JP3550947B2 - Method for producing and using photocatalytic multifunctional member - Google Patents
Method for producing and using photocatalytic multifunctional member Download PDFInfo
- Publication number
- JP3550947B2 JP3550947B2 JP15075697A JP15075697A JP3550947B2 JP 3550947 B2 JP3550947 B2 JP 3550947B2 JP 15075697 A JP15075697 A JP 15075697A JP 15075697 A JP15075697 A JP 15075697A JP 3550947 B2 JP3550947 B2 JP 3550947B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- sol
- titanium
- compound
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001699 photocatalysis Effects 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 98
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 97
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 33
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 33
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 33
- 239000011941 photocatalyst Substances 0.000 claims description 31
- 238000010304 firing Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 150000003609 titanium compounds Chemical class 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- -1 aluminum compound Chemical class 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 150000001639 boron compounds Chemical class 0.000 claims description 3
- 150000002363 hafnium compounds Chemical class 0.000 claims description 3
- 150000003377 silicon compounds Chemical class 0.000 claims description 3
- 150000003752 zinc compounds Chemical class 0.000 claims description 3
- 150000003755 zirconium compounds Chemical class 0.000 claims description 3
- 239000010408 film Substances 0.000 description 28
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 238000000354 decomposition reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 8
- 239000010453 quartz Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 230000003373 anti-fouling effect Effects 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 4
- 239000004904 UV filter Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229950011008 tetrachloroethylene Drugs 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 241000208125 Nicotiana Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- HRJSLUPAMXKPPM-UHFFFAOYSA-N 5-methyl-2-(3-methylphenyl)pyrazol-3-amine Chemical compound N1=C(C)C=C(N)N1C1=CC=CC(C)=C1 HRJSLUPAMXKPPM-UHFFFAOYSA-N 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000295644 Staphylococcaceae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- ISNYUQWBWALXEY-OMIQOYQYSA-N tsg6xhx09r Chemical compound O([C@@H](C)C=1[C@@]23CN(C)CCO[C@]3(C3=CC[C@H]4[C@]5(C)CC[C@@](C4)(O)O[C@@]53[C@H](O)C2)CC=1)C(=O)C=1C(C)=CNC=1C ISNYUQWBWALXEY-OMIQOYQYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Physical Water Treatments (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、酸化チタン光触媒の形成剤である酸化チタン光触媒用ゾルから光触媒作用を持つ多機能部材を製造する方法およびこの多機能部材の持つ光触媒作用を利用する多機能部材の使用方法に関する。
【0002】
【従来の技術】
半導体に光が照射されると、その照射面に強い還元作用を持つ電子と強い酸化作用を持つ正孔が生じる。物質がこのような状態の半導体の表面に接触すると、半導体の強い酸化還元作用を受けて分解される。
【0003】
近年、上述の半導体の光触媒作用が、空気中および水中に含まれる有害物質の分解または無害化、生活空間等における防臭、防汚、殺菌等、様々な環境浄化技術に利用されるようになってきた。光触媒用の半導体としては、主に酸化チタンが用いられている。
【0004】
従来、光触媒として利用する場合には、酸化チタン等の粉末を溶液に懸濁させて、その状態(以下、酸化チタンゾルと記す)で使用してきた。しかし、取り扱いの容易さ、幅広い応用性の観点からは、光触媒を支持体に固定化した状態で使用する方が有利である。したがって、実用性を考慮して、支持体に光触媒を固定して用いる方法が開発されている。
【0005】
支持体に酸化チタンを固定化する方法としては、酸化チタンゾルを支持体に付着させ、その後支持体とともに加熱し、焼成する方法が一般的である。しかし、酸化チタンゾルに含まれる酸化チタンの微粒子は、焼成の際に粒成長を起こしやすい。そのために、光触媒反応の反応性に重要な影響を及ぼす比表面積が低下し、その結果、光触媒としての性能が著しく低下するということが起こる。
【0006】
焼成の際の粒成長を防止する対策として、支持体に塗布する前に、酸化チタンゾルを水熱処理することによって、ゾル中の酸化チタンの微粒子を結晶化させる方法が提案されている(特開平6−293519号公報)。十分に結晶化した酸化チタン粒子は焼成の際に粒成長を起こしにくく、また光照射により生成した電子と正孔の分離効率が高いので、比較的高い光触媒活性が得られるとされている。しかし、水熱処理は高温高圧下での処理であるとともに、溶液濃度、温度、圧力、PH等に微妙なコントロールが要求されるため、光触媒の量産には不向きであった。
【0007】
このほか、酸化チタンゾルに新たな物質を添加する方法も提案されている(特開平8−99041号公報)。この方法の場合には、酸化チタンゾルにポリエチレングリコールを添加し、そのゾルを支持体に付着させ、加熱焼成する処理が採られている。焼成後の酸化チタン膜の性状は、多孔質状とされている。しかし、この方法では、光触媒として十分な活性を得るためには膜の多層化が必要である。また、焼成温度の上限が700℃に制限されているので、高温度での焼成ができない。そのために、酸化チタン膜の強度を高くすることができないので、光触媒としての耐久性に乏しい等の問題点がある。
【0008】
本発明は、焼成により酸化チタン膜を形成する際に、酸化チタンの粒成長を防止することが可能な酸化チタン光触媒用ゾルから優れた光触媒作用を持つ多機能部材を製造する方法および得られた多機能部材の使用方法を提供することを目的とする。
【0009】
本発明の酸化チタン光触媒用ゾルを用いた光触媒作用を持つ多機能部材の製造方法および多機能部材の使用方法の特徴は、それぞれ下記(1)および(2)のとおりである。
【0010】
(1)支持体の表面に、ポリビニルピロリドンとチタン化合物を含む酸化チタン光触媒用ゾルを付着させた後焼成することにより、支持体の表面に酸化チタン膜を形成させる光触媒作用を持つ多機能部材の製造方法。
【0011】
前記の酸化チタン光触媒用ゾルは、ポリビニルピロリドンとチタン化合物の化学反応によって形成された有機チタン錯体を含んでいてもよい。また、ジルコニウム化合物、亜鉛化合物、珪素化合物、ハフニウム化合物、アルミニウム化合物およびほう素化合物のうちの少なくとも1種を含むことが好ましい。
【0013】
(2)上記(1)の方法によって得られる多機能部材により、光照射下で大気中または水中の物質を処理する多機能部材の使用方法。
【0014】
なお、本発明で用いるゾルは、チタン化合物およびポリビニルピロリドンの基本構成成分のほかに、これらの成分を溶解するための溶媒を含んでいる。
【0015】
本発明では、下記の▲1▼〜▲3▼により、焼成により酸化チタン膜を形成する際に、酸化チタンの粒成長を防止し、比表面積が大きく、光触媒作用に優れた酸化チタン膜を得ている。
【0016】
▲1▼ ゾルに、酸化チタン源として、酸化チタンの前駆体物質であるチタン化合物を配合し、おもに加水分解を起こさせて酸化チタンまたは水酸化チタンとした状態で、ポリビニルピロリドンと共存させる。そのために、微細な酸化チタンなどの粒子がポリビニルピロリドンに保持された状態で、均一に分散したゾルが得られる。
【0017】
▲2▼ チタン化合物とポリビニルピロリドンとの反応によって、ゾル中に有機チタン錯体が生成する場合もある。この有機チタン錯体は、チタン化合物がポリビニルピロリドンのピロリドン基に結合した状態にあるため、ゾル中で細かく分散して存在する。
【0018】
▲3▼ ポリビニルピロリドンは、400℃程度まで熱分解を起こさない。したがって、ゾルが支持体に塗布された状態で焼成された場合、酸化チタン等の微粒子は約400℃まで加熱される間に、微粒子状のまま酸化チタンとして結晶化する。約400℃を超える温度から粒成長が始まるため、その結果として、粒が極めて微細で、比表面積が大きい酸化チタン膜が得られる。
【0019】
【発明の実施の形態】
以下に本発明について具体的に説明する。
【0020】
本発明で用いるゾルは、前述のように、おもに加水分解を起こした酸化チタン等のチタン化合物、ポリビニルピロリドンおよび溶媒で構成される。このゾルは、水、アルコール等の溶媒中で前駆体物質としてのチタン化合物とポリビニルピロリドンとをよく混合し、必要に応じて加熱することによって調製することができる。本発明で用いるゾルは、水に対する安定性に優れているので、取り扱いが容易という特徴がある。
【0021】
上記の構成の本発明で用いるゾル中には、有機チタン錯体が存在する場合がある。この錯体は、焼成の際の酸化チタンの粒成長の抑制に効果的である。ただし、有機チタン錯体が存在しない場合でも、実用上十分に比表面積が大きい酸化チタンを得ることができる。
【0022】
本発明で用いるゾルに配合されるチタン化合物としては、チタンイソプロポキシド、チタンブトキシド等のチタンアルコキシド、硫酸チタン、4塩化チタン、チタンアセチルアセトネート等、加水分解などによって容易に酸化チタンに変わる化合物が適当である。このほか、TiO2で表されるアナターゼ型酸化チタン、ルチル型酸化チタン、非晶質酸化チタンのほか、水酸化チタン、含水酸化チタン等の微粒子、さらには前駆体物質の反応基(例えば、チタンアルコキシドではアルコキシド部分)が加水分解などを起こし、酸化チタン粒子としてネットワークを作った後も、その表面には未反応の反応基が残った状態の酸化チタン粒子なども好適である。
【0023】
ポリビニルピロリドンとチタン化合物とを共存させるためには、これらのチタン化合物単独または2種類以上を混合して用いてもよい。
【0024】
ゾル中のチタン化合物の含有率は、0.01mol/l以上、2mol/l以下が好ましい。チタン化合物の含有率が0.01mol/l未満の場合には、
ゾルを1回塗布した後の焼成では、光触媒活性を発揮させるのに十分な膜厚の酸化チタン膜が得られない。そのため、多層化が必要となり生産性が低下する傾向がある。一方、2mol/lを超えると、通常の塗布法では、焼成後の酸化チタン膜にクラックが発生したり、くもりが生じることがある。
【0025】
ゾル中のポリビニルピロリドンの含有率は、0.1重量%以上、溶媒への溶解度以下が望ましい。0.1重量%未満の場合には、ポリビニルピロリドンの効果が得られないので、焼成後の酸化チタンの比表面積が十分大きくならない。そのために、光触媒活性の高い酸化チタンが得られない。ポリビニルピロリドンの含有率が溶解度を超える場合には、ゾル内に不溶のポリビニルピロリドンが生じ凝集するために、製膜性が悪くなること、焼成後の酸化チタン膜にむらやクラックが生じやすいことなどの問題が起こる。
【0026】
ポリビニルピロリドンの分子量は、120万以下が望ましい。分子量が120万を超えると、ゾルの粘度が高くなりすぎるので、支持体への塗布に支障をきたす。また、支持体とともにゾルを焼成し酸化チタン膜を得る際に、ポリビニルピロリドンの分解、揮発が起こりにくいので、酸化チタン膜の中に有機物が残留しやすい。その結果、光触媒としての性能が低下する。ポリビニルピロリドンのより好ましい分子量は10万以下である。分子量の下限は約1千とするのがよい。ただし、分子量が低い場合には、十分な光触媒活性を得るためにはゾル中のポリビニルピロリドンの割合を高くする必要があるので、経済性の観点から1万以上がより好ましい。上記の範囲内の分子量の場合には、ゾルの粘度も高くないので取り扱い性にも優れ、焼成後の酸化チタンの光触媒活性も高い。
【0027】
なお、チタン化合物とポリビニルピロリドンの組成比は、ポリビニルピロリドンの含有率からモノマー部分をモル換算した値に対して、チタン化合物はモル比で0.1から10までの範囲が好ましい。この範囲内の場合には、ゾルの焼成により、高い光触媒活性を持った酸化チタンを得るのが容易である。
【0028】
また、本発明で用いる酸化チタン光触媒形成用ゾルには、ジルコニウム化合物、亜鉛化合物、珪素化合物、ハフニウム化合物、アルミニウム化合物およびほう素化合物のうちの少なくとも1種の金属化合物を含有させてもよい。これらの金属化合物は、焼成後の酸化チタンの光触媒活性を向上させる作用を持っている。これらの金属化合物には、粒径30nm以下の微粒子状の酸化物または酸化物の前駆体となるアルコキシド類、塩化物、硝酸塩などが適している。その中でも、高い光触媒活性を得るには、チタン化合物と最もよく混合するアルコキシド類が好ましい。
【0029】
上記の金属化合物のゾル中の含有率は、チタン化合物に対して、モル比で 0.01〜0.5が望ましい。0.01未満では金属化合物の効果が十分に発揮されない。また、0.5を超えると、焼成の際酸化チタンの結晶化が起こりにくくなること、酸化チタンの構造が失われることなどのために、光触媒としての性能が低下しやすい。
【0030】
これらの金属化合物をゾルに添加する場合には、均一な組成のゾルにするために、加熱し環流処理を施すことが好ましい。
【0031】
さらに、本発明で用いるゾルには、必要に応じてジエタノールアミン、トリエタノールアミン等のアルコールアミン類や、1,3−プロパンジオール、アセチルアセトン等のゾル自体の乾燥の抑制およびゾルに含まれる酸化チタン微粒子の凝集の抑制等に効果のある添加剤を含有させてもよい。これらの添加剤の量は、チタン化合物のモル比に対して0.1〜2.0程度が適当である。
