二酸化チタン等の金属酸化物の焼結
は極めて速やかに起こり、結晶粒が大きくなるため、通
常の焼成条件では、上述した結晶子サイズが5〜30n
mの範囲にある二酸化チタンからなる本発明の固定化光
触媒は得られない。
An immobilized photocatalyst can be obtained by applying the titania sol to a substrate and then sintering. However, sintering of a metal oxide such as titanium dioxide immobilized in a thin film on the surface of the substrate occurs very quickly. Since the crystal grains become large, the crystallite size described above is 5 to 30 n under normal firing conditions.
The immobilized photocatalyst of the present invention comprising titanium dioxide in the range of m cannot be obtained.

【0028】そこで、焼成を前記の所定の条件で行う。
すなわち、チタニアゾルを基材に塗布した後、焼成温度
まで加熱し、その温度で所定時間保持した後、冷却する
焼成処理を行う。焼成は、塗布した状態(室温状態)の
まま行ってもよいし、あるいは塗布後100℃前後で乾
燥した状態から行ってもよい。
Therefore, firing is performed under the above-mentioned predetermined conditions.
That is, after applying the titania sol to the substrate, the substrate is heated to a firing temperature, held at that temperature for a predetermined time, and then cooled to perform a firing process. The sintering may be performed in a state of being applied (room temperature state), or may be performed after being dried at about 100 ° C. after the application.

【0029】焼成温度は250〜800℃の温度域とす
る。焼成温度が250℃より低いと二酸化チタンはアモ
ルファスのままであり、一方、800℃を超えると結晶
粒が成長して大きくなりすぎ、あるいはルチル晶が現
れ、高い光触媒活性を有する固定化光触媒は得られな
い。
The firing temperature is in a temperature range of 250 to 800 ° C. If the firing temperature is lower than 250 ° C., the titanium dioxide remains amorphous, while if it exceeds 800 ° C., crystal grains grow too large or rutile crystals appear, and an immobilized photocatalyst having high photocatalytic activity is obtained. I can't.

【0030】焼成温度までの加熱は急速に行うことが好
ましい。加熱が急速に行われない場合は、前記の焼成温
度に達するまでに二酸化チタンの焼結が進み過ぎ、結晶
粒が粗大化する場合がある。好ましい加熱速度は、30
℃/分以上である。なお、急速に加熱するには、熱処理
炉をあらかじめ所定の温度に加熱しておき、その中へチ
タニアゾルを塗布した基材を直接装入する方法等を用い
るのが好適である。
The heating to the firing temperature is preferably performed rapidly. If heating is not performed rapidly, sintering of titanium dioxide may progress too much before the above-mentioned firing temperature is reached, and the crystal grains may become coarse. A preferred heating rate is 30
° C / min or more. For rapid heating, it is preferable to use a method in which a heat treatment furnace is heated to a predetermined temperature in advance, and a substrate coated with titania sol is directly charged therein.

【0031】焼成温度に達した後の保持時間(焼成時
間)は30分以内とする。焼成温度に幅があるので、実
際には、焼成温度として前記の温度範囲内の低めの温度
に設定した場合は焼成時間を長くし、高めの温度に設定
した場合は短くする等、適宜調節する。なお、焼成温度
を400〜700℃の範囲とし、焼成時間を10分以内
とするのが、高い光触媒活性を有する固定化光触媒を得
る上で好ましい。
The holding time (firing time) after reaching the firing temperature is within 30 minutes. Since the firing temperature has a range, in practice, the firing time is set to be longer when the firing temperature is set to a lower temperature within the above temperature range, and shortened when the temperature is set to a higher temperature. . It is preferable to set the firing temperature in the range of 400 to 700 ° C. and the firing time within 10 minutes in order to obtain an immobilized photocatalyst having high photocatalytic activity.

【0032】焼成後は冷却するが、冷却も急速に行うこ
とが望ましい。冷却速度が小さいと、加熱の場合と同様
に焼結が進み過ぎる場合があり、所望の結晶子サイズを
有するアナタース型の二酸化チタンからなる固定化光触
媒は得られない。冷却速度は、20℃/分以上とするこ
とが好ましい。なお、急速に冷却する方法としては、空
冷、水冷等の方法が利用できる。
After firing, cooling is performed, and it is desirable that cooling be performed rapidly. If the cooling rate is low, sintering may proceed too much as in the case of heating, and an immobilized photocatalyst made of anatase-type titanium dioxide having a desired crystallite size cannot be obtained. The cooling rate is preferably 20 ° C./min or more. In addition, as a method of rapidly cooling, a method such as air cooling or water cooling can be used.

【0033】前記の(3)の発明は、(2)の発明と同
じく上記(1)の固定化光触媒の製造方法で、Zr/T
i(モル比)が0.3未満となるように二酸化ジルコニ
ウムおよびジルコニウム塩のいずれか一方または両方が
添加されたチタニアゾルを基材に塗布した後、300〜
1000℃で焼成処理を施す方法である。
The invention of the above (3) is the same as the invention of the above (2), wherein the method for producing an immobilized photocatalyst according to the above (1), wherein Zr / T
After applying a titania sol to which one or both of zirconium dioxide and a zirconium salt are added so that i (molar ratio) is less than 0.3, the substrate is treated with 300 to
This is a method of performing a baking treatment at 1000 ° C.

【0034】チタニアゾルに添加された二酸化ジルコニ
ウムは、二酸化チタンの結晶の内部(結晶粒内)あるい
は結晶粒界に分散して存在し、それによる一種のピン留
め効果によって、二酸化チタンの焼成時におけるアナタ
ース晶の粒成長が抑えられる。また、二酸化ジルコニウ
ムの添加は、800℃以上の高温焼成時に起こるアナタ
ースから光触媒活性の低いルチルへの転移の抑制にも有
効である。なお、ジルコニウム塩も、焼成時に容易に酸
化物になるので、二酸化ジルコニウムが添加された場合
と同様の作用効果を有している。
The zirconium dioxide added to the titania sol is dispersed inside the titanium dioxide crystal (in the crystal grains) or at the crystal grain boundaries, and as a result of a kind of pinning effect, an anatase during firing of the titanium dioxide. Crystal grain growth is suppressed. The addition of zirconium dioxide is also effective in suppressing the transition from anatase to rutile, which has low photocatalytic activity, which occurs during firing at a high temperature of 800 ° C. or higher. The zirconium salt also easily becomes an oxide at the time of firing, and thus has the same effect as the case where zirconium dioxide is added.

【0035】したがって、これら二酸化ジルコニウムお
よび/またはジルコニウム塩を添加することによって、
前記(2)の発明で規定する焼成温度、あるいは焼成時
間から若干外れる場合でも、結晶子サイズの小さい二酸
化チタンからなる固定化光触媒を製造することが可能と
なる。つまり、焼成条件を緩和することができ、本発明
の固定化光触媒を一層容易に製造することができる。
Therefore, by adding these zirconium dioxide and / or zirconium salt,
Even if the firing temperature or firing time slightly deviates from the firing temperature or the firing time specified in the invention (2), it is possible to produce an immobilized photocatalyst made of titanium dioxide having a small crystallite size. That is, the firing conditions can be relaxed, and the immobilized photocatalyst of the present invention can be manufactured more easily.

【0036】二酸化ジルコニウムは、超微粒の二酸化ジ
ルコニウム(5〜10nm)を水に懸濁させたり、ジル
コニウムテトラ−n−プロポキシド、ジルコニウムテト
ラ−i−プロポキシド、ジルコニウムテトラ−n−ブト
キシド等のジルコニウムテトラアルコキシドや、四塩化
ジルコニウム等を加水分解することによってジルコニア
ゾルとして調製することができる。また、ジルコニウム
塩としては、オキシ塩化ジルコニウム、硝酸ジルコニル
等が利用できる。
The zirconium dioxide is prepared by suspending ultrafine zirconium dioxide (5 to 10 nm) in water, or zirconium such as zirconium tetra-n-propoxide, zirconium tetra-i-propoxide, zirconium tetra-n-butoxide. It can be prepared as a zirconia sol by hydrolyzing tetraalkoxide, zirconium tetrachloride or the like. As the zirconium salt, zirconium oxychloride, zirconyl nitrate and the like can be used.

【0037】塗布に用いる二酸化ジルコニウムおよび/
またはジルコニウム塩を添加したチタニアゾルの調製
は、別途調製したチタニアゾルに上記のジルコニアゾル
あるいはジルコニウム塩を添加してもよいが、チタニア
ゾルを調製する際、チタンテトラアルコキシド等にジル
コニウムテトラアルコキシドあるいはジルコニウム塩を
あらかじめ混合しておくことにより簡便に行うことがで
きる。
Zirconium dioxide used for coating and / or
Alternatively, the preparation of the titania sol to which the zirconium salt is added may be such that the zirconia sol or the zirconium salt described above may be added to a separately prepared titania sol. Mixing can be easily performed.

【0038】チタニアゾルに添加する二酸化ジルコニウ
ムおよび/またはジルコニウム塩の量はZr/Ti(モ
ル比)で0.3未満(ただし、0は含まない)とする。
Zr/Ti(モル比)が0.3(すなわち、Tiに対す
るZrの量が30mol%)以上になると、焼成によっ
てチタンとジルコニウムの複合酸化物、例えばZrTi
4 等の生成が優先しておこるため、光触媒活性は著し
く低下する。好ましくは1〜18mol%、さらに好ま
しくは12〜18mol%である。
The amount of zirconium dioxide and / or zirconium salt to be added to the titania sol is less than 0.3 (excluding 0) in Zr / Ti (molar ratio).
When Zr / Ti (molar ratio) becomes 0.3 or more (that is, the amount of Zr with respect to Ti is 30 mol%) or more, a composite oxide of titanium and zirconium, for example, ZrTi
Since the generation of O 4 and the like occurs preferentially, the photocatalytic activity is significantly reduced. Preferably it is 1 to 18 mol%, more preferably 12 to 18 mol%.

【0039】焼成温度は300〜1000℃とする。焼
成温度がこの温度域の下限よりも低いと非晶質となり、
上限を超えるとルチル晶となるため、いずれの場合も光
触媒活性の高い固定化光触媒は得られない。
The firing temperature is 300 to 1000 ° C. If the firing temperature is lower than the lower limit of this temperature range, it becomes amorphous,
If the upper limit is exceeded, rutile crystals will be formed, and in either case, an immobilized photocatalyst having high photocatalytic activity cannot be obtained.

【0040】焼成温度までの加熱は、二酸化ジルコニウ
ムが二酸化チタンの焼成時におけるアナタース晶の粒成
長を効果的に抑制しているため、前記(2)の製造方法
での加熱条件よりもかなり穏和な条件で行ってもよい。
その条件に特に限定はないが、好ましい加熱速度は、3
℃/分以上である。
The heating up to the sintering temperature is considerably milder than the heating condition in the production method (2) because zirconium dioxide effectively suppresses the growth of anatase crystals during the sintering of titanium dioxide. It may be performed under conditions.
The conditions are not particularly limited, but the preferred heating rate is 3
° C / min or more.

【0041】焼成温度に達した後の保持時間(焼成時
間)についても特に限定はない。しかし、過度に長時間
にわたると生産効率が低下し、コストアップの要因とな
るので、2時間以内とするのが好ましい。
The holding time (sintering time) after reaching the firing temperature is not particularly limited. However, if the time is excessively long, the production efficiency is reduced and the cost is increased.

【0042】焼成後の冷却についても、加熱と同様、
(2)の方法に比べて穏和な条件で行ってもよいが、好
ましい条件は、3℃/分以上である。
Cooling after firing is the same as heating.
The reaction may be performed under milder conditions than the method (2), but a preferable condition is 3 ° C./min or more.

【0043】上記(2)および(3)の方法によれば、
本発明の固定化光触媒を特別の手段を必要とせずに、比
較的低コストで容易に製造することができる。
According to the methods (2) and (3),
The immobilized photocatalyst of the present invention can be easily manufactured at a relatively low cost without requiring any special means.

【0044】前記(4)の発明は、(1)の発明の固定
化光触媒を用いて、特に有害物質を分解・除去する方法
で、これらの固定化光触媒と有害物質とが接触した条件
下で前記光触媒にバンドギャップ以上のエネルギーの光
を照射する方法である。つまり、有害物質が固定化光触
媒の触媒作用を受け得る状態の下で前記光触媒を構成す
る結晶内の充満帯にある相当数の電子が禁止帯を越えて
空帯(伝導帯)へ移るに足るエネルギーの光を照射する
のである。
The invention of the above (4) is a method of decomposing and removing harmful substances by using the immobilized photocatalyst of the invention of (1), and under the condition that these immobilized photocatalysts and harmful substances come into contact with each other. A method of irradiating the photocatalyst with light having energy equal to or greater than a band gap. In other words, under the condition that the harmful substance can be catalyzed by the immobilized photocatalyst, a considerable number of electrons in the full band in the crystal constituting the photocatalyst pass through the forbidden band to the vacant band (conduction band). It emits light of energy.

【0045】ここでいう「有害物質」とは、人体に悪影
響を及ぼす物質、あるいはその可能性がある物質のこと
であり、具体的には、NOx 、SOx 、フロン、アンモ
ニア、硫化水素等の排ガスあるいは大気中に含まれる物
質、アルデヒド類、アミン類、メルカプタン類、アルコ
ール類、BTX(ベンゼン、トルエン、キシレン)、フ
ェノール類等の有機化合物、さらには、トリハロメタ
ン、トリクロロエチレン等の有機ハロゲン化合物、除草
剤、殺菌剤、殺虫剤等の種々の農薬、蛋白質やアミノ酸
をはじめ種々の生化学的酸素要求量(BOD)の高い物
質、界面活性剤、シアン化合物や硫黄化合物等の無機化
合物、種々の重金属イオン等、さらには、細菌、放線
菌、菌類、藻類などの微生物等、主として排水中に含ま
れるもの等が挙げられる。
The "harmful substance" as referred to herein is a substance which has a bad influence on the human body or a substance which may cause such a harmful effect, and specifically, NO x , SO x , chlorofluorocarbon, ammonia, hydrogen sulfide, etc. Substances contained in exhaust gas or air of the air, aldehydes, amines, mercaptans, alcohols, organic compounds such as BTX (benzene, toluene, xylene), phenols, and the like; and organic halogen compounds such as trihalomethane and trichloroethylene; Various pesticides such as herbicides, fungicides, insecticides, various substances with high biochemical oxygen demand (BOD) including proteins and amino acids, surfactants, inorganic compounds such as cyanide and sulfur compounds, various Heavy metal ions and the like, and also microorganisms such as bacteria, actinomycetes, fungi, and algae, and those mainly contained in wastewater. .

【0046】さらに、上記「有害物質」には、光触媒あ
るいはそれを用いた多機能部材の表面に直接付着する
「付着物質」も含まれる。例えば、大腸菌、ブドウ球
菌、緑濃菌、カビ等の菌類の他、油、タバコのヤニ、指
紋、雨垂れ、泥などである。
Further, the "harmful substance" includes an "adhering substance" which directly adheres to the surface of a photocatalyst or a multifunctional member using the same. For example, in addition to fungi such as Escherichia coli, staphylococci, green bacterium, and mold, there are oil, tobacco tar, fingerprints, rain dripping, and mud.

【0047】また、前記の「固定化光触媒と有害物質と
が接触した条件下」とは、固定化光触媒に上記の有害物
質が直接付着している場合の他に、例えば上記の有害物
質が含まれる空気その他のガスや、水その他の液体中に
固定化光触媒が置かれ、有害物質が光触媒の触媒作用を
受け得る状態の下にある場合をいう。
The above-mentioned “conditions under which the immobilized photocatalyst contacts the harmful substance” include, for example, the case where the above-mentioned harmful substance is directly attached to the immobilized photocatalyst. The immobilized photocatalyst is placed in air or other gas or water or other liquid, and the harmful substance is in a state where it can be catalyzed by the photocatalyst.

【0048】このような条件下で(1)の発明の固定化
光触媒にバンドギャップ以上のエネルギーの光を照射す
ると、光触媒作用が発現して、有害物質が効果的に分解
・除去される。
When the immobilized photocatalyst of the invention (1) is irradiated with light having an energy equal to or larger than the band gap under such conditions, a photocatalytic action is exhibited, and harmful substances are effectively decomposed and removed.

【0049】バンドギャップ以上のエネルギーの光とし
ては、紫外線を含む光が好ましく、具体的には、太陽光
や、蛍光灯、ブラックライト、水銀灯、キセノン灯等か
らの光があり、これらを光源として用いることができ
る。特に、波長が300〜400nmの近紫外線を含む
光が好ましい。
The light having an energy equal to or greater than the band gap is preferably light containing ultraviolet rays. Specifically, there are sunlight, light from fluorescent lamps, black lights, mercury lamps, xenon lamps and the like. Can be used. In particular, light containing near-ultraviolet light having a wavelength of 300 to 400 nm is preferable.

【0050】光の照射量や照射時間などは、分解・除去
しようとする有害物質の量などによって適宜定めればよ
い。
The irradiation amount and irradiation time of light may be appropriately determined depending on the amount of harmful substances to be decomposed and removed.

【0051】[0051]

【実施例】【Example】

(実施例1)チタンテトラ−n−ブトキシド40.5g
(0.12mol)を脱水エタノール75ml(ミリリ
ットル)に加えた混合液を室温で30分間攪拌した後、
氷浴を用いて冷却した。その後、この混合液に、エタノ
ール(75ml)、水(2.6ml)、硝酸(2ml)
の混合液をゆっくりと滴下し、1時間攪拌した後、氷浴
から取り出して室温まで戻し、12時間攪拌を続けて透
明なチタニアゾル液を得た。
(Example 1) 40.5 g of titanium tetra-n-butoxide
(0.12 mol) was added to 75 ml (milliliter) of dehydrated ethanol, and the mixture was stirred at room temperature for 30 minutes.
Cool using an ice bath. Then, ethanol (75 ml), water (2.6 ml), nitric acid (2 ml) were added to this mixture.
Was slowly added dropwise, and the mixture was stirred for 1 hour, taken out of the ice bath, returned to room temperature, and stirred for 12 hours to obtain a transparent titania sol solution.

【0052】さらに、このゾル液をスピンコータを用
い、回転数300rpm、保持時間1分として、鏡面研
磨したステンレス鋼製基材(SUS304:4cm×4
cm×厚さ1mm)上に塗布した。その後直ちに、この
基材を、炉内温度をあらかじめ550℃に設定した電熱
炉に入れ、3分間焼成した後取り出し、空気中で冷却し
た。このゾル液の塗布、焼成操作を4回繰り返すことに
よって、ステンレス鋼表面に二酸化チタンを薄膜状に形
成させた固定化光触媒を作製した。
Further, this sol was subjected to a mirror-polished stainless steel substrate (SUS304: 4 cm × 4) using a spin coater at a rotation speed of 300 rpm and a holding time of 1 minute.
cm × 1 mm thick). Immediately thereafter, the substrate was placed in an electric furnace having a furnace temperature set to 550 ° C. in advance, fired for 3 minutes, taken out, and cooled in air. By repeating this sol solution application and firing operation four times, an immobilized photocatalyst having titanium dioxide formed in a thin film on the surface of stainless steel was produced.

【0053】なお、この光触媒の二酸化チタンは、X線
回折によって調べた結果、図1に示すようにアナタース
晶のパターンのみが認められた。また、Scherre
rの式から求めた結晶子サイズ(d101 )は15.5n
mであり、透過型電子顕微鏡で観察した結晶粒径(約1
5nm)とほぼ同じ値であった。表1に焼成温度、焼成
時間および結晶子サイズを示す。
The titanium dioxide of this photocatalyst was examined by X-ray diffraction. As a result, only an anatase crystal pattern was observed as shown in FIG. Also, Scherre
The crystallite size (d 101 ) determined from the equation for r is 15.5 n
m and the crystal grain size (about 1 μm) observed with a transmission electron microscope.
5 nm). Table 1 shows the firing temperature, firing time, and crystallite size.

【0054】この二酸化チタン固定化光触媒を試料とし
て酢酸の分解実験を行った。
Using this titanium dioxide-immobilized photocatalyst as a sample, an acetic acid decomposition experiment was performed.

【0055】まず、石英製反応セル(内容量100c
c)に、試料と濃度6.6mM(ミリモル)の酢酸水溶
液70ml(酢酸含有量462μmol)を入れ、酸素
を20分間送通した。次いで、25℃で磁器攪拌しなが
ら、250Wの超高圧水銀灯から、UVフィルター(東
芝製UV−31)を通して4時間光照射を行った。その
後、水溶液に含まれる酢酸の量をイオンクロマトグラフ
ィーにより分析した結果、酢酸の分解による減少量は8
0μmolであった(同表に表示)。
First, a quartz reaction cell (with an internal capacity of 100 c)
In c), the sample and 70 ml of an acetic acid aqueous solution having a concentration of 6.6 mM (mmol) (acetic acid content: 462 μmol) were put, and oxygen was passed for 20 minutes. Next, light irradiation was performed for 4 hours through a UV filter (UV-31 manufactured by Toshiba) from a 250 W ultra-high pressure mercury lamp while stirring the ceramic at 25 ° C. Thereafter, the amount of acetic acid contained in the aqueous solution was analyzed by ion chromatography.
It was 0 μmol (shown in the same table).

【0056】(実施例2)チタンテトラ−i−プロポキ
シド80gを50mlのイソプロパノールに加えた混合
液を激しく撹拌している蒸留水500mlに滴下し、そ
の後、硝酸(60%、以下、硝酸とは60%硝酸をい
う)5gを加えた。次いで、80℃で24時間撹拌し、
真空下で濃縮し、二酸化チタンを15重量%含むチタニ
アゾル液を得、さらに2倍量のエタノールを加えること
によって塗布用ゾル液とした。
Example 2 A mixture obtained by adding 80 g of titanium tetra-i-propoxide to 50 ml of isopropanol was dropped into 500 ml of vigorously stirred distilled water, and then nitric acid (60%, hereinafter referred to as nitric acid). 5 g of 60% nitric acid) were added. Then, the mixture was stirred at 80 ° C. for 24 hours,
The solution was concentrated under vacuum to obtain a titania sol solution containing 15% by weight of titanium dioxide, and a 2-fold amount of ethanol was added to obtain a sol solution for application.

【0057】このゾル液を実施例1の場合と同様にステ
ンレス鋼製基材(SUS304:4cm×4cm×厚さ
1mm)上に塗布した後、空気中で30分乾燥し、炉内
温度が250℃の電熱炉に入れ、30分間焼成した後取
り出し、空気中で冷却した。このゾル液の塗布、焼成操
作を4回繰り返すことによって、二酸化チタン固定化光
触媒を作製した。
This sol solution was applied to a stainless steel base material (SUS304: 4 cm × 4 cm × 1 mm thick) in the same manner as in Example 1, and then dried in air for 30 minutes. C., placed in an electric heating furnace, baked for 30 minutes, taken out, and cooled in air. The application and baking operations of this sol solution were repeated four times to produce a titanium dioxide-immobilized photocatalyst.

【0058】なお、この光触媒の二酸化チタンは、X線
回折によって調べた結果、アナタース型であり、その結
晶子サイズ(d101 )はおよそ6.0nmであった。表
1に焼成温度、焼成時間および結晶子サイズを示す。
The titanium dioxide of this photocatalyst was anatase type as a result of examination by X-ray diffraction, and its crystallite size (d 101 ) was about 6.0 nm. Table 1 shows the firing temperature, firing time, and crystallite size.

【0059】この二酸化チタン固定化光触媒を試料とし
て、実施例1におけると同様の方法で酢酸の分解実験を
行った。結果を表1に示したが、酢酸の分解による減少
量は54.5μmolであった。
Using this titanium dioxide-immobilized photocatalyst as a sample, an acetic acid decomposition experiment was performed in the same manner as in Example 1. The results are shown in Table 1, and the amount reduced by the decomposition of acetic acid was 54.5 μmol.

【0060】(実施例3〜10)焼成条件(焼成温度お
よび焼成時間)を表1に示す条件とした以外はすべて実
施例1と同様の方法で二酸化チタン固定化光触媒を得、
同じく実施例1におけると同様の方法で酢酸の分解実験
を行った。結果は表1に示すとおりであった。
(Examples 3 to 10) A titanium dioxide-immobilized photocatalyst was obtained in the same manner as in Example 1 except that the calcination conditions (calcination temperature and calcination time) were as shown in Table 1.
Similarly, an experiment for decomposing acetic acid was performed in the same manner as in Example 1. The results were as shown in Table 1.

【0061】(比較例1)焼成時間を60分とした以外
は実施例1と同様の方法で二酸化チタン固定化光触媒を
作製した。この光触媒の二酸化チタンは、X線回折の結
果、図1に示すようにアナタース晶のピークのみが認め
られたが、Scherrerの式から求めた結晶子サイ
ズ(d101 )は32.5nm(透過型電子顕微鏡による
観察では、33.0nm)で、本発明で規定する範囲か
ら外れるものであった。
Comparative Example 1 A titanium dioxide-immobilized photocatalyst was produced in the same manner as in Example 1 except that the firing time was changed to 60 minutes. As a result of X-ray diffraction, the titanium dioxide of this photocatalyst showed only an anatase crystal peak as shown in FIG. 1. However, the crystallite size (d 101 ) determined from the Scherrer equation was 32.5 nm (transmission type). When observed with an electron microscope, the value was 33.0 nm), which was out of the range specified in the present invention.

【0062】この二酸化チタン固定化光触媒を試料とし
て、実施例1におけると同様の方法で酢酸の分解実験を
行った。その結果は、表1に示したように、酢酸の分解
による減少量は0.3μmolで、上記の実施例1に比
べて著しく低かった。
Using this titanium dioxide-immobilized photocatalyst as a sample, an acetic acid decomposition experiment was performed in the same manner as in Example 1. As a result, as shown in Table 1, the decrease due to the decomposition of acetic acid was 0.3 μmol, which was significantly lower than that in Example 1 described above.

【0063】(比較例2)焼成温度を850℃とした以
外は実施例1と同様の方法で二酸化チタン固定化光触媒
を得た。この光触媒は、X線回折の結果、結晶子サイズ
が35.5nmのアナタース晶と70〜80nmの結晶
粒径を有するルチル晶が混在した状態にあった。
Comparative Example 2 A titanium dioxide-immobilized photocatalyst was obtained in the same manner as in Example 1 except that the firing temperature was 850 ° C. As a result of X-ray diffraction, this photocatalyst was in a state in which an anatase crystal having a crystallite size of 35.5 nm and a rutile crystal having a crystal grain size of 70 to 80 nm were mixed.

【0064】この二酸化チタン固定化光触媒を試料とし
て、実施例1におけると同様の方法で酢酸の分解実験を
行った。その結果、表1に示したように、酢酸の分解量
は0であった。
Using this titanium dioxide-immobilized photocatalyst as a sample, an acetic acid decomposition experiment was performed in the same manner as in Example 1. As a result, as shown in Table 1, the decomposition amount of acetic acid was 0.

【0065】(実施例11)チタンテトラ−n−ブトキ
シド40.5g(0.12mol)とジルコニウムテト
ラ−n−プロポキシドを含有(濃度70%)する2−プ
ロパノール溶液0.561g(1.2×10-3mol)
を脱水エタノール75mlに加えた混合液を室温で30
分間攪拌した後、氷浴を用いて冷却した。その後、この
混合液に、エタノール(75ml)、水(2.6m
l)、硝酸(2ml)の混合液をゆっくりと滴下し、1
時間攪拌した後、氷浴から取り出して室温まで戻し、1
2時間攪拌を続けてチタニアゾルとジルコニアゾルの混
合ゾル液(Zr/Ti=1mol%)を得た。
Example 11 0.561 g of a 2-propanol solution containing 40.5 g (0.12 mol) of titanium tetra-n-butoxide and 70% zirconium tetra-n-propoxide (1.2 × 10 -3 mol)
Was added to 75 ml of dehydrated ethanol.
After stirring for minutes, the mixture was cooled using an ice bath. Thereafter, ethanol (75 ml) and water (2.6 m
l), a mixed solution of nitric acid (2 ml) was slowly dropped, and 1
After stirring for an hour, remove from the ice bath and return to room temperature.
Stirring was continued for 2 hours to obtain a mixed sol solution of titania sol and zirconia sol (Zr / Ti = 1 mol%).

【0066】さらに、このゾル液を、実施例1における
と同様の方法で、ステンレス鋼製基材(SUS304:
4cm×4cm×厚さ1mm)上に塗布し、空気中55
0℃で60分間焼成した。このゾル液の塗布、焼成操作
を4回繰り返すことによって、ステンレス鋼を基材とす
る固定化光触媒を作製した。
Further, this sol solution was applied to a stainless steel substrate (SUS304:
4cm x 4cm x 1mm thickness)
Baking was performed at 0 ° C. for 60 minutes. By repeating the application and firing operations of the sol solution four times, an immobilized photocatalyst based on stainless steel was produced.

【0067】図2に、この基材表面に形成された光触媒
(二酸化ジルコニウムを含有する二酸化チタン)のX線
回折図を示す。図示するように、二酸化チタンはアナタ
ース型であった。一方、二酸化ジルコニウムに基づく回
折パターンは認められなかった。また、Scherre
rの式から求めた二酸化チタンアナタース晶の結晶子サ
イズ(d101 )は20.1nmであった。この結晶子サ
イズは、同じ焼成条件で調製した前記の比較例1の試料
の結晶子サイズ(32.5nm)と比べて明らかに小さ
く、二酸化ジルコニウムの添加によって二酸化チタンの
焼結が抑制され、結晶粒の粗大化が防止されたことがわ
かる。
FIG. 2 shows an X-ray diffraction diagram of the photocatalyst (titanium dioxide containing zirconium dioxide) formed on the substrate surface. As shown, the titanium dioxide was of the anatase type. On the other hand, no diffraction pattern based on zirconium dioxide was observed. Also, Scherre
The crystallite size (d 101 ) of the titanium dioxide anatase crystal determined from the equation for r was 20.1 nm. This crystallite size is clearly smaller than the crystallite size (32.5 nm) of the sample of Comparative Example 1 prepared under the same firing conditions, and the addition of zirconium dioxide suppresses the sintering of titanium dioxide, and It can be seen that the coarsening of the grains was prevented.

【0068】この固定化光触媒を試料として、実施例1
におけると同様の方法で酢酸の分解実験を行った。結果
は表1に示すとおりであった。
Using this immobilized photocatalyst as a sample, Example 1
An experiment for decomposing acetic acid was performed in the same manner as described above. The results were as shown in Table 1.

【0069】(実施例12)チタンテトラ−i−プロポ
キシド80gを50mlのイソプロパノールに加えた混
合液を激しく撹拌している蒸留水500mlに滴下し、
その後、硝酸(60%)5gを加えた。次いで、80℃
で24時間撹拌し、真空下で濃縮し、二酸化チタンを1
5重量%含むチタニアゾル液を得た。そのゾル液に、オ
キシ塩化ジルコニウムを2.73g加え(Zr/Ti=
3mol%)、十分撹拌した後、さらに2倍量のエタノ
ールを加えることによって塗布用ゾル液を得た。
Example 12 A mixture obtained by adding 80 g of titanium tetra-i-propoxide to 50 ml of isopropanol was dropped into 500 ml of vigorously stirred distilled water.
Thereafter, 5 g of nitric acid (60%) was added. Then, at 80 ° C
For 24 hours and concentrated under vacuum to remove titanium dioxide in 1 part.
A titania sol solution containing 5% by weight was obtained. 2.73 g of zirconium oxychloride was added to the sol solution (Zr / Ti =
3 mol%), and after sufficiently stirring, a 2-fold amount of ethanol was added to obtain a coating sol solution.

【0070】このゾル液を実施例1の場合と同様にステ
ンレス鋼製基材(SUS304:4cm×4cm×厚さ
1mm)上に塗布し、空気中500℃で60分間焼成し
た。このゾル液の塗布、焼成操作を4回繰り返すことに
よって、固定化光触媒を作製した。この基材上の光触媒
はアナタース晶からなるものであり、その結晶子サイズ
(d101 )は19.5nmであった。
This sol solution was applied on a stainless steel base material (SUS304: 4 cm × 4 cm × 1 mm thick) in the same manner as in Example 1, and baked at 500 ° C. for 60 minutes in air. The immobilized photocatalyst was produced by repeating the application and firing operations of the sol solution four times. The photocatalyst on this substrate was composed of anatase crystals, and its crystallite size (d 101 ) was 19.5 nm.

【0071】この固定化光触媒を試料として、実施例1
におけると同様の方法で酢酸の分解実験を行った。結果
は表1に示すとおりであった。
Using this immobilized photocatalyst as a sample, Example 1
An experiment for decomposing acetic acid was performed in the same manner as described above. The results were as shown in Table 1.

【0072】(実施例13〜17)ジルコニウムテトラ
−n−プロポキシドを含有(濃度70%)する2−プロ
パノール溶液の量を1.69g、3.37g、6.73
g、10.1g、13.48gおよび13.48gとし
た以外はすべて実施例11と同様の方法でステンレス鋼
を基材とする固定化光触媒を作製した。この基材表面に
形成された光触媒(二酸化ジルコニウムを含有する二酸
化チタン)は、X線回折の結果、図2に示すようにアナ
タース晶のピークのみが認められ、二酸化ジルコニウム
に基づく回折ピークは認められなかった。
Examples 13 to 17 The amount of a 2-propanol solution containing zirconium tetra-n-propoxide (concentration: 70%) was 1.69 g, 3.37 g, 6.73.
g, 10.1 g, 13.48 g, and 13.48 g, respectively, to produce an immobilized photocatalyst based on stainless steel in the same manner as in Example 11. X-ray diffraction of the photocatalyst (titanium dioxide containing zirconium dioxide) formed on the surface of the substrate showed only an anatase crystal peak as shown in FIG. 2 and a diffraction peak based on zirconium dioxide was observed. Did not.

【0073】これらの固定化光触媒を試料として、実施
例1におけると同様の方法で酢酸の分解実験を行った。
結果は表1に示すとおりで、酢酸の分解量は、次に示す
比較例3(二酸化ジルコニウムが本発明で規定する量を
超える固定化光触媒)に比べ大幅に上回った。
Using these immobilized photocatalysts as samples, acetic acid decomposition experiments were performed in the same manner as in Example 1.
The results are shown in Table 1. The decomposition amount of acetic acid was much higher than that of Comparative Example 3 (immobilized photocatalyst in which zirconium dioxide exceeds the amount specified in the present invention).

【0074】(比較例3)ジルコニウムテトラ−n−プ
ロポキシドを含有(濃度70%)する2−プロパノール
溶液の量を16.84gとした以外はすべて実施例11
と同様の方法でステンレス鋼を基材とする固定化光触媒
を作製した。この基材表面に形成された光触媒(二酸化
ジルコニウムを含有する二酸化チタン)は、X線回折の
結果、図2に示すようにアナタース晶に基づく回折パタ
ーンは全く認められなかった。
Comparative Example 3 Example 11 was repeated except that the amount of the 2-propanol solution containing zirconium tetra-n-propoxide (concentration: 70%) was changed to 16.84 g.
An immobilized photocatalyst using stainless steel as a base material was produced in the same manner as described above. As a result of X-ray diffraction of the photocatalyst (titanium dioxide containing zirconium dioxide) formed on the surface of the substrate, no diffraction pattern based on anatase crystals was observed as shown in FIG.

【0075】この固定化光触媒を試料として、実施例1
におけると同様の方法で酢酸の分解実験を行った。結果
は表1に示すとおりで、酢酸はほとんど分解されなかっ
た。これは、X線回折では観測されなかったが、チタン
とジルコニウムの複合酸化物(ZrTiO4 等)が主に
生成し、光触媒活性が著しく減少したことによるもので
ある。
Using this immobilized photocatalyst as a sample, Example 1
An experiment for decomposing acetic acid was performed in the same manner as described above. The results are as shown in Table 1, and acetic acid was hardly decomposed. Although this was not observed by X-ray diffraction, it is because a composite oxide of titanium and zirconium (such as ZrTiO 4 ) was mainly produced, and the photocatalytic activity was significantly reduced.

【0076】(実施例18)実施例16で調製したゾル
液(Ti/Zr=18mol%)を用い、焼成温度を9
00℃、焼成時間を3分間とした以外はすべて実施例1
1と同様の方法でステンレス鋼を基材とする固定化光触
媒を作製した。この基材表面に形成された光触媒は、結
晶子サイズ25.5nmのアナタース晶からなってお
り、ルチル晶は含まれていなかった。
Example 18 Using the sol liquid (Ti / Zr = 18 mol%) prepared in Example 16, the firing temperature was 9
Example 1 except that the sintering time was 3 minutes at 00 ° C.
In the same manner as in Example 1, an immobilized photocatalyst based on stainless steel was produced. The photocatalyst formed on the surface of the substrate was composed of anatase crystals having a crystallite size of 25.5 nm, and did not include rutile crystals.

【0077】この固定化光触媒を試料として、実施例1
におけると同様の方法で酢酸の分解実験を行った。結果
は表1に示すとおりであった。
Using this immobilized photocatalyst as a sample, Example 1
An experiment for decomposing acetic acid was performed in the same manner as described above. The results were as shown in Table 1.

【0078】[0078]

【表1】 [Table 1]

【0079】(実施例19)固定化光触媒の防臭効果を
確認するため、アセトアルデヒドを悪臭成分と想定して
その分解実験を行った。
Example 19 In order to confirm the deodorizing effect of the immobilized photocatalyst, a decomposition experiment was performed on the assumption that acetaldehyde was a malodorous component.

【0080】石英製反応セル(内容積100cc)に実
施例16で作製した固定化光触媒を入れ、閉鎖循環ライ
ン(合計内容積350ml)に接続した。空気で希釈し
たアセトアルデヒド(5000ppm)を系内に導入
し、循環させながら250W超高圧水銀灯から、減光フ
ィルター、UVフィルター(東芝製UV−31)を通し
て光照射を行った(紫外線強度15mW/cm2 )。な
お、アセトアルデヒドの分解による減少量はラインに接
続されているガスクロマトグラフを用いて測定した。
The immobilized photocatalyst prepared in Example 16 was placed in a quartz reaction cell (internal volume 100 cc), and connected to a closed circulation line (total internal volume 350 ml). Acetaldehyde (5000 ppm) diluted with air was introduced into the system, and light was irradiated from a 250 W ultra-high pressure mercury lamp through a dimming filter and a UV filter (UV-31 manufactured by Toshiba) while circulating (ultraviolet intensity 15 mW / cm 2). ). In addition, the amount reduced by the decomposition of acetaldehyde was measured using a gas chromatograph connected to a line.

【0081】その結果、図3に示すように、アセトアル
デヒドは経時的に減少し、120分後には、検出不能な
レベル(10ppm以下)になった。
As a result, as shown in FIG. 3, acetaldehyde decreased with time, and reached an undetectable level (10 ppm or less) after 120 minutes.

【0082】(比較例4)比較例1で作製した固定化光
触媒を用いて、実施例19におけると同様の方法でアセ
トアルデヒドの分解実験を行った。
Comparative Example 4 Using the immobilized photocatalyst prepared in Comparative Example 1, an acetaldehyde decomposition experiment was performed in the same manner as in Example 19.

【0083】結果は図3に示すに示すように、120分
後のアセトアルデヒドの残存濃度は約3500ppm
で、実施例19に比べアセトアルデヒドの分解量ははる
かに少なかった。
As shown in FIG. 3, the residual concentration of acetaldehyde after 120 minutes was about 3500 ppm.
Thus, the amount of decomposition of acetaldehyde was much smaller than that of Example 19.

【0084】(実施例20)固定化光触媒の抗菌効果を
確認するため、大腸菌(Escherichiacol
i W3110株)に対する殺菌効果を調査した。
Example 20 To confirm the antibacterial effect of the immobilized photocatalyst, Escherichia coli (Escherichiacol) was used.
i W3110 strain).

【0085】実施例1で作製した固定化光触媒を試料と
して用い、その表面をあらかじめ70%エタノールで殺
菌した後、大腸菌を2.5×105 個/ml含む生理食
塩水0.2ml(大腸菌数:5×104 個)を、0.0
25mlずつ8滴に分けてその表面に滴下した。次い
で、相対湿度95%の条件下で、250W超高圧水銀灯
を用い、上部から、減光フィルター、UVフィルター
(東芝製UV−35)を通して15分間光照射を行った
(紫外線強度1mW/cm2 )。
Using the immobilized photocatalyst prepared in Example 1 as a sample, its surface was previously sterilized with 70% ethanol, and then 0.2 ml of physiological saline containing 2.5 × 10 5 cells / ml (number of E. coli) : 5 × 10 4 ) to 0.0
Eight drops of 25 ml each were dropped on the surface. Next, under a condition of a relative humidity of 95%, light irradiation was performed from above using a 250 W ultra-high pressure mercury lamp through a dimming filter and a UV filter (UV-35 manufactured by Toshiba) for 15 minutes (ultraviolet intensity: 1 mW / cm 2 ). .

【0086】その後、試料の上の菌液を生理食塩水9.
8mlで洗い流し、それを標準寒天培地に希釈塗沫し、
35℃で48時間培養した後、生育したコロニーを計数
することによって生菌数を測定した。抗菌性の評価は、
同じ条件で、大腸菌を含む生理食塩水を、二酸化チタン
を形成(コーティング)していない基材(SUS30
4)表面に滴下して15分間光照射したものと、実施例
1で作製した固定化光触媒の表面に滴下して15分間暗
所に保持したものについて、上記と同様に測定した生菌
数(それぞれ4.8×105 個および4.7×105
個)を基準として行った。
Thereafter, the bacterial solution on the sample was added to physiological saline 9.
Rinse with 8 ml, dilute and spread on standard agar medium,
After culturing at 35 ° C. for 48 hours, the number of viable bacteria was measured by counting the grown colonies. Evaluation of antibacterial properties
Under the same conditions, a physiological saline solution containing Escherichia coli was added to a substrate (SUS30) on which titanium dioxide was not formed (coated).
4) The number of viable cells measured in the same manner as described above for the one that was dropped on the surface and irradiated with light for 15 minutes and the one that was dropped on the surface of the immobilized photocatalyst prepared in Example 1 and kept in a dark place for 15 minutes ( 4.8 × 10 5 and 4.7 × 10 5 respectively
Number).

【0087】その結果、光照射することによって生存大
腸菌数は1.6×103 個となり、優れた抗菌性が認め
られた。
As a result, the number of surviving Escherichia coli became 1.6 × 10 3 by light irradiation, and excellent antibacterial activity was recognized.

【0088】(実施例21)基材として石英板(4cm
×4cm×厚さ1mm)を用いた以外はすべて実施例1
と同様の方法で石英板表面に二酸化チタンを薄膜状に形
成させた固定化光触媒を作製した。この光触媒の結晶構
造をX線回折によって調べた結果、二酸化チタンはアナ
タース晶からな成るものであり、その結晶子サイズは1
4.5nmであった。
(Example 21) A quartz plate (4 cm
Example 1 except that (× 4 cm × 1 mm thick) was used.
An immobilized photocatalyst in which titanium dioxide was formed in a thin film on the surface of a quartz plate was produced in the same manner as described above. As a result of examining the crystal structure of this photocatalyst by X-ray diffraction, titanium dioxide was composed of anatase crystals, and the crystallite size was 1
It was 4.5 nm.

【0089】この二酸化チタン固定化光触媒を試料とし
て用い、テトラクロロエチレンの分解実験を行った。な
お、テトラクロロエチレンは、洗剤、脂肪、樹脂等の溶
剤として利用されており、地下水の汚染要因の一つとし
て問題視されている物質である。
Using this titanium dioxide-immobilized photocatalyst as a sample, an experiment of decomposing tetrachloroethylene was performed. In addition, tetrachloroethylene is used as a solvent for detergents, fats, resins, and the like, and is a substance that has been regarded as a problem as one of the pollution factors of groundwater.

【0090】まず、石英製反応セル(内容積100c
c)に30ppmの濃度のテトラクロロエチレンの水溶
液40mlを入れ、その中に試料を浸し、酸素を20分
間バブリングした後、250W超高圧水銀灯から、UV
フィルター(東芝製UV−29)を通して4時間光照射
を行った。その後、水溶液に含まれるテトラクロロエチ
レンの量をガスクロマトグラフを用いて定量した。その
結果、テトラクロロエチレンの濃度は3.2ppmに減
少していた。
First, a quartz reaction cell (internal volume 100c)
In c), 40 ml of an aqueous solution of tetrachloroethylene having a concentration of 30 ppm was put, and the sample was immersed in the solution. Oxygen was bubbled for 20 minutes.
Light irradiation was performed for 4 hours through a filter (UV-29 manufactured by Toshiba). Thereafter, the amount of tetrachloroethylene contained in the aqueous solution was quantified using a gas chromatograph. As a result, the concentration of tetrachloroethylene was reduced to 3.2 ppm.

【0091】(実施例22)基材として樹脂系の塗装鋼
板(5cm×5cm×厚さ1mm)を用い、焼成時間を
2分とした以外はすべえ実施例2と同様の方法で塗装鋼
板表面に二酸化チタンを薄膜状に形成させた固定化光触
媒を作製した。この光触媒の結晶構造をX線回折によっ
て調べた結果、二酸化チタンはアナタース晶からなるも
のであり、その結晶子サイズは5.8nmであった。
Example 22 A coated steel sheet (5 cm × 5 cm × 1 mm thick) was used as a substrate, and the surface of the coated steel sheet was produced in the same manner as in Example 2 except that the firing time was 2 minutes. An immobilized photocatalyst was prepared by forming titanium dioxide in a thin film. As a result of examining the crystal structure of this photocatalyst by X-ray diffraction, titanium dioxide was composed of anatase crystals, and its crystallite size was 5.8 nm.

【0092】この光触媒を試料として用い、以下の要領
で試料表面に付着させたタバコのヤニの除去試験を行っ
た。
Using this photocatalyst as a sample, a test for removing the tar of tobacco adhered to the sample surface was performed in the following manner.

【0093】試料表面にタバコ1本分のヤニを強制的に
付着させた後、250W超高圧水銀灯から、減光フィル
ター、UVフィルター(東芝製UV−35)を通して光
照射(紫外線強度5mW/cm2 )を行いながら色差計
を用いて黄色の目安となるb値の変化を測定することに
より、ヤニの減少を評価した。
After forcing one cigarette tar on the surface of the sample, light irradiation (ultraviolet intensity 5 mW / cm 2 ) from a 250 W ultra-high pressure mercury lamp through a neutral density filter and a UV filter (UV-35 manufactured by Toshiba). ) Was measured by using a color difference meter to measure the change in the b value, which was a measure of yellow color, to thereby evaluate the reduction in tan.

【0094】その結果、b値は、光照射前の16.5か
ら、2時間の光照射でほぼ0となり、見た目にも基材と
して用いた塗装の色(白色)が蘇ったことから、ヤニが
効果的に除去されていることが確認された。一方、上記
のような処理を行っていない塗装鋼板を用い、同様の試
験を行ったところ、b値は、光照射前の13.4から、
2時間の光照射では8.2にしかならず、ヤニは試料表
面上にかなり残っていた。
As a result, the b value was reduced from 16.5 before light irradiation to almost 0 after 2 hours of light irradiation, and the color (white) of the coating used as the substrate was apparently restored. Was confirmed to be effectively removed. On the other hand, when a similar test was performed using a coated steel sheet that had not been subjected to the above treatment, the b value was 13.4 before light irradiation.
The light irradiation for 2 hours resulted in only 8.2, and much of the tar remained on the sample surface.

【0095】[0095]

【発明の効果】本発明の固定化光触媒は反応活性が高
く、大気中あるいは排水中の有害物質、汚れ付着物質等
の分解、除去に対して優れた効果を示す。したがって、
基材として金属、ガラス、セラミック等を用いれば、抗
菌、防臭、防泥、防かび、環境汚染物質の分解等の作用
効果が付与された内装材、建材等の部材を容易に提供す
ることができる。特に、本発明の有害物質の分解・除去
方法によれば、種々の付着物質も含め、人体に悪影響を
及ぼすかもしくはその可能性がある有害物質を効果的に
分解・除去することができる。
The immobilized photocatalyst of the present invention has a high reaction activity and has an excellent effect on decomposing and removing harmful substances and dirt adhering substances in the air or wastewater. Therefore,
If metal, glass, ceramic, or the like is used as the base material, it is possible to easily provide members such as interior materials and building materials to which the effects of antibacterial, odor-proof, mud-proof, mold-proof, and decomposition of environmental pollutants are imparted. it can. In particular, according to the method for decomposing and removing harmful substances of the present invention, it is possible to effectively decompose and remove harmful substances that have a bad effect on the human body or have a possibility of causing harmful effects, including various attached substances.

【0096】この光触媒は、本発明の製造方法によれ
ば、比較的安価な原料を用い、特別な設備および操作を
必要とせず、また、焼成時間が短くてよく、従来の固定
化光触媒に比べて低コストで製造することが可能であ
る。
According to the production method of the present invention, this photocatalyst uses relatively inexpensive raw materials, does not require any special equipment and operation, requires a short calcination time, and can be compared with a conventional immobilized photocatalyst. And can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1および比較例1で用いた試料について
のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of a sample used in Example 1 and Comparative Example 1.

【図2】実施例11、15および比較例3で用いた試料
についてのX線回折図である。
FIG. 2 is an X-ray diffraction diagram for the samples used in Examples 11 and 15 and Comparative Example 3.

【図3】実施例19および比較例4の実験結果で、アセ
トアルデヒドの分解の経時変化を示す図である。
FIG. 3 is a graph showing the change over time of the decomposition of acetaldehyde in the experimental results of Example 19 and Comparative Example 4.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平均結晶子サイズが5〜30nmのアナタ
ース型二酸化チタンが基材表面に薄膜状に固定されてい
ることを特徴とする光触媒。
1. A photocatalyst comprising an anatase type titanium dioxide having an average crystallite size of 5 to 30 nm fixed on a surface of a substrate in a thin film form.
【請求項2】基材にチタニアゾルを塗布した後、250
〜800℃まで加熱し、その温度で30分以内保持する
焼成処理を施すことを特徴とする請求項1に記載の固定
化光触媒の製造方法。
2. After the titania sol is applied to the substrate, 250
The method for producing an immobilized photocatalyst according to claim 1, wherein a baking treatment is performed in which the material is heated to 800800 ° C. and held at that temperature for 30 minutes or less.
【請求項3】Zr/Ti(モル比)が0.3未満となる
ように二酸化ジルコニウムおよびジルコニウム塩のいず
れか一方または両方が添加されたチタニアゾルを基材に
塗布した後、300〜1000℃で焼成処理を施すこと
を特徴とする請求項1に記載の固定化光触媒の製造方
法。
3. A titania sol to which one or both of zirconium dioxide and a zirconium salt is added so that Zr / Ti (molar ratio) is less than 0.3, is applied to a base material, and then heated at 300 to 1000 ° C. The method for producing an immobilized photocatalyst according to claim 1, wherein a calcination treatment is performed.
【請求項4】請求項1に記載の固定化光触媒と有害物質
とが接触した条件下で前記固定化光触媒にバンドギャッ
プ以上のエネルギーの光を照射することを特徴とする有
害物質の分解・除去方法。
4. A method for decomposing and removing harmful substances, wherein the immobilized photocatalyst according to claim 1 is irradiated with light having an energy equal to or greater than a band gap under the condition that the harmful substances are in contact with the immobilized photocatalysts. Method.
JP23055397A 1996-10-22 1997-08-27 Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances Expired - Fee Related JP3567693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23055397A JP3567693B2 (en) 1996-10-22 1997-08-27 Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27925896 1996-10-22
JP8-279258 1996-10-22
JP23055397A JP3567693B2 (en) 1996-10-22 1997-08-27 Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances

Publications (2)

Publication Number Publication Date
JPH10180118A true JPH10180118A (en) 1998-07-07
JP3567693B2 JP3567693B2 (en) 2004-09-22

Family

ID=26529408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23055397A Expired - Fee Related JP3567693B2 (en) 1996-10-22 1997-08-27 Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances

Country Status (1)

Country Link
JP (1) JP3567693B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028393A1 (en) * 1997-12-02 1999-06-10 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
EP1016459A1 (en) * 1997-06-20 2000-07-05 Sumitomo Metal Industries Limited Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
WO2005082810A1 (en) * 2004-01-30 2005-09-09 Millennium Chemicals COMPOSITION FOR USE NOx REMOVING TRANSLUCENT COATING
JP2007130267A (en) * 2005-11-10 2007-05-31 Catalysts & Chem Ind Co Ltd Deodorant made of tubular titanium oxide particle
JP2009525405A (en) * 2006-02-03 2009-07-09 コロロッビア イタリア ソシエタ ペル アチオニ Method and functionalized product for functionalizing titanium metal surfaces with titanium nanometer particles
US8906460B2 (en) 2004-01-30 2014-12-09 Cristal Usa Inc. Composition for use as NOx removing translucent coating
US9126145B2 (en) 2007-08-31 2015-09-08 Cristal USA, Inc. Photocatalytic coating
US9228095B2 (en) 2006-10-18 2016-01-05 Cristal Usa Inc. Photocatalytically active polysiloxane coating compositions
CN112815413A (en) * 2021-01-11 2021-05-18 北京华钛高科科技有限公司 Air conditioner air duct sterilization and disinfection module

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016459A1 (en) * 1997-06-20 2000-07-05 Sumitomo Metal Industries Limited Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
EP1016459A4 (en) * 1997-06-20 2001-02-07 Sumitomo Metal Ind Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
WO1999028393A1 (en) * 1997-12-02 1999-06-10 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
EP1036826A1 (en) * 1997-12-02 2000-09-20 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
EP1036826A4 (en) * 1997-12-02 2001-02-07 Showa Denko Kk Photocatalytic oxide composition, thin film, and composite
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
US6368668B1 (en) 1998-07-30 2002-04-09 Toto Ltd. Method and apparatus for producing a photocatalytic material
EP1118385A4 (en) * 1998-07-30 2003-07-02 Toto Ltd Method for producing high-performance material having photocatalytic function and device therefor
WO2005082810A1 (en) * 2004-01-30 2005-09-09 Millennium Chemicals COMPOSITION FOR USE NOx REMOVING TRANSLUCENT COATING
AU2004316444B2 (en) * 2004-01-30 2010-07-01 Tronox Llc Composition for use NOx removing translucent coating
US8906460B2 (en) 2004-01-30 2014-12-09 Cristal Usa Inc. Composition for use as NOx removing translucent coating
JP2007130267A (en) * 2005-11-10 2007-05-31 Catalysts & Chem Ind Co Ltd Deodorant made of tubular titanium oxide particle
JP2009525405A (en) * 2006-02-03 2009-07-09 コロロッビア イタリア ソシエタ ペル アチオニ Method and functionalized product for functionalizing titanium metal surfaces with titanium nanometer particles
US9228095B2 (en) 2006-10-18 2016-01-05 Cristal Usa Inc. Photocatalytically active polysiloxane coating compositions
US9126145B2 (en) 2007-08-31 2015-09-08 Cristal USA, Inc. Photocatalytic coating
US9358502B2 (en) 2007-08-31 2016-06-07 Cristal Usa Inc. Photocatalytic coating
CN112815413A (en) * 2021-01-11 2021-05-18 北京华钛高科科技有限公司 Air conditioner air duct sterilization and disinfection module
CN112815413B (en) * 2021-01-11 2022-06-21 北京华钛高科科技有限公司 Air conditioner air duct sterilization and disinfection module

Also Published As

Publication number Publication date
JP3567693B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
KR100336662B1 (en) Titanium oxide for photocatalyst and method of producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
US6632771B1 (en) Silica gel carrying titanium oxide photocatalyst
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
JP2600103B2 (en) Photocatalytic filter and method for producing the same
CN1513040A (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same
JPH07303835A (en) Titanium oxide for photocatalyst, and manufacture of the same
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JP2945926B2 (en) Photocatalyst particles and method for producing the same
KR100225342B1 (en) Method for preparing titanium oxide photocatalyst
JPH11343426A (en) Photocatalytic coating
JP4163374B2 (en) Photocatalytic membrane
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP2006198465A (en) Photocatalyst and its production method
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JP3550947B2 (en) Method for producing and using photocatalytic multifunctional member
JPH11179211A (en) Titanium dioxide-base photocatalyst, its production, multifunctional member and method for using same
JP3579082B2 (en) Photocatalyst
CN112547050A (en) Manganese dioxide titanium dioxide composite catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees