JPH1131819A - Electrostatic breakdown protective transistor - Google Patents

Electrostatic breakdown protective transistor

Info

Publication number
JPH1131819A
JPH1131819A JP9188348A JP18834897A JPH1131819A JP H1131819 A JPH1131819 A JP H1131819A JP 9188348 A JP9188348 A JP 9188348A JP 18834897 A JP18834897 A JP 18834897A JP H1131819 A JPH1131819 A JP H1131819A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
gate
region
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9188348A
Other languages
Japanese (ja)
Inventor
Kazumi Kurimoto
一実 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP9188348A priority Critical patent/JPH1131819A/en
Publication of JPH1131819A publication Critical patent/JPH1131819A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance electrostatic breakdown protective transistor without the increase in the number of processes, while the rise in manufacturing cost is suppressed. SOLUTION: On a gate electrode 8, a plurality of comb-like gate electrode extension parts 8b, extending from a gate electrode main body part 8b to a source region 6 side and a drain region 5 side, are provided, a gate sidewall insulating film 10 is formed so as to fill the gaps among the teeth the comb of the gate electrode extension part 8b, and a silicide layer 9 is formed on the gate electrode 8 is a source region 6 and a drain region 5 except for the region where the gate sidewall insulating film 10 is formed. Such a drain regions 5 and a source region 6 below the gate sidewall insulating film 10 among the teeth of the comb of the gate electrode extension part 8b are of high resistance, and this high resistance is connected in series to the resistance of an interface between the silicide layer 9 and a source/drain diffused layer. Consequently concentration of electric field at this interface and resulting heat-accumulation are suppressed, improving the breakdown resistance. The silicide layer 9 is formed self-alignedly with the gate sidewall insulating film 10 as a mask.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部回路を保護す
るための静電破壊保護トランジスタに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic discharge protection transistor for protecting an internal circuit.

【0002】[0002]

【従来の技術】MOSデバイスにおいて微細化は、拡散
層の薄膜化による寄生抵抗の増大をもたらし、そのため
拡散抵抗を低減させるシリサイド構造が多く採用されて
いる。しかしながら、シリサイド構造は、シリサイド層
と拡散層界面に高抵抗層が形成され、静電破壊保護トラ
ンジスタに使用した場合、拡散層抵抗が低下すること
で、印加された電位がほとんどシリサイド層と拡散層の
界面にかかり、この界面での発熱を激しいものとしてい
る。そこで、例えば、米国特許5,021,853(1
991.6.4)によれば、ゲート側壁絶縁膜を形成す
るための垂直方向に選択的にエッチングする際に、保護
トランジスタ部をマスクし、選択的に非サリサイド領域
を形成するようにしている。
2. Description of the Related Art In a MOS device, miniaturization causes an increase in parasitic resistance due to thinning of a diffusion layer, and therefore, a silicide structure for reducing the diffusion resistance is often used. However, in the silicide structure, a high-resistance layer is formed at the interface between the silicide layer and the diffusion layer, and when used in an electrostatic discharge protection transistor, the resistance of the diffusion layer is reduced. And the heat generated at this interface is intense. Thus, for example, US Pat. No. 5,021,853 (1)
According to 991.6.4), when selectively etching in the vertical direction for forming a gate sidewall insulating film, the protection transistor portion is masked and a non-salicide region is selectively formed. .

【0003】以下、図面を参照しながら、従来の静電破
壊保護トランジスタについて説明する。図5は従来の静
電破壊保護回路の回路図であり、1は外部回路と接続す
るためのパッド、3は保護抵抗、4は内部回路、11は
静電破壊保護トランジスタである。図6は図5の静電破
壊保護トランジスタ11(以下「保護トランジスタ1
1」という)の断面図であり、5はドレイン領域、6は
ソース領域、8はゲート電極、9はシリサイド層、13
は半導体基板、14は素子分離用絶縁膜、16はゲート
酸化膜である。
Hereinafter, a conventional electrostatic discharge protection transistor will be described with reference to the drawings. FIG. 5 is a circuit diagram of a conventional electrostatic discharge protection circuit. Reference numeral 1 denotes a pad for connection to an external circuit, 3 denotes a protection resistor, 4 denotes an internal circuit, and 11 denotes an electrostatic discharge protection transistor. FIG. 6 shows the electrostatic discharge protection transistor 11 of FIG.
1 ”), 5 is a drain region, 6 is a source region, 8 is a gate electrode, 9 is a silicide layer, 13
Denotes a semiconductor substrate, 14 denotes an isolation insulating film, and 16 denotes a gate oxide film.

【0004】図5において、外部からパッド1に印加さ
れた静電荷は、保護トランジスタ11がスナップバック
特性を示した後、バイポーラ動作することで、基板に流
され、一方、保護抵抗3により内部回路4へは電荷が流
れず、内部回路4が保護される。また、保護トランジス
タ11は、通常はオフであり動作せず、回路動作には影
響を与えない。この保護トランジスタ11は、図6の断
面構造を有し、ドレイン領域5側に印加された静電荷を
寄生バイポーラ動作によりソース領域6側に流す。
In FIG. 5, an electrostatic charge applied to the pad 1 from the outside is caused to flow to the substrate by the bipolar operation after the protection transistor 11 exhibits the snapback characteristic, and the internal circuit is protected by the protection resistor 3. 4 does not flow, and the internal circuit 4 is protected. The protection transistor 11 is normally off and does not operate, and does not affect the circuit operation. This protection transistor 11 has the cross-sectional structure of FIG. 6, and allows the static charge applied to the drain region 5 side to flow to the source region 6 side by a parasitic bipolar operation.

【0005】保護トランジスタ11は、マスクによって
選択的に形成された絶縁膜12で覆われていないドレイ
ン領域5およびソース領域6上にシリサイド層9が形成
され、ドレイン領域5およびソース領域6の拡散層とシ
リサイド層9との界面は高抵抗となっている。一方、絶
縁膜12で覆われた部分のドレイン領域5およびソース
領域6では、シリサイド層9は形成されず、高抵抗領域
となっている。したがって、絶縁膜12直下のドレイン
領域5およびソース領域6の高抵抗と、拡散層とシリサ
イド層9の界面抵抗とが直列に接続された構成であり、
絶縁膜12直下の高抵抗のドレイン領域5およびソース
領域6により、拡散層とシリサイド層9の界面抵抗に電
界が集中せず、保護回路の破壊耐圧を向上させている。
In the protection transistor 11, a silicide layer 9 is formed on a drain region 5 and a source region 6 which are not covered with an insulating film 12 selectively formed by a mask, and a diffusion layer of the drain region 5 and the source region 6 is formed. The interface between the metal and the silicide layer 9 has a high resistance. On the other hand, the silicide layer 9 is not formed in the drain region 5 and the source region 6 in the portion covered with the insulating film 12, and the region is a high resistance region. Therefore, the high resistance of the drain region 5 and the source region 6 immediately below the insulating film 12 and the interface resistance between the diffusion layer and the silicide layer 9 are connected in series.
Due to the high-resistance drain region 5 and source region 6 immediately below the insulating film 12, an electric field is not concentrated on the interface resistance between the diffusion layer and the silicide layer 9, and the breakdown voltage of the protection circuit is improved.

【0006】この保護トランジスタ11の製造工程断面
図を図7に示す。この保護トランジスタ11は、図7
(a)に示すように、半導体基板13に、素子分離用絶
縁膜14,ゲート酸化膜16,ゲート電極8,ドレイン
領域5およびソース領域6を形成した後、図7(b)に
示すように、全面に絶縁膜12を形成する。つぎに、図
7(c)に示すように、絶縁膜12上にレジスト等から
なるマスク15を形成し、このマスク15を用いて絶縁
膜12の所定の領域をエッチング開口する。その後、図
7(d)に示すように、絶縁膜12を開口した領域に自
己整合的にシリサイド層9を形成する。
FIG. 7 is a sectional view showing a manufacturing process of the protection transistor 11. This protection transistor 11 is configured as shown in FIG.
As shown in FIG. 7A, after an isolation insulating film 14, a gate oxide film 16, a gate electrode 8, a drain region 5 and a source region 6 are formed on a semiconductor substrate 13, as shown in FIG. Then, an insulating film 12 is formed on the entire surface. Next, as shown in FIG. 7C, a mask 15 made of a resist or the like is formed on the insulating film 12, and a predetermined region of the insulating film 12 is etched using the mask 15. Thereafter, as shown in FIG. 7D, a silicide layer 9 is formed in a region where the insulating film 12 is opened in a self-aligned manner.

【0007】[0007]

【発明が解決しようとする課題】上記のような保護トラ
ンジスタ11を製造するためには、シリサイド層9を形
成しない非サリサイド化領域を規定する絶縁膜12を選
択的に残すため、マスク15が必要であった。このこと
は工程数が増え製造コストの上昇をもたらすこととな
る。
In order to manufacture the protection transistor 11 as described above, a mask 15 is required in order to selectively leave the insulating film 12 which defines the non-salicided region where the silicide layer 9 is not formed. Met. This results in an increase in the number of steps and an increase in manufacturing cost.

【0008】本発明の目的は、上記問題点に鑑み、工程
数の増加がなく、製造コストの上昇を抑えられる高性能
な静電破壊保護トランジスタを提供することである。
An object of the present invention is to provide a high-performance electrostatic discharge protection transistor which does not increase the number of steps and suppresses an increase in manufacturing cost in view of the above problems.

【0009】[0009]

【課題を解決するための手段】請求項1記載の静電破壊
保護トランジスタは、第1導電型の半導体基板の表面に
対向配置され第2導電型の拡散層からなるソース領域お
よびドレイン領域と、ソース領域とドレイン領域との間
の上にゲート絶縁膜を介して設けたゲート電極本体部
と、このゲート電極本体部からソース領域側およびドレ
イン領域側のうち少なくともドレイン領域側に櫛の歯状
に延伸形成した複数のゲート電極延伸部とからなるゲー
ト電極と、半導体基板上でかつゲート電極の側壁に形成
され、ゲート電極延伸部の櫛の歯状の間を埋めるゲート
側壁絶縁膜と、ソース領域およびドレイン領域上でゲー
ト側壁絶縁膜の形成領域を除く領域に形成したシリサイ
ド層とを備えている。
According to a first aspect of the present invention, there is provided an electrostatic discharge protection transistor, comprising: a source region and a drain region which are arranged opposite to a surface of a semiconductor substrate of a first conductivity type and formed of a diffusion layer of a second conductivity type; A gate electrode main body provided between the source region and the drain region with a gate insulating film interposed therebetween, and a comb-like shape from the gate electrode main body to at least the drain region side of the source region side and the drain region side. A gate electrode comprising a plurality of gate electrode extensions formed by extension; a gate sidewall insulating film formed on the semiconductor substrate and on sidewalls of the gate electrode, filling a comb-shaped portion of the gate electrode extension; and a source region. And a silicide layer formed on the drain region except for the region where the gate sidewall insulating film is formed.

【0010】この構成によれば、シリサイド層を、ゲー
ト側壁絶縁膜の形成領域を除くソース領域およびドレイ
ン領域上に形成しているため、ゲート電極およびゲート
側壁絶縁膜をマスクとして自己整合的にソース領域およ
びドレイン領域上にシリサイド層を形成することがで
き、またゲート側壁絶縁膜はマスク工程を必要とせず垂
直方向に強い異方性のあるエッチングによりパターン形
成できるため、シリサイド層を形成するためのマスク工
程等は不要で、工程数を増加させることなく、製造コス
トを抑えることができる。
According to this structure, since the silicide layer is formed on the source region and the drain region excluding the region where the gate sidewall insulating film is formed, the source is self-aligned using the gate electrode and the gate sidewall insulating film as a mask. A silicide layer can be formed on the region and the drain region, and the gate sidewall insulating film can be patterned by strong anisotropic etching in the vertical direction without requiring a masking step. No masking step or the like is required, and the manufacturing cost can be reduced without increasing the number of steps.

【0011】また、ゲート電極にゲート電極本体部から
ドレイン領域側に櫛の歯状に延伸形成した複数のゲート
電極延伸部を設け、ゲート側壁絶縁膜をゲート電極延伸
部の櫛の歯状の間を埋めるように形成し、シリサイド層
を、ゲート側壁絶縁膜の形成領域を除くソース領域およ
びドレイン領域上に形成しているため、ゲート電極延伸
部の櫛の歯状の間のゲート側壁絶縁膜の下のドレイン領
域はシリサイド層がなく高抵抗領域となり、この高抵抗
と、シリサイド層とソース領域,ドレイン領域との界面
(以下「シリサイド・拡散層界面」という)の抵抗とが
直列に接続され、シリサイド・拡散層界面での電界集中
およびそれによる発熱を抑え、破壊耐圧を向上させるこ
とができる。なお、特に破壊は静電荷が印加されるドレ
イン側で起こるため、ドレイン領域側にのみゲート電極
延伸部を設けることで、静電破壊耐圧を向上することが
でき、また、ソース領域を小さくしてトランジスタの小
型化を図ることができる。
A plurality of gate electrode extending portions are formed on the gate electrode so as to extend from the gate electrode body to the drain region side, and a gate sidewall insulating film is formed between the comb tooth portions of the gate electrode extending portion. And the silicide layer is formed on the source region and the drain region excluding the region where the gate sidewall insulating film is formed. Therefore, the gate sidewall insulating film between the comb teeth of the gate electrode extension is formed. The lower drain region becomes a high resistance region without a silicide layer, and this high resistance is connected in series with the resistance at the interface between the silicide layer and the source region and the drain region (hereinafter referred to as “silicide / diffusion layer interface”). Electric field concentration at the silicide / diffusion layer interface and heat generation due to the electric field concentration can be suppressed, and the breakdown voltage can be improved. In particular, since destruction occurs on the drain side to which an electrostatic charge is applied, by providing a gate electrode extension only on the drain region side, it is possible to improve electrostatic breakdown withstand voltage and to reduce the source region. The size of the transistor can be reduced.

【0012】請求項2記載の静電破壊保護トランジスタ
は、請求項1記載の静電破壊保護トランジスタにおい
て、複数のゲート電極延伸部をソース領域側にも設けた
ことを特徴とする。このように、複数のゲート電極延伸
部をソース領域側にも設けることにより、ソース領域側
のゲート電極延伸部の櫛の歯状の間のゲート側壁絶縁膜
の下のソース領域もシリサイド層がなく高抵抗領域とな
り、破壊耐圧をより向上させることができる。
According to a second aspect of the present invention, there is provided the electrostatic breakdown protection transistor according to the first aspect, wherein a plurality of gate electrode extensions are provided also on the source region side. In this manner, by providing a plurality of gate electrode extensions on the source region side, the source region under the gate sidewall insulating film between the comb teeth of the gate electrode extension on the source region side also has no silicide layer. It becomes a high resistance region, and the breakdown voltage can be further improved.

【0013】請求項3記載の静電破壊保護トランジスタ
は、請求項1または2記載の静電破壊保護トランジスタ
において、各ゲート電極延伸部の幅を、ゲート電極最小
デザインルール幅以上にしている。これにより、デザイ
ンルールに適合した寸法管理が容易で安定したゲート電
極延伸部の形状を形成することができる。
According to a third aspect of the present invention, in the electrostatic discharge protection transistor of the first or second aspect, the width of each gate electrode extension is set to be equal to or larger than the minimum design rule width of the gate electrode. Thereby, it is possible to easily form a stable shape of the extended portion of the gate electrode, which is easy to manage in size and conforms to the design rule.

【0014】請求項4記載の静電破壊保護トランジスタ
は、請求項1または2記載の静電破壊保護トランジスタ
において、ゲート電極延伸部の間隔を、ゲート側壁絶縁
膜の幅の2倍に0.3μm加えた値以下にしている。こ
れにより、破壊耐圧の向上を確実に図ることができる。
According to a fourth aspect of the present invention, there is provided the electrostatic breakdown protection transistor according to the first or second aspect, wherein the interval between the extended portions of the gate electrode is 0.3 μm, which is twice the width of the gate side wall insulating film. It is below the added value. As a result, the breakdown voltage can be reliably improved.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しながら、本発
明の実施の形態について説明する。図1は本発明の実施
の形態における静電破壊保護回路の回路図であり、1は
外部回路と接続するためのパッド、2は外部からの静電
ノイズから内部回路4を保護する本実施の形態の静電破
壊保護トランジスタ、3は外部からの静電ノイズから内
部回路4を保護する保護抵抗である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of an electrostatic discharge protection circuit according to an embodiment of the present invention. Reference numeral 1 denotes a pad for connecting to an external circuit, and reference numeral 2 denotes an embodiment in which the internal circuit 4 is protected from external electrostatic noise. The form of the electrostatic breakdown protection transistor 3 is a protection resistor for protecting the internal circuit 4 from external electrostatic noise.

【0016】図2(a)は図1の静電破壊保護トランジ
スタ2(以下「保護トランジスタ2」という)の平面
図、図2(b)はそのA−A断面図であり、5は図1の
パッド1にコンタクト7aを通じて接続されるドレイン
領域、6はコンタクト7bを通じて接地されるソース領
域、8はゲート電極本体部8aと複数のゲート電極延伸
部8bとからなり接地されるゲート電極、9はゲート電
極8上とドレイン領域5およびソース領域6上に形成さ
れたシリサイド層、10はゲート電極8の側壁に形成さ
れたゲート側壁絶縁膜、13は半導体基板、14は素子
分離用絶縁膜、16はゲート酸化膜である。
FIG. 2A is a plan view of the electrostatic discharge protection transistor 2 of FIG. 1 (hereinafter referred to as “protection transistor 2”), FIG. 2B is a sectional view taken along the line AA, and 5 is FIG. A drain region connected to the pad 1 through a contact 7a, a source region 6 grounded through a contact 7b, a gate electrode 8 composed of a gate electrode body 8a and a plurality of gate electrode extensions 8b, and a ground electrode 9. A silicide layer formed on the gate electrode 8 and on the drain region 5 and the source region 6; a gate insulating film 10 formed on the side wall of the gate electrode 8; a semiconductor substrate 13; Is a gate oxide film.

【0017】この保護トランジスタ2は、例えばp型の
半導体基板13表面にn型の拡散層からなるドレイン領
域5およびソース領域6を形成し、半導体基板13上に
はゲート酸化膜16を介してゲート電極8を設けてい
る。ゲート電極8には、ゲート電極本体部8aからソー
ス領域6側およびドレイン領域5側へ櫛の歯状に延伸形
成した複数のゲート電極延伸部8bを設け、ゲート側壁
絶縁膜10をゲート電極延伸部8bの櫛の歯状の間を埋
めるように形成している。そして、シリサイド層9を、
ゲート電極8上と、ゲート側壁絶縁膜10の形成領域を
除くソース領域6上およびドレイン領域5上とに形成し
ている。なお、ソース領域6およびドレイン領域5の拡
散層は、ゲート電極本体部8aおよびゲート電極延伸部
8bを有したゲート電極8をマスクに形成し、ゲート電
極8の下への拡散層の回り込みは有るが、それ以外はゲ
ート電極8の下にソース領域6およびドレイン領域5は
形成されていない。
The protection transistor 2 has a drain region 5 and a source region 6 formed of, for example, an n-type diffusion layer on the surface of a p-type semiconductor substrate 13, and a gate oxide film 16 on the semiconductor substrate 13 via a gate oxide film 16. An electrode 8 is provided. The gate electrode 8 is provided with a plurality of gate electrode extensions 8b extending in a comb-like shape from the gate electrode body 8a toward the source region 6 and the drain region 5, and the gate sidewall insulating film 10 is formed as a gate electrode extension. 8b is formed so as to fill the space between the teeth of the comb. Then, the silicide layer 9 is
It is formed on the gate electrode 8 and on the source region 6 and the drain region 5 excluding the region where the gate sidewall insulating film 10 is formed. Note that the diffusion layers of the source region 6 and the drain region 5 are formed using the gate electrode 8 having the gate electrode body 8a and the gate electrode extension 8b as a mask, and the diffusion layer goes under the gate electrode 8. However, other than that, the source region 6 and the drain region 5 are not formed under the gate electrode 8.

【0018】図1において、外部からパッド1に印加さ
れた静電荷は、保護トランジスタ2がスナップバック特
性を示した後、バイポーラ動作することで、基板に流さ
れ、一方、保護抵抗3により内部回路4へは電荷が流れ
ず、内部回路4が保護される。なお、保護トランジスタ
2は、通常はオフであり動作せず、回路動作には影響を
与えない。この保護トランジスタ2は、ドレイン側に印
加された静電荷を寄生バイポーラ動作によりソース側に
流す。
In FIG. 1, an electrostatic charge applied to the pad 1 from the outside is caused to flow to the substrate by the bipolar operation after the protection transistor 2 exhibits the snap-back characteristic, while the internal resistance is changed by the protection resistor 3. 4 does not flow, and the internal circuit 4 is protected. The protection transistor 2 is normally off and does not operate, and does not affect the circuit operation. The protection transistor 2 causes the static charge applied to the drain side to flow to the source side by a parasitic bipolar operation.

【0019】図2において、保護トランジスタ2内部で
は、図1のパッド1に外部から印加された静電荷は、コ
ンタクト7aを通じてドレイン領域5に流れる。静電荷
は、シリサイド層9から、シリサイド層9と拡散層であ
るドレイン領域5との界面(以下「シリサイド・ドレイ
ン拡散層界面」という),ゲート側壁絶縁膜10の下の
ドレイン領域5,寄生バイポーラ動作しているゲート電
極8の下を流れ、ソース領域6からシリサイド層9と拡
散層であるソース領域6との界面(以下「シリサイド・
ソース拡散層界面」という),コンタクト7bを通じ
て、接地された半導体基板13へ流される。
In FIG. 2, inside the protection transistor 2, an electrostatic charge externally applied to the pad 1 of FIG. 1 flows to the drain region 5 through the contact 7a. The electrostatic charge is transferred from the silicide layer 9 to the interface between the silicide layer 9 and the drain region 5 as a diffusion layer (hereinafter referred to as “silicide / drain diffusion layer interface”), the drain region 5 below the gate sidewall insulating film 10, and the parasitic bipolar. It flows under the operating gate electrode 8 and flows from the source region 6 to the interface between the silicide layer 9 and the source region 6 which is a diffusion layer (hereinafter referred to as “silicide layer 9”).
Source diffusion layer interface), and flows to the grounded semiconductor substrate 13 through the contact 7b.

【0020】シリサイド・ドレイン拡散層界面およびシ
リサイド・ソース拡散層界面は、非常に薄く、サージの
ような短時間に高電位がかかると発熱し、熱が拡散せず
に場合によっては融解に至り、トランジスタの接合破壊
を引き起こす。そこで、この実施の形態では、ゲート電
極8に、ゲート電極本体部8aから櫛の歯状に延伸形成
した複数のゲート電極延伸部8bを設け、ゲート側壁絶
縁膜10をゲート電極延伸部8bの櫛の歯状の間を埋め
るように形成し、シリサイド層9を、ゲート側壁絶縁膜
10の形成領域を除くソース領域6上およびドレイン領
域5上に形成しているため、ゲート電極延伸部8bの櫛
の歯状の間のゲート側壁絶縁膜10の下のドレイン領域
5およびソース領域6は高抵抗となり、この高抵抗と、
シリサイド・ドレイン拡散層界面の抵抗およびシリサイ
ド・ソース拡散層界面の抵抗とが直列に接続され、シリ
サイド・ドレイン拡散層界面およびシリサイド・ソース
拡散層界面での電界集中およびそれによる発熱を抑え、
破壊耐圧を向上させることができる。
The interface between the silicide / drain diffusion layer and the interface between the silicide / source diffusion layer is extremely thin, and generates heat when a high potential is applied in a short time such as a surge, and the heat does not diffuse, possibly leading to melting. It causes junction breakdown of the transistor. Therefore, in this embodiment, the gate electrode 8 is provided with a plurality of gate electrode extension portions 8b extending from the gate electrode main body portion 8a in a comb-teeth shape, and the gate side wall insulating film 10 is formed by the comb of the gate electrode extension portion 8b. Since the silicide layer 9 is formed on the source region 6 and the drain region 5 excluding the region where the gate sidewall insulating film 10 is formed, the comb of the gate electrode extension 8b is formed. The drain region 5 and the source region 6 under the gate sidewall insulating film 10 between the teeth have a high resistance.
The resistance at the silicide / drain diffusion layer interface and the resistance at the silicide / source diffusion layer interface are connected in series to suppress electric field concentration and heat generation at the silicide / drain diffusion layer interface and the silicide / source diffusion layer interface.
The breakdown voltage can be improved.

【0021】また、保護トランジスタ2の製造方法は、
図3の工程断面図に示すように、半導体基板13に、素
子分離用絶縁膜14,ゲート酸化膜16,ゲート電極
8,ドレイン領域5およびソース領域6を形成(図3
(a))した後、全面に絶縁膜10aを形成する(図3
(b))。この絶縁膜10aを垂直方向に強い異方性の
あるドライエッチングを行うことにより、マスク工程な
しにゲート側壁絶縁膜10を形成できる(図3
(c))。つぎに、絶縁膜(10,14)で覆われてい
ない領域に自己整合的にシリサイド層9を形成する(図
3(d))。その結果、シリサイド層9は、ゲート電極
8上と、ゲート側壁絶縁膜10の形成領域を除くソース
領域6およびドレイン領域5上に形成される。
The method of manufacturing the protection transistor 2 is as follows.
As shown in the process sectional view of FIG. 3, an isolation insulating film 14, a gate oxide film 16, a gate electrode 8, a drain region 5 and a source region 6 are formed on a semiconductor substrate 13 (FIG. 3).
After (a)), an insulating film 10a is formed on the entire surface (FIG. 3).
(B)). By performing dry etching with strong anisotropy in the vertical direction on the insulating film 10a, the gate sidewall insulating film 10 can be formed without a masking process.
(C)). Next, a silicide layer 9 is formed in a self-aligned manner in a region not covered with the insulating films (10, 14) (FIG. 3D). As a result, the silicide layer 9 is formed on the gate electrode 8 and on the source region 6 and the drain region 5 excluding the region where the gate sidewall insulating film 10 is formed.

【0022】このように、ゲート側壁絶縁膜10をマス
クとして自己整合的にシリサイド層9を形成することが
でき、また、ゲート側壁絶縁膜10のパターン形成にも
前述のようにマスク工程を必要とせず、図7の従来例の
ように、シリサイド層9形成のためのマスクとなる絶縁
膜12のパターン形成のためのマスク15の形成工程等
は不要で、工程数を増加させることなく、ゲート電極形
成用マスクのみ変更することで実現できるため、製造コ
ストを抑えることができる。
As described above, the silicide layer 9 can be formed in a self-aligned manner using the gate side wall insulating film 10 as a mask, and the mask step is required for forming the gate side wall insulating film 10 as described above. 7, a step of forming a mask 15 for forming a pattern of the insulating film 12 serving as a mask for forming the silicide layer 9 and the like are unnecessary, and the gate electrode can be formed without increasing the number of steps. Since this can be realized by changing only the forming mask, the manufacturing cost can be reduced.

【0023】なお、図2では、ゲート電極延伸部8bを
ゲート電極本体部8aからソース領域6およびドレイン
領域5の両側へ延伸形成しているが、特に破壊は静電荷
が印加されるドレイン側で起こるため、図4に示すよう
に、ゲート電極延伸部8bをゲート電極本体部8aから
ドレイン領域5側へのみ延伸形成することにより、静電
破壊耐圧を向上することができるとともに、ゲート電極
8とソース側のコンタクト7bとの距離を短くし、さら
にソース領域6を小さくしてトランジスタの小型化を図
ることができる。図4(a)はゲート電極延伸部8bを
ドレイン領域5側にのみ設けた保護トランジスタの平面
図であり、図4(b)はそのB−B断面図である。ただ
し、図4の構成よりも図2の構成の方が破壊耐圧を向上
させる効果は大きい。
In FIG. 2, the gate electrode extension 8b is formed to extend from the gate electrode body 8a to both sides of the source region 6 and the drain region 5; Therefore, as shown in FIG. 4, by extending the gate electrode extension 8b only from the gate electrode body 8a to the drain region 5 side, the electrostatic breakdown voltage can be improved and the gate electrode 8 and The distance from the source-side contact 7b can be reduced, and the source region 6 can be reduced, so that the size of the transistor can be reduced. FIG. 4A is a plan view of a protection transistor in which a gate electrode extension 8b is provided only on the drain region 5 side, and FIG. 4B is a BB cross-sectional view thereof. However, the structure of FIG. 2 has a greater effect of improving the breakdown voltage than the structure of FIG.

【0024】また、各ゲート電極延伸部8bの幅W
8bを、ゲート電極最小デザインルール幅以上にすること
により、デザインルールに適合した寸法管理が容易で安
定したゲート電極延伸部8bの形状を形成することがで
きる。なお、シリサイド層9は細線幅が0.3μm以下
になるとシート抵抗が上昇することが知られており、こ
の場合、シリサイド層9は低抵抗層として働かなくなる
ため、ゲート電極延伸部8bの間隔Lを、ゲート側壁絶
縁膜10の幅W10の2倍に0.3μm加えた値以下にし
ておけば、静電破壊耐圧を向上することができる。ここ
で、ゲート側壁絶縁膜10の幅W10とは、ゲート電極8
の周囲の端部から計ったゲート側壁絶縁膜10を形成す
る予定の距離のことである。
The width W of each gate electrode extension 8b
By setting the width 8b to be equal to or larger than the minimum design rule width of the gate electrode, it is possible to easily form a stable shape of the gate electrode extension 8b which is easy to manage in size and conforms to the design rule. It is known that the sheet resistance of the silicide layer 9 increases when the thin line width becomes 0.3 μm or less. In this case, the silicide layer 9 does not function as a low-resistance layer. the, if the following values plus 0.3μm to 2 times the width W 10 of the gate sidewall insulating film 10, it is possible to improve the electrostatic breakdown voltage. Here, the width W 10 of the gate side wall insulating film 10 refers to the gate electrode 8.
Of the gate sidewall insulating film 10 measured from the peripheral edge of the gate sidewall insulating film 10.

【0025】なお、ゲート電極本体部8aからシリサイ
ド層9までの距離LR は、ゲート電極延伸部8bの延伸
方向の長さと、ゲート側壁絶縁膜10の幅W10とで、規
定することができるため、デバイスによって変化させる
ことが容易に行える。
[0025] The distance L R from the gate electrode main body portion 8a to the silicide layer 9, in the length of the extending direction of the gate electrode extending portions 8b, the width W 10 of the gate sidewall insulating film 10 may be defined Therefore, it can be easily changed depending on the device.

【0026】[0026]

【発明の効果】以上のように本発明によれば、シリサイ
ド層を、ゲート側壁絶縁膜の形成領域を除くソース領域
およびドレイン領域上に形成しているため、ゲート電極
およびゲート側壁絶縁膜をマスクとして自己整合的にソ
ース領域およびドレイン領域上にシリサイド層を形成す
ることができ、シリサイド層を形成するためのマスク工
程等は不要で、工程数を増加させることなく、製造コス
トを抑えることができる。また、ゲート電極にゲート電
極本体部からドレイン領域側に櫛の歯状に延伸形成した
複数のゲート電極延伸部を設け、ゲート側壁絶縁膜をゲ
ート電極延伸部の櫛の歯状の間を埋めるように形成し、
シリサイド層を、ゲート側壁絶縁膜の形成領域を除くソ
ース領域およびドレイン領域上に形成しているため、ゲ
ート電極延伸部の櫛の歯状の間のゲート側壁絶縁膜の下
のドレイン領域はシリサイド層がなく高抵抗領域とな
り、この高抵抗と、シリサイド層とソース領域,ドレイ
ン領域との界面(シリサイド・拡散層界面)の抵抗とが
直列に接続され、シリサイド・拡散層界面での電界集中
およびそれによる発熱を抑え、破壊耐圧を向上させるこ
とができる。
As described above, according to the present invention, since the silicide layer is formed on the source region and the drain region excluding the region where the gate sidewall insulating film is formed, the gate electrode and the gate sidewall insulating film are masked. As a result, a silicide layer can be formed on the source region and the drain region in a self-aligned manner, and a mask step or the like for forming the silicide layer is unnecessary, and the manufacturing cost can be suppressed without increasing the number of steps. . Further, a plurality of gate electrode extension portions extending in a comb-like shape from the gate electrode main body portion to the drain region side are provided on the gate electrode, and the gate sidewall insulating film is filled between the comb-like portions of the gate electrode extension portion. Formed into
Since the silicide layer is formed on the source region and the drain region excluding the region where the gate sidewall insulating film is formed, the drain region below the gate sidewall insulating film between the comb teeth of the gate electrode extension portion is formed of the silicide layer. The high resistance and the resistance at the interface between the silicide layer and the source / drain regions (silicide / diffusion layer interface) are connected in series, and the electric field concentration at the silicide / diffusion layer interface and the , Heat generation due to heat generation can be suppressed, and the breakdown voltage can be improved.

【0027】また、複数のゲート電極延伸部をソース領
域側にも設けることにより、ソース領域側のゲート電極
延伸部の櫛の歯状の間のゲート側壁絶縁膜の下のソース
領域もシリサイド層がなく高抵抗領域となり、破壊耐圧
をより向上させることができる。
Also, by providing a plurality of gate electrode extensions on the source region side, the source region below the gate sidewall insulating film between the comb teeth of the gate electrode extension on the source region side also has a silicide layer. Thus, a high resistance region can be obtained, and the breakdown voltage can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における静電破壊保護回路
の回路図である。
FIG. 1 is a circuit diagram of an electrostatic discharge protection circuit according to an embodiment of the present invention.

【図2】本発明の実施の形態の静電破壊保護トランジス
タの構成を示す平面図および断面図である。
FIGS. 2A and 2B are a plan view and a cross-sectional view illustrating a configuration of an electrostatic discharge protection transistor according to an embodiment of the present invention.

【図3】本発明の実施の形態の静電破壊保護トランジス
タの製造方法を示す工程断面図である。
FIG. 3 is a process sectional view illustrating the method for manufacturing the electrostatic discharge protection transistor according to the embodiment of the present invention.

【図4】本発明の実施の形態の静電破壊保護トランジス
タの構成を示す平面図および断面図である。
FIG. 4 is a plan view and a cross-sectional view illustrating a configuration of an electrostatic discharge protection transistor according to an embodiment of the present invention.

【図5】従来の静電破壊保護回路の回路図である。FIG. 5 is a circuit diagram of a conventional electrostatic discharge protection circuit.

【図6】従来の静電破壊保護トランジスタの構成を示す
断面図である。
FIG. 6 is a sectional view showing a configuration of a conventional electrostatic discharge protection transistor.

【図7】従来の静電破壊保護トランジスタの製造方法を
示す工程断面図である。
FIG. 7 is a process sectional view showing a method for manufacturing a conventional electrostatic discharge protection transistor.

【符号の説明】[Explanation of symbols]

1 パッド 2 静電破壊保護トランジスタ 3 保護抵抗 4 内部回路 5 ドレイン領域 6 ソース領域 7a,7b コンタクト 8 ゲート電極 8a ゲート電極本体部 8b ゲート電極延伸部 9 シリサイド層 10 ゲート側壁絶縁膜 13 半導体基板 Reference Signs List 1 pad 2 electrostatic breakdown protection transistor 3 protection resistor 4 internal circuit 5 drain region 6 source region 7a, 7b contact 8 gate electrode 8a gate electrode main body portion 8b gate electrode extension portion 9 silicide layer 10 gate side wall insulating film 13 semiconductor substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板の表面に対向配
置され第2導電型の拡散層からなるソース領域およびド
レイン領域と、 前記ソース領域と前記ドレイン領域との間の上にゲート
絶縁膜を介して設けたゲート電極本体部と、このゲート
電極本体部から前記ドレイン領域側に櫛の歯状に延伸形
成した複数のゲート電極延伸部とからなるゲート電極
と、 前記半導体基板上でかつ前記ゲート電極の側壁に形成さ
れ、前記ゲート電極延伸部の櫛の歯状の間を埋めるゲー
ト側壁絶縁膜と、 前記ソース領域および前記ドレイン領域上で前記ゲート
側壁絶縁膜の形成領域を除く領域に形成したシリサイド
層とを備えた静電破壊保護トランジスタ。
A gate insulating film disposed on a surface of a semiconductor substrate of a first conductivity type, the source region and the drain region being made of a diffusion layer of a second conductivity type, and between the source region and the drain region; A gate electrode body comprising a plurality of gate electrode extension portions formed in a comb-tooth shape from the gate electrode body portion to the drain region side; and A gate sidewall insulating film formed on a side wall of the gate electrode and filling in a comb-like shape of the gate electrode extending portion; and a region formed on the source region and the drain region except for a region where the gate sidewall insulating film is formed. ESD protection transistor having a silicide layer formed thereon.
【請求項2】 複数のゲート電極延伸部をソース領域側
にも設けたことを特徴とする請求項1記載の静電破壊保
護トランジスタ。
2. The electrostatic discharge protection transistor according to claim 1, wherein a plurality of gate electrode extensions are provided also on the source region side.
【請求項3】 各ゲート電極延伸部の幅を、ゲート電極
最小デザインルール幅以上にした請求項1または2記載
の静電破壊保護トランジスタ。
3. The electrostatic discharge protection transistor according to claim 1, wherein the width of each gate electrode extension is equal to or larger than the minimum design rule width of the gate electrode.
【請求項4】 ゲート電極延伸部の間隔を、ゲート側壁
絶縁膜の幅の2倍に0.3μm加えた値以下にした請求
項1または2記載の静電破壊保護トランジスタ。
4. The electrostatic discharge protection transistor according to claim 1, wherein the interval between the gate electrode extending portions is set to be equal to or less than a value obtained by adding 0.3 μm to twice the width of the gate side wall insulating film.
JP9188348A 1997-07-14 1997-07-14 Electrostatic breakdown protective transistor Pending JPH1131819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9188348A JPH1131819A (en) 1997-07-14 1997-07-14 Electrostatic breakdown protective transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9188348A JPH1131819A (en) 1997-07-14 1997-07-14 Electrostatic breakdown protective transistor

Publications (1)

Publication Number Publication Date
JPH1131819A true JPH1131819A (en) 1999-02-02

Family

ID=16222058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9188348A Pending JPH1131819A (en) 1997-07-14 1997-07-14 Electrostatic breakdown protective transistor

Country Status (1)

Country Link
JP (1) JPH1131819A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044854A1 (en) * 2001-11-21 2003-05-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device, method for generating semiconductor device pattern, method for semiconductor device, and pattern generator for semiconductor device
JP2007059565A (en) * 2005-08-24 2007-03-08 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US8008721B2 (en) 2006-09-29 2011-08-30 Oki Semiconductor Co., Ltd. High-voltage-resistant MOS transistor and method for manufacturing the same
WO2015033733A1 (en) * 2013-09-06 2015-03-12 トヨタ自動車株式会社 Semiconductor device and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044854A1 (en) * 2001-11-21 2003-05-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device, method for generating semiconductor device pattern, method for semiconductor device, and pattern generator for semiconductor device
US7307333B2 (en) 2001-11-21 2007-12-11 Matsushita Electric Industrial Co., Ltd. Semiconductor device method of generating semiconductor device pattern method of semiconductor device and pattern generator for semiconductor device
CN100355059C (en) * 2001-11-21 2007-12-12 松下电器产业株式会社 Semiconductor device, method of generating semiconductor device pattern, method of manufacturing semiconductor device and pattern generator for semiconductor device
US7911027B2 (en) 2001-11-21 2011-03-22 Panasonic Corporation Semiconductor device, method of generating pattern for semiconductor device, method of manufacturing semiconductor device, and apparatus for generating pattern for semiconductor device
JP2007059565A (en) * 2005-08-24 2007-03-08 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US8008721B2 (en) 2006-09-29 2011-08-30 Oki Semiconductor Co., Ltd. High-voltage-resistant MOS transistor and method for manufacturing the same
WO2015033733A1 (en) * 2013-09-06 2015-03-12 トヨタ自動車株式会社 Semiconductor device and method for manufacturing same
JP2015053367A (en) * 2013-09-06 2015-03-19 トヨタ自動車株式会社 Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US8354723B2 (en) Electro-static discharge protection device, semiconductor device, and method for manufacturing electro-static discharge protection device
US8466026B2 (en) Semiconductor device and method for manufacturing the same
US7791148B2 (en) Semiconductor device
EP1544918A2 (en) Semiconductor device with ESD element
JPH0575118A (en) Semiconductor integrated circuit device
JPH0864772A (en) Static discharge protective device and formation thereof
JP2001345421A (en) Semiconductor device provided with built-in electrostatic protective circuit and manufacturing method thereof
JP2800702B2 (en) Semiconductor device
JP2715929B2 (en) Semiconductor integrated circuit device
US8093121B1 (en) ESD protection transistor
US7087999B2 (en) Semiconductor protection element, semiconductor device and method for manufacturing same
JPH1131819A (en) Electrostatic breakdown protective transistor
JPH11168180A (en) Semiconductor device
JP3252790B2 (en) Semiconductor integrated circuit
JPH11135735A (en) Semiconductor device
JPH06169061A (en) Input/output protecting device
JP3123489B2 (en) Electrostatic protection circuit in semiconductor integrated circuit and method of manufacturing the same
JPH11145454A (en) Semiconductor device, electrostatic protective element, and dielectric breakdown preventing method
JP3425574B2 (en) I / O protection device for semiconductor integrated circuit
JP2007335463A (en) Electrostatic discharging protective element, and semiconductor device
JP2001102461A (en) Input protection circuit
KR100336559B1 (en) Semiconductor device and fabricating method thereof
JPH1050933A (en) Input protective circuit
US7329926B2 (en) Semiconductor device with constricted current passage
JP2546179B2 (en) Semiconductor device