【0032】
(b)焼成
上記のゾルを支持体に塗布し、加熱焼成することによって光触媒作用を持つ多機能部材を製造する方法について説明する。
【0033】
支持体の材質としては、ステンレス鋼、炭素鋼、めっきされた鋼、アルミニウム、チタン等の金属材料、セラミック、陶磁器、ガラス、石英等の無機材料などが適している。また、これらの材料で構成された複合材料でもよい。支持体の形状は、多機能部材としての用途等に応じて決めるのがよい。厚板、薄板などの板状、ビーズのような球状またはそのまま製品として使用されるような複雑な形状であってよい。なお、支持体の表面性状は多孔質でも緻密質でもよい。
【0034】
ゾルを支持体に塗布する方法には、スピンコーティング、ディップコーティング、スプレーコーティング、バーコーティング、ロールコーティング等の方法がある。塗布した後、オーブン加熱、温風等により必要に応じて強制的に乾燥させるのもよい。
【0035】
上述のような方法で支持体にゾルを塗布した後、支持体とともに加熱、焼成し、支持体の表面に酸化チタン膜を固定する。
【0036】
焼成温度は、酸化チタン粒子が十分に結晶化を起こす温度で、さらにゾルに含まれる有機化合物が速やかに分解、揮発する温度とするのがよい。具体的には400℃以上、1000℃以下が好ましい。400℃未満では分解、揮発すべき溶媒、ポリビニルピロリドン等の有機物が酸化チタン膜内に残留しやすい。そのために、光触媒活性が不十分になりやすく、外観的にも透明で均一な膜質の酸化チタン膜を得にくい。一方、焼成温度が1000℃を超えると、酸化チタンの粒成長が著しく、酸化チタンの比表面積が低下するので、十分に高い光触媒活性が得られない。焼成温度のより好ましい範囲は、500℃以上、800℃以下である。
【0037】
焼成温度が上記の範囲の場合には、酸化チタンの結晶構造は光触媒として有効なアナターゼ型となり、結晶粒も微細なため、光触媒活性に優れた機能性部材が得られる。
【0038】
酸化チタン膜の膜厚は、20nmから2μm程度が好ましい。膜厚が20nm未満の場合には、十分な光触媒活性が得られないことがある。膜厚が2μmを超えると光透過性が低下し、膜の機械的強度が低下するする傾向がある。ただし、本発明で用いるゾルの場合には、スピンコーティング、ディップコーティング等厚膜が形成しにくい塗布法でも、1回の操作で十分な光触媒活性を持つ膜厚の酸化チタン膜が得られる。
【0039】
焼成温度までの加熱速度は、20℃/分以下が好ましい。急速に加熱すると、光触媒性能の上ではほとんど問題にはならないが、有機物の分解、揮発が同時に、かつ急激に起きるため、酸化チタン膜に光沢むらやクラックが発生することがある。
【0040】
(c)多機能部材の使用方法
上記の方法で得られる光触媒作用を有する多機能部材は、太陽光や蛍光灯、ブラックライト、水銀灯、キセノン灯等からの光によって、光触媒作用を発現する。この触媒作用によって、様々な有害物質、付着物質などの分解、除去、無害化に優れた効果を発揮する。本発明の方法で得られる多機能部材のおもな用途としては、空気中または水中に含まれる有害物質および汚染物質の分解、除去がある。その対象となる物質は、空気中に含まれるNOX、SOX、フロン、アルデヒド類、アミン類、メルカプタン類、アルコール類、BTX、フェノール類等の有機化合物、アンモニア、硫化水素など、水中に含まれるトリハロメタン、トリクロロエチレン、フロン等の有機ハロゲン化合物、除草剤、殺菌剤、殺虫剤等の種々の農薬、蛋白質やアミノ酸等の種々の生物学的酸素要求物質、界面活性材、アルデヒド類、アミン類、メルカプタン類、アルコール類、BTX、フェノール類等の有機化合物、シアン化合物、硫黄化合物等の無機化合物、種々の重金属イオン等、さらには細菌、放線菌、菌類、藻類等の微生物などである。さらに、本発明の多機能部材の具体的用途としては、大腸菌、ブドウ球菌、緑濃菌、カビ等の様々な菌類に対する抗菌、アルデヒド、メルカプタン、アンモニア、硫化水素等の臭気の防止、油、タバコのヤニ、指紋、雨垂れ、泥などへの防汚等があげられる。
【0041】
【実施例】
(実施例1)
酸化チタン光触媒用ゾルを調製し、ゾル中に存在する化合物を調査した。
【0042】
ゾルは次の方法で調製した。試験aおよび試験b(いずれも本発明例)では、チタン−n−ブトキシド68g(0.2mol)を脱水エタノール(98ml)に加えた混合液を30分間室温で撹拌した後、氷浴を用いて冷却した。その後、エタノール(98ml)、水(2.6ml)、硝酸(1ml)の混合液をゆっくりと滴下、1時間撹拌した後、氷浴を除いて室温に戻し、12時間撹拌を続けた。さらに、この反応液100mlに、試験aの場合は分子量約4万、試験bの場合は分子量約120万のポリビニルピロリドンを10g加え、室温下で1時間撹拌した。この操作により、黄色に着色した酸化チタン光触媒用ゾルが得られた。
【0043】
また、比較例(試験c)として、ポリビニルピロリドンを用いないこと以外は、上記試験aおよびbと同じ条件で酸化チタン光触媒用ゾルを調製した。その結果、透明な酸化チタンゾルが得られた。
【0044】
これらの酸化チタンゾルを自記分光光度計によって分析し、それぞれの液の吸収スペクトルを測定した。図1にその結果を示す。
【0045】
試験aおよびbの吸収スペクトル(それぞれa、b)は、試験c(比較例)の吸収スペクトル(c)に比べて長波長側にシフトしている。また、試験aと試験bの吸収量と試験cの吸収量の差を求めることによって得られる差スペクトル(曲線dおよび曲線e)は、ポリビニルピロリドンの吸収スペクトル(f、g)に比べると波形がまったく異なっており、360nm付近にピークが認められる。このスペクトルは、チタン−n−ブトキシドとポリビニルピロリドンとから生じた有機チタン錯体に由来するものであることを示している。
【0046】
この結果から、本発明で用いる酸化チタン光触媒用ゾル(試験aおよび試験b:本発明例)には、配合原料であるチタン化合物、ポリビニルピロリドンおよびこれらの反応によって生成した有機チタン錯体が存在することが確認された。
【0047】
(実施例2)
酸化チタン光触媒用ゾルを支持体に被覆し、触媒としての性能を調査した。
【0048】
支持体としては、石英板、陶器製の白色タイルおよびステンレス鋼板(JIS SUS304)の3種類を用いた。支持体の大きさは、縦横40mm、厚さは、石英板およびステンレス鋼板は1mm、タイルは5mmである。
【0049】
これらの支持体の表面に、酸化チタン光触媒用ゾルをディップコーティング法(引き上げ速度:100mm/分。ただし、試験No.3は10mm/分)によって塗布した。次に、100℃で30分間乾燥した後、電熱炉を用いて10℃/分の昇温速度で加熱し、最終温度550℃または700℃で30分間焼成した。この処理によって、酸化チタンが薄膜状に固定された試験材が得られた。
【0050】
実施例2における試験No.1〜11の試験材の製造条件を表1にまとめて示す。なお、ゾルの調製法は、基本的には実施例1の場合と同様とした。ただし、試験によっては酸化チタン生成用のチタン化合物、ポリビニルピロリドンの分子量およびその他の添加剤を変えているので、それらの条件については、表1に併記した。
【0051】
なお、試験No.7、9および10については、ゾルの調製の際にアセチルアセトンを用いたために、次の方法で調製を行った。
【0052】
チタンイソプロポキシド56.8g(0.2mol)と、硝酸亜鉛4.54g(0.024mol)(試験No.7)またはハフニウムエトキシド8.6g(0.024mol)(試験No.9)またはアルミニムイソプロポキシド4.9g(0.024mol)(試験No.10)、アセチルアセトン30gを脱水エタノール(196ml)に加えた液を2時間環流した。冷却後、この反応液100mlに分子量約4万のポリビニルピロリドンを10g加え、室温下で1時間撹拌することにより、黄色に着色した酸化チタン光触媒用ゾルを得た。
【0053】
【表1】
【0054】
試験No.1(本発明例)および試験No.3(比較例)については、X線回折法によって、支持体に形成された酸化チタン膜の結晶構造および結晶粒径を調査した。
【0055】
その結果、結晶構造はいずれもアナタース型であったが、Scherrerの式から求めた酸化チタンの結晶粒径は、試験No.1の場合は約15nm、試験No.3の場合は約21nmであり、本発明例の方が微細であることが確認された。
【0056】
次に、光触媒としての性能を調査するために、各試験材について、強い毒性と臭気をもつアセトアルデヒドの分解試験を行った。分解試験方法は次のとおりである。
【0057】
石英性反応セル(容量100cm3 )に試験材を入れ、閉鎖循環ラインに接続した(合計内容積870cm3 )。次に、空気で希釈したアセトアルデヒド(約250ppm)を系内に導入し、循環させながら250W超高圧水銀灯から減光フィルターおよびUVフィルターを通して光照射を行った。この時、試験材表面の紫外線強度(波長:366nm)は15mW/cm2であった。光照射を行いながらラインに接続したガスクロマトグラフを用いて、アセトアルデヒドの濃度を経時的に定量した。
【0058】
図2に、試験No.1および3について、光照射時間とアセトアルデヒドの濃度の関係を調査した結果を示した。比較例の試験No.3に比べて、本発明例の試験No.1の場合には、アセトアルデヒドが短時間に減少した。
【0059】
表1に、各試験で求められたアセトアルデヒドの分解速度定数を示した。ポリビニルピロリドンを含まないゾルによって製造した多機能部材を用いた比較例の試験No.3については、分解速度定数が0.025であった。それに対して、その他の本発明例については、0.036〜0.138で比較例に比べて明らかに高い値であった。また、分解速度定数に対する支持体の材質の影響も認められなかった。
【0060】
また、ジルコニウム、亜鉛、珪素、ハフニウム、アルミニウム、ほう素のそれぞれ化合物を含む試験No.6〜11についても、高い分解速度定数が得られた。
【0061】
以上の結果から、本発明で用いる酸化チタン光触媒用ゾルを支持体に付着させ、焼成して薄膜状の酸化チタンを固定した部材は、空気中の有害物質の分解および防臭に優れた効果を発揮する機能部材として使用できることが明らかになった。
【0062】
(実施例3)
本発明の製造方法で得られる多機能部材を用いて、地下水を汚染して問題となっているテトラクロロエチレンの分解試験を行った。
【0063】
焼成温度を700℃としたこと以外は、実施例2における試験No.1と同じ条件で、酸化チタンを薄膜状に固定した石英基板(試験材)を作製した。濃度30ppmのテトラクロロエチレンの水溶液40mlを石英製反応セルに入れ、その中に試験材を浸漬し酸素を20分間バブリングした後、250Wの超高圧水銀ランプの光をUVフィルターを通して照射した。4時間後反応液に含まれるテトラクロロエチレンの量をガスクロマトグラフを用いて定量した。
【0064】
その結果、テトラクロロエチレンの量は2ppmに減少していた。この結果から、本発明のゾルを支持体に塗布し、焼成して得られる多機能部材は、水中の汚染物質の分解、無害化にも有効であることが確認された。
【0065】
(実施例4)
本発明の製造方法で得られる多機能部材の抗菌効果を確認した。大腸菌(Escherichia coli W3110株)に対する抗菌性を、次の方法で調査した。
【0066】
多機能部材としては、実施例2における試験No.1で調製した試験材を用いた。その表面を予め70%エタノールで殺菌した後、大腸菌を2.5×105 個/ml含む生理食塩水0.2ml(大腸菌数:5×104 個)を、0.025mlづつ8滴に分けて試験材の表面に滴下した。次いで、相対湿度95%の条件下で250W超高圧水銀灯から、減光フィルター、UVフィルターを通じて30分間光照射を行った(紫外線強度1mW/cm2 )。その後、試験材の表面の菌液を生理食塩水9.8mlで洗い流し、回収した液を標準寒天培地に希釈沫塗し、35℃で48時間培養後、生育したコロニーを計数することによって生菌数を測定した。その結果、生存している大腸菌は1.5×103 個に減少していた。 また、比較例として、酸化チタンがコーティングされていない石英板および上記の実施例2における試験No.1で調製した試験材の表面に、それぞれ大腸菌を2.5×105 個/ml含む生理食塩水を滴下した後、前者には30分間光照射し、後者は30分間暗所に置いた場合の試験を行った。上記の場合と同様な方法で生存している生菌数を測定した結果、それぞれ4.3×104 個、4.6×104 個であった。
【0067】
これらの結果から、本発明のゾルを用いて製造された多機能部材は、優れた抗菌性を備えていることが明らかになった。
【0068】
(実施例5)
本発明の製造方法で得られる多機能部材の防汚効果を確認した。1例として、多機能部材である試験材の表面に付着させたタバコのヤニを除去する効果を調査した。
【0069】
実施例2における試験No.4で作製した試験材の表面にタバコ1本分のヤニを強制的に付着させた後、250W超高圧水銀灯から、減光フィルター、UVフィルターを通して光照射を行った(紫外線強度5mW/cm2 )。ヤニの減少は、色差計を用いて、黄色の目安となるb値の変化で評価した。
【0070】
その結果、b値は光照射前の16.2から、2時間の光照射でほぼ0となり、視覚的にも支持体として用いたタイルの色(白色)に蘇っていた。
【0071】
一方、酸化チタン膜が固定化されていないタイルを用いて、同様に試験を行ったところ、b値は13.4から、2時間の光照射では8.2に減少したにすぎなかった。視覚的にも、ヤニがかなり残っていると認められた。
【0072】
これらの結果から、本発明のゾルを用いて製造された多機能部材は、たばこのヤニを効果的に除去する性能、すなわち防汚性を備えていることが確認された。
【0073】
本発明で用いる酸化チタン光触媒用ゾルを支持体に塗布し焼成して得られる酸化チタン膜は、優れた光触媒作用を持っている。また、この酸化チタンゾルの原料は、比較的安価であり、このゾルを用いる多機能部材の製造にも特別な設備や操作を必要としないので、製造コストが比較的安い。
【0074】
このように前記のゾルを用いて製造される本発明の多機能部材は、大気中、水中などに存在する有害物質、汚染物質などを効果的に分解、除去する作用を持っており、防臭効果も大きい。また、抗菌作用、防汚作用にも優れているので、広い分野で利用することができる。
【図面の簡単な説明】
【図1】実施例1において、本発明例のゾル、比較例のゾルおよびポリビニルピロリドンの光吸収スペクトルを自記分光光度計により測定した結果を示す図である。
【図2】実施例2において、石英の支持体に固定した酸化チタン膜により、アセトアルデヒドの光分解を行った際のアセトアルデヒドの経時変化を測定した結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a titanium oxide photocatalyst forming agent for a titanium oxide photocatalyst. Or The present invention relates to a method for producing a multifunctional member having a photocatalytic action and a method for using a multifunctional member utilizing the photocatalytic action of the multifunctional member.
[0002]
[Prior art]
When a semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated on the irradiated surface. When a substance comes into contact with the surface of the semiconductor in such a state, the substance is decomposed by a strong oxidation-reduction action of the semiconductor.
[0003]
In recent years, the photocatalytic action of the semiconductor described above has been used in various environmental purification technologies such as decomposition or detoxification of harmful substances contained in air and water, deodorization, antifouling, sterilization, etc. in living spaces. Was. As a semiconductor for a photocatalyst, titanium oxide is mainly used.
[0004]
Conventionally, when used as a photocatalyst, a powder such as titanium oxide is suspended in a solution and used in that state (hereinafter, referred to as titanium oxide sol). However, from the viewpoint of easy handling and wide applicability, it is more advantageous to use the photocatalyst immobilized on a support. Therefore, in consideration of practicality, a method of using a photocatalyst fixed to a support has been developed.
[0005]
As a method for immobilizing titanium oxide on a support, a method in which a titanium oxide sol is adhered to a support, followed by heating with the support and baking is generally used. However, the fine particles of titanium oxide contained in the titanium oxide sol are likely to undergo grain growth during firing. As a result, the specific surface area, which has a significant effect on the reactivity of the photocatalytic reaction, is reduced, and as a result, the performance as a photocatalyst is significantly reduced.
[0006]
As a countermeasure for preventing grain growth during firing, a method has been proposed in which titanium oxide sol is hydrothermally treated to crystallize fine particles of titanium oxide in the sol before being applied to a support (Japanese Patent Application Laid-Open No. Hei 6 (1994) -6380). -293519). It is said that titanium oxide particles that are sufficiently crystallized hardly undergo grain growth during firing and have a high efficiency of separating electrons and holes generated by light irradiation, so that relatively high photocatalytic activity can be obtained. However, the hydrothermal treatment is a treatment under a high temperature and a high pressure, and requires delicate control of a solution concentration, a temperature, a pressure, a pH, and the like, and thus is not suitable for mass production of a photocatalyst.
[0007]
In addition, a method of adding a new substance to a titanium oxide sol has been proposed (Japanese Patent Application Laid-Open No. Hei 8-99041). In the case of this method, polyethylene glycol is added to a titanium oxide sol, the sol is adhered to a support, and a heat baking treatment is employed. The properties of the fired titanium oxide film are porous. However, in this method, it is necessary to form a multilayer film in order to obtain sufficient activity as a photocatalyst. Further, since the upper limit of the firing temperature is limited to 700 ° C., firing at a high temperature cannot be performed. Therefore, since the strength of the titanium oxide film cannot be increased, there is a problem that the durability as a photocatalyst is poor.
[0008]
The present invention provides a titanium oxide photocatalyst sol for preventing the growth of titanium oxide grains when forming a titanium oxide film by firing. Or It is an object of the present invention to provide a method for producing a multifunctional member having an excellent photocatalytic action and a method for using the obtained multifunctional member.
[0009]
Zo for titanium oxide photocatalyst of the present invention The The features of the method for producing the multifunctional member having the photocatalytic action and the method for using the multifunctional member are as follows (1) And (2) It is as follows.
[0010]
(1) On the surface of the support, Sol for titanium oxide photocatalyst containing polyvinylpyrrolidone and titanium compound For producing a multifunctional member having a photocatalytic action for forming a titanium oxide film on the surface of a support by firing after adhering .
[0011]
For the titanium oxide photocatalyst The sol may include an organic titanium complex formed by a chemical reaction between polyvinylpyrrolidone and a titanium compound. Further, it is preferable to include at least one of a zirconium compound, a zinc compound, a silicon compound, a hafnium compound, an aluminum compound and a boron compound.
[0013]
( 2 )the above( 1 A method of using a multifunctional member for treating a substance in the air or water under irradiation with light by using the multifunctional member obtained by the method of (1).
[0014]
The present invention Used in The sol contains, in addition to the basic components of the titanium compound and polyvinylpyrrolidone, a solvent for dissolving these components.
[0015]
According to the present invention, according to the following (1) to (3), when forming a titanium oxide film by firing, a titanium oxide film which prevents grain growth of titanium oxide, has a large specific surface area, and is excellent in photocatalytic action is obtained. ing.
[0016]
{Circle around (1)} A titanium compound, which is a precursor of titanium oxide, is blended into a sol as a titanium oxide source, and is caused to coexist with polyvinylpyrrolidone mainly in a state where hydrolysis is caused to form titanium oxide or titanium hydroxide. Therefore, a sol in which fine particles such as titanium oxide are uniformly dispersed in a state of being held by polyvinylpyrrolidone can be obtained.
[0017]
{Circle around (2)} An organic titanium complex may be formed in the sol by the reaction between the titanium compound and polyvinylpyrrolidone. Since this titanium compound is in a state where the titanium compound is bonded to the pyrrolidone group of polyvinylpyrrolidone, it is finely dispersed in the sol.
[0018]
(3) Polyvinylpyrrolidone does not undergo thermal decomposition up to about 400 ° C. Therefore, when the sol is baked in a state of being applied to the support, the fine particles such as titanium oxide crystallize as titanium oxide in the form of fine particles while being heated to about 400 ° C. Since the grain growth starts from a temperature exceeding about 400 ° C., a titanium oxide film having extremely fine grains and a large specific surface area is obtained as a result.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described.
[0020]
The present invention Used in The sol is mainly composed of a hydrolyzed titanium compound such as titanium oxide, polyvinylpyrrolidone and a solvent, as described above. This sol can be prepared by thoroughly mixing a titanium compound as a precursor substance and polyvinylpyrrolidone in a solvent such as water or alcohol, and heating as necessary. The present invention Used in The sol has a feature that it is easy to handle because it has excellent stability to water.
[0021]
Of the above configuration Used in the present invention An organic titanium complex may be present in the sol. This complex is effective for suppressing the grain growth of titanium oxide during firing. However, even when the organic titanium complex does not exist, titanium oxide having a practically sufficiently large specific surface area can be obtained.
[0022]
The present invention Used in As the titanium compound to be blended in the sol, a titanium alkoxide such as titanium isopropoxide and titanium butoxide, titanium sulfate, titanium tetrachloride, titanium acetylacetonate and the like, which are easily converted to titanium oxide by hydrolysis or the like are suitable. . In addition, TiO Two In addition to anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, fine particles such as titanium hydroxide and hydrous titanium oxide, and a reactive group of a precursor substance (for example, an alkoxide portion in titanium alkoxide) It is also preferable to use titanium oxide particles in which unreacted reactive groups remain on the surface of the titanium oxide particles even after hydrolysis has occurred to form a network as titanium oxide particles.
[0023]
In order to allow polyvinylpyrrolidone and a titanium compound to coexist, these titanium compounds may be used alone or in combination of two or more.
[0024]
The content of the titanium compound in the sol is preferably 0.01 mol / l or more and 2 mol / l or less. When the content of the titanium compound is less than 0.01 mol / l,
By firing after applying the sol once, a titanium oxide film having a sufficient thickness to exhibit photocatalytic activity cannot be obtained. Therefore, multilayering is required and productivity tends to decrease. On the other hand, if it exceeds 2 mol / l, cracks and clouding may occur in the titanium oxide film after firing in a usual coating method.
[0025]
The content of polyvinylpyrrolidone in the sol is desirably not less than 0.1% by weight and not more than the solubility in a solvent. If the amount is less than 0.1% by weight, the effect of polyvinylpyrrolidone cannot be obtained, so that the specific surface area of the fired titanium oxide does not become sufficiently large. Therefore, titanium oxide having high photocatalytic activity cannot be obtained. When the content of polyvinylpyrrolidone exceeds the solubility, insoluble polyvinylpyrrolidone in the sol is agglomerated, so that the film forming property is deteriorated, and the titanium oxide film after firing is likely to be uneven or cracked. The problem arises.
[0026]
The molecular weight of polyvinylpyrrolidone is desirably 1.2 million or less. If the molecular weight exceeds 1.2 million, the viscosity of the sol becomes too high, which hinders application to the support. In addition, when the sol is fired together with the support to obtain a titanium oxide film, the decomposition and volatilization of polyvinylpyrrolidone hardly occur, so that the organic matter easily remains in the titanium oxide film. As a result, the performance as a photocatalyst decreases. The more preferred molecular weight of polyvinylpyrrolidone is 100,000 or less. The lower limit of the molecular weight is preferably about 1,000. However, when the molecular weight is low, the ratio of polyvinylpyrrolidone in the sol needs to be increased in order to obtain a sufficient photocatalytic activity. When the molecular weight is in the above range, the viscosity of the sol is not so high that the handleability is excellent, and the photocatalytic activity of the calcined titanium oxide is also high.
[0027]
The composition ratio of the titanium compound to polyvinylpyrrolidone is preferably in the range of 0.1 to 10 in terms of the molar ratio of the titanium compound to the value obtained by converting the monomer portion from the polyvinylpyrrolidone content to the molar ratio. When it is in this range, it is easy to obtain titanium oxide having high photocatalytic activity by baking the sol.
[0028]
In addition, the present invention Used in The sol for forming a titanium oxide photocatalyst may contain at least one metal compound among zirconium compounds, zinc compounds, silicon compounds, hafnium compounds, aluminum compounds and boron compounds. These metal compounds have a function of improving the photocatalytic activity of the fired titanium oxide. Suitable as these metal compounds are oxides in the form of fine particles having a particle size of 30 nm or less, or alkoxides, chlorides, and nitrates that are precursors of the oxides. Among them, alkoxides that are most often mixed with a titanium compound are preferable for obtaining high photocatalytic activity.
[0029]
The content of the metal compound in the sol is preferably 0.01 to 0.5 in a molar ratio with respect to the titanium compound. If it is less than 0.01, the effect of the metal compound cannot be sufficiently exerted. On the other hand, if it exceeds 0.5, the performance as a photocatalyst is liable to be deteriorated because crystallization of titanium oxide hardly occurs during firing and the structure of titanium oxide is lost.
[0030]
When these metal compounds are added to the sol, it is preferable to perform heating and reflux treatment to obtain a sol having a uniform composition.
[0031]
Furthermore, the present invention Used in The sol contains, as necessary, alcohol amines such as diethanolamine and triethanolamine, and drying of the sol itself such as 1,3-propanediol and acetylacetone, and suppression of aggregation of titanium oxide fine particles contained in the sol. An effective additive may be contained. The amount of these additives is suitably about 0.1 to 2.0 with respect to the molar ratio of the titanium compound.
[0032]
(B) firing
above A method for producing a multifunctional member having a photocatalytic action by applying a sol to a support and baking it by heating will be described.
[0033]
Suitable materials for the support include metal materials such as stainless steel, carbon steel, plated steel, aluminum, and titanium, and inorganic materials such as ceramic, ceramics, glass, and quartz. Further, a composite material composed of these materials may be used. The shape of the support is preferably determined according to the use as a multifunctional member. It may be in the form of a plate such as a thick plate or a thin plate, a spherical shape such as a bead, or a complicated shape such as used as a product as it is. The surface property of the support may be porous or dense.
[0034]
Methods for applying the sol to the support include methods such as spin coating, dip coating, spray coating, bar coating, and roll coating. After the application, it may be forcibly dried by oven heating, warm air or the like, if necessary.
[0035]
After the sol is applied to the support by the above-described method, the sol is heated and baked together with the support to fix the titanium oxide film on the surface of the support.
[0036]
The firing temperature is preferably a temperature at which the titanium oxide particles sufficiently crystallize, and a temperature at which the organic compound contained in the sol is quickly decomposed and volatilized. Specifically, the temperature is preferably 400 ° C. or more and 1000 ° C. or less. If the temperature is lower than 400 ° C., a solvent to be decomposed and volatilized, and organic substances such as polyvinylpyrrolidone tend to remain in the titanium oxide film. Therefore, the photocatalytic activity tends to be insufficient, and it is difficult to obtain a titanium oxide film having a transparent and uniform film quality in appearance. On the other hand, if the firing temperature exceeds 1000 ° C., the titanium oxide particles grow remarkably, and the specific surface area of the titanium oxide decreases, so that a sufficiently high photocatalytic activity cannot be obtained. A more preferable range of the firing temperature is 500 ° C. or more and 800 ° C. or less.
[0037]
When the calcination temperature is in the above range, the crystal structure of titanium oxide is an anatase type effective as a photocatalyst and the crystal grains are fine, so that a functional member having excellent photocatalytic activity can be obtained.
[0038]
The thickness of the titanium oxide film is preferably about 20 nm to 2 μm. If the film thickness is less than 20 nm, sufficient photocatalytic activity may not be obtained. If the thickness exceeds 2 μm, the light transmittance tends to decrease, and the mechanical strength of the film tends to decrease. However, the present invention Used in In the case of a sol, a titanium oxide film having a sufficient photocatalytic activity can be obtained by a single operation even with a coating method such as spin coating and dip coating in which a thick film is difficult to form.
[0039]
The heating rate up to the firing temperature is preferably 20 ° C./min or less. When heated rapidly, there is almost no problem in terms of photocatalytic performance. However, since the decomposition and volatilization of organic substances occur simultaneously and rapidly, uneven gloss and cracks may occur in the titanium oxide film.
[0040]
(C) How to use multifunctional members
The multifunctional member having a photocatalytic action obtained by the above method exhibits a photocatalytic action by sunlight or light from a fluorescent lamp, a black light, a mercury lamp, a xenon lamp, or the like. By this catalytic action, an excellent effect of decomposing, removing and detoxifying various harmful substances and attached substances is exhibited. The main use of the multifunctional member obtained by the method of the present invention is to decompose and remove harmful substances and pollutants contained in air or water. The target substances are NOX, SOX, Freon, aldehydes, amines, mercaptans, alcohols, organic compounds such as BTX and phenols contained in the air, trihalomethane contained in water such as ammonia and hydrogen sulfide. , Trichloroethylene, organic halogen compounds such as chlorofluorocarbons, various pesticides such as herbicides, fungicides, insecticides, various biological oxygen demanding substances such as proteins and amino acids, surfactants, aldehydes, amines, and mercaptans Organic compounds such as alcohols, BTX, and phenols; inorganic compounds such as cyanide compounds and sulfur compounds; various heavy metal ions; and microorganisms such as bacteria, actinomycetes, fungi, and algae. Further, specific uses of the multifunctional member of the present invention include antibacterial activity against various fungi such as Escherichia coli, staphylococci, green bacterium, and mold, prevention of odors such as aldehyde, mercaptan, ammonia, and hydrogen sulfide, oil, and tobacco. Antifouling to tar, fingerprint, rain dripping, mud and the like.
[0041]
【Example】
(Example 1)
A sol for a titanium oxide photocatalyst was prepared, and compounds present in the sol were investigated.
[0042]
The sol was prepared by the following method. In Tests a and b (inventive examples), a mixture obtained by adding 68 g (0.2 mol) of titanium-n-butoxide to dehydrated ethanol (98 ml) was stirred at room temperature for 30 minutes, and then an ice bath was used. Cool. Thereafter, a mixed solution of ethanol (98 ml), water (2.6 ml), and nitric acid (1 ml) was slowly added dropwise, and the mixture was stirred for 1 hour. After removing the ice bath, the temperature was returned to room temperature, and stirring was continued for 12 hours. Further, 10 g of polyvinylpyrrolidone having a molecular weight of about 40,000 in the case of test a and about 1.2 million in the case of test b was added to 100 ml of the reaction solution, followed by stirring at room temperature for 1 hour. By this operation, a titanium oxide photocatalyst sol colored yellow was obtained.
[0043]
As a comparative example (test c), a sol for a titanium oxide photocatalyst was prepared under the same conditions as in the above tests a and b except that polyvinylpyrrolidone was not used. As a result, a transparent titanium oxide sol was obtained.
[0044]
These titanium oxide sols were analyzed with a self-recording spectrophotometer, and the absorption spectra of each liquid were measured. FIG. 1 shows the results.
[0045]
The absorption spectra of tests a and b (a and b, respectively) are shifted to longer wavelengths than the absorption spectrum (c) of test c (comparative example). Further, the difference spectrum (curve d and curve e) obtained by calculating the difference between the absorption amounts of the test a and the test b and the absorption amount of the test c has a waveform that is smaller than the absorption spectrum (f, g) of polyvinylpyrrolidone. It is completely different, and a peak is observed around 360 nm. This spectrum indicates that it is derived from an organic titanium complex generated from titanium-n-butoxide and polyvinylpyrrolidone.
[0046]
From this result, the present invention Used in Sol for titanium oxide photocatalyst (Test a and Test b: Examples of the present invention) It was confirmed that there existed a titanium compound, polyvinylpyrrolidone, which is a compounding raw material, and an organotitanium complex formed by these reactions.
[0047]
(Example 2)
The sol for titanium oxide photocatalyst was coated on a support, and the performance as a catalyst was investigated.
[0048]
As the support, three types of quartz plate, ceramic white tile and stainless steel plate (JIS SUS304) were used. The size of the support is 40 mm in length and width, and the thickness is 1 mm for a quartz plate and a stainless steel plate, and 5 mm for a tile.
[0049]
The sol for a titanium oxide photocatalyst was applied to the surface of these supports by a dip coating method (pulling speed: 100 mm / min; however, test No. 3 was 10 mm / min). Next, after drying at 100 ° C. for 30 minutes, the resultant was heated at a rate of 10 ° C./min using an electric furnace and baked at a final temperature of 550 ° C. or 700 ° C. for 30 minutes. By this treatment, a test material having titanium oxide fixed in a thin film was obtained.
[0050]
In Test No. 2 in Example 2, Table 1 summarizes the manufacturing conditions of the test materials Nos. 1 to 11. The method of preparing the sol was basically the same as in Example 1. However, since the titanium compound for producing titanium oxide, the molecular weight of polyvinylpyrrolidone and other additives were changed depending on the test, those conditions are also shown in Table 1.
[0051]
In addition, the test No. 7, 9, and 10 were prepared by the following method because acetylacetone was used in preparing the sol.
[0052]
56.8 g (0.2 mol) of titanium isopropoxide, 4.54 g (0.024 mol) of zinc nitrate (Test No. 7) or 8.6 g (0.024 mol) of hafnium ethoxide (Test No. 9) or aluminum A solution obtained by adding 4.9 g (0.024 mol) of nimisopropoxide (Test No. 10) and 30 g of acetylacetone to dehydrated ethanol (196 ml) was refluxed for 2 hours. After cooling, 10 g of polyvinylpyrrolidone having a molecular weight of about 40,000 was added to 100 ml of the reaction solution, and the mixture was stirred at room temperature for 1 hour to obtain a yellow colored titanium oxide photocatalyst sol.
[0053]
[Table 1]
[0054]
Test No. 1 (Example of the present invention) and Test No. 1 Regarding Comparative Example 3 (Comparative Example), the crystal structure and the crystal grain size of the titanium oxide film formed on the support were examined by X-ray diffraction.
[0055]
As a result, although the crystal structures were all anatase type, the crystal grain size of titanium oxide determined from Scherrer's equation was the same as in Test No. 2. In the case of test No. 1, about 15 nm; In the case of No. 3, it was about 21 nm, and it was confirmed that the example of the present invention was finer.
[0056]
Next, in order to investigate the performance as a photocatalyst, a decomposition test of acetaldehyde having strong toxicity and odor was performed on each test material. The decomposition test method is as follows.
[0057]
Quartz reaction cell (capacity 100cm 3 ) Was charged with a test material and connected to a closed circulation line (total internal volume: 870 cm) 3 ). Next, acetaldehyde (about 250 ppm) diluted with air was introduced into the system, and light was irradiated from a 250 W ultra-high pressure mercury lamp through a neutral density filter and a UV filter while circulating. At this time, the ultraviolet intensity (wavelength: 366 nm) on the surface of the test material was 15 mW / cm. 2 Met. The concentration of acetaldehyde was quantified with time using a gas chromatograph connected to a line while performing light irradiation.
[0058]
FIG. The results of investigating the relationship between the light irradiation time and the concentration of acetaldehyde for 1 and 3 are shown. Test No. of the comparative example. In comparison with Test No. 3, Test No. In case 1, acetaldehyde was reduced in a short time.
[0059]
Table 1 shows the decomposition rate constants of acetaldehyde determined in each test. Test No. of a comparative example using a multifunctional member manufactured with a sol containing no polyvinylpyrrolidone. For No. 3, the decomposition rate constant was 0.025. On the other hand, the values of 0.036 to 0.138 of the other examples of the present invention were clearly higher than those of the comparative examples. Further, no influence of the material of the support on the decomposition rate constant was observed.
[0060]
In addition, Test No. 1 containing each compound of zirconium, zinc, silicon, hafnium, aluminum, and boron. For 6 to 11, high decomposition rate constants were obtained.
[0061]
From the above results, the present invention Used in The titanium oxide photocatalyst sol adhered to the support and calcined to fix the titanium oxide in the form of a thin film can clearly be used as a functional member that has excellent effects in decomposing harmful substances in the air and deodorizing. became.
[0062]
(Example 3)
Using the multifunctional member obtained by the production method of the present invention, a decomposition test of tetrachloroethylene, which is a problem by contaminating groundwater, was performed.
[0063]
Except that the firing temperature was set to 700 ° C., the test No. 2 in Example 2 was repeated. Under the same conditions as in 1, a quartz substrate (test material) in which titanium oxide was fixed in a thin film shape was produced. 40 ml of an aqueous solution of tetrachloroethylene having a concentration of 30 ppm was placed in a quartz reaction cell, and the test material was immersed therein and oxygen was bubbled for 20 minutes, and then irradiated with light from a 250 W ultra-high pressure mercury lamp through a UV filter. After 4 hours, the amount of tetrachloroethylene contained in the reaction solution was quantified using a gas chromatograph.
[0064]
As a result, the amount of tetrachloroethylene was reduced to 2 ppm. From these results, it was confirmed that the multifunctional member obtained by applying the sol of the present invention to a support and firing it was also effective in decomposing and detoxifying contaminants in water.
[0065]
(Example 4)
The antibacterial effect of the multifunctional member obtained by the production method of the present invention was confirmed. The antibacterial activity against Escherichia coli (Escherichia coli W3110 strain) was examined by the following method.
[0066]
As the multifunctional member, the test No. in Example 2 was used. The test material prepared in 1 was used. After sterilizing the surface with 70% ethanol in advance, E. coli was 5 0.2 ml of physiological saline containing cells / ml (the number of E. coli: 5 × 10 4 ) Were dropped on the surface of the test material in 8 drops of 0.025 ml each. Next, light irradiation was performed for 30 minutes from a 250 W ultra-high pressure mercury lamp through a neutral density filter and a UV filter under the condition of a relative humidity of 95% (ultraviolet intensity: 1 mW / cm). 2 ). Thereafter, the bacterial solution on the surface of the test material was washed away with 9.8 ml of physiological saline, and the recovered solution was diluted and spread on a standard agar medium, cultured at 35 ° C. for 48 hours, and the number of grown colonies was counted by counting the grown colonies. The number was measured. As a result, 1.5 × 10 3 Had been reduced to pieces. As a comparative example, a quartz plate not coated with titanium oxide and the test No. 2 in Example 2 described above were used. On the surface of the test material prepared in step 1, 2.5 × 10 5 After dropping a physiological saline solution containing individual saline / ml, the former was irradiated with light for 30 minutes, and the latter was tested for 30 minutes in a dark place. As a result of measuring the number of surviving viable cells in the same manner as described above, 4.3 × 10 4 4.6 × 10 4 Was individual.
[0067]
From these results, it became clear that the multifunctional member manufactured using the sol of the present invention has excellent antibacterial properties.
[0068]
(Example 5)
The antifouling effect of the multifunctional member obtained by the production method of the present invention was confirmed. As an example, the effect of removing the tar of tobacco attached to the surface of the test material, which is a multifunctional member, was investigated.
[0069]
In Test No. 2 in Example 2, After forcibly adhering one cigarette tar to the surface of the test material prepared in 4, the sample was irradiated with light from a 250 W ultra-high pressure mercury lamp through a neutral density filter and a UV filter (ultraviolet intensity 5 mW / cm). 2 ). The decrease in tan was evaluated using a color difference meter by a change in the b-value as a measure of yellow.
[0070]
As a result, the b value became 16. from 16.2 before the light irradiation, and became almost 0 after 2 hours of light irradiation, and the color (white) of the tile used as the support was visually revived.
[0071]
On the other hand, when a similar test was performed using a tile on which the titanium oxide film was not immobilized, the b value only decreased from 13.4 to 8.2 by light irradiation for 2 hours. Visually, it was recognized that a considerable amount of tar was left.
[0072]
From these results, it was confirmed that the multifunctional member manufactured by using the sol of the present invention had a performance of effectively removing tobacco tar, that is, an antifouling property.
[0073]
The present invention Used in The titanium oxide film obtained by applying the titanium oxide photocatalyst sol to a support and firing it has an excellent photocatalytic action. Also, this The raw material of the titanium oxide sol is relatively inexpensive, and the production cost of the multifunctional member using this sol is relatively low because no special equipment or operation is required.
[0074]
in this way Said The multifunctional member of the present invention manufactured using the sol of (1) has an action of effectively decomposing and removing harmful substances and contaminants present in the air, water and the like, and has a large deodorizing effect. In addition, since it has excellent antibacterial and antifouling effects, it can be used in a wide range of fields.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of measuring the optical absorption spectra of a sol of the present invention, a sol of a comparative example, and polyvinylpyrrolidone in Example 1, using a self-recording spectrophotometer.
FIG. 2 is a view showing a result of measuring a temporal change of acetaldehyde when photodecomposition of acetaldehyde was performed using a titanium oxide film fixed to a quartz support in Example 2.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15075697A JP3550947B2 (en) | 1997-06-09 | 1997-06-09 | Method for producing and using photocatalytic multifunctional member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15075697A JP3550947B2 (en) | 1997-06-09 | 1997-06-09 | Method for producing and using photocatalytic multifunctional member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10337478A JPH10337478A (en) | 1998-12-22 |
JP3550947B2 true JP3550947B2 (en) | 2004-08-04 |
Family
ID=15503737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15075697A Expired - Fee Related JP3550947B2 (en) | 1997-06-09 | 1997-06-09 | Method for producing and using photocatalytic multifunctional member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3550947B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105664996A (en) * | 2016-03-09 | 2016-06-15 | 中国科学院地球环境研究所 | Preparation method and application of g-C3N4/TiO2 heterojunction photocatalytic film |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000029108A1 (en) * | 1998-11-12 | 2000-05-25 | Abb Lummus Global Inc. | Attrition resistant thin film catalyst and method of preparation |
TW473400B (en) | 1998-11-20 | 2002-01-21 | Asahi Chemical Ind | Modified photocatalyst sol |
JP2002060651A (en) * | 2000-08-23 | 2002-02-26 | Hitachi Chem Co Ltd | Metal oxide aqueous sol composition, method for forming membrane by using the same and member |
KR100840899B1 (en) * | 2006-08-11 | 2008-06-24 | 오쿠야마 키쿠오 | Manufacturing methods of photo-catalytic titanium oxide with addition of polymer |
-
1997
- 1997-06-09 JP JP15075697A patent/JP3550947B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105664996A (en) * | 2016-03-09 | 2016-06-15 | 中国科学院地球环境研究所 | Preparation method and application of g-C3N4/TiO2 heterojunction photocatalytic film |
CN105664996B (en) * | 2016-03-09 | 2018-08-31 | 中国科学院地球环境研究所 | A kind of g-C3N4/TiO2The preparation method and applications of heterojunction photocatalysis film |
Also Published As
Publication number | Publication date |
---|---|
JPH10337478A (en) | 1998-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7858201B2 (en) | Titanium oxide photocatalyst, method for producing same and use thereof | |
CN1222580C (en) | Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same | |
KR100642973B1 (en) | Titanium oxide, photocatalyst comprising same and photocatalytic coating agent | |
WO2003080244A1 (en) | Titanium oxide photocatalyst, process for producing the same and application | |
JP3894144B2 (en) | Titanium oxide photocatalyst and its production method and application | |
JPH10305230A (en) | Photocatalyst, its production and decomposing and removing method of harmful substance | |
KR100822540B1 (en) | Titanium oxide base photocatalyst, process for producing the same and use thereof | |
WO1998058736A1 (en) | Titanium oxide-based photocatalyst, process for preparing the same, and use thereof | |
JPH10338516A (en) | Production of metal oxide intercalated into clay mineral | |
WO2008009919A1 (en) | Metal oxynitride | |
JP3567693B2 (en) | Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances | |
JP3550947B2 (en) | Method for producing and using photocatalytic multifunctional member | |
JP3978636B2 (en) | Coating composition for photocatalyst film formation | |
JP2007117999A (en) | Titanium oxide-based photocatalyst and its use | |
JP4103324B2 (en) | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same | |
JP3567004B2 (en) | Photocatalyst and method for producing the same | |
JPH09239277A (en) | Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them | |
JPH11179211A (en) | Titanium dioxide-base photocatalyst, its production, multifunctional member and method for using same | |
JP4580197B2 (en) | Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same | |
JP3431301B2 (en) | Tile with photocatalytic function | |
JP3978635B2 (en) | Titanyl oxalate coating liquid and method for producing photocatalytic element using the same | |
KR100526432B1 (en) | Eradicator of filamentous fungi or acarid and method for manufacturing the same | |
JPH11244706A (en) | Photocatalyst comprising anatase-type titanium oxide and its manufacture | |
JP3726366B2 (en) | Fluorescent lamp | |
JP2003190794A (en) | Method for producing environmental material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |