JPH11297929A - Pressurized contract semiconductor device and converter using the same - Google Patents

Pressurized contract semiconductor device and converter using the same

Info

Publication number
JPH11297929A
JPH11297929A JP10434498A JP10434498A JPH11297929A JP H11297929 A JPH11297929 A JP H11297929A JP 10434498 A JP10434498 A JP 10434498A JP 10434498 A JP10434498 A JP 10434498A JP H11297929 A JPH11297929 A JP H11297929A
Authority
JP
Japan
Prior art keywords
electrode
main
semiconductor device
plate
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10434498A
Other languages
Japanese (ja)
Other versions
JP3617306B2 (en
Inventor
Hironori Kodama
弘則 児玉
Mitsuo Kato
光雄 加藤
Mamoru Sawahata
守 沢畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10434498A priority Critical patent/JP3617306B2/en
Priority to CN99100892A priority patent/CN1236982A/en
Priority to KR1019990001060A priority patent/KR19990067924A/en
Priority to EP99100944A priority patent/EP0932201A3/en
Priority to CA002259846A priority patent/CA2259846A1/en
Priority to US09/235,384 priority patent/US6495924B2/en
Publication of JPH11297929A publication Critical patent/JPH11297929A/en
Priority to US10/231,271 priority patent/US6686658B2/en
Application granted granted Critical
Publication of JP3617306B2 publication Critical patent/JP3617306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

PROBLEM TO BE SOLVED: To provide a method for ensuring an uniform contact state between a semiconductor element and a package electrode, and for reducing a thermal resistance and an electric resistance in a pressurized contact semiconductor device. SOLUTION: A porous metallic board is arranged between a pressurized contact semiconductor element 1 in which at least one or more semiconductor elements 1 having at least the first main electrode on the first main face and the second main electrode on the second main face are integrated and common electrode boards 4 and 5, or between intermediate electrode boards 2 and 3 arranged on each main face of the semiconductor element 1 and the common electrode boards 4 and 5 in a plane package. Thus, the variation of the height of a contact face can be sufficiently absorbed so that a thermal resistance and an electric resistance on a contact boundary face can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧接触型半導体
装置に係り、特に半導体素子とパッケージ電極間の均一
な接触状態を確保し、かつ熱抵抗,電気抵抗を低減でき
る加圧接触型半導体装置、及びこれを用いた変換器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure contact type semiconductor device, and more particularly to a pressure contact type semiconductor device which can ensure a uniform contact state between a semiconductor element and a package electrode and can reduce heat resistance and electric resistance. The present invention relates to a device and a converter using the same.

【0002】[0002]

【従来の技術】半導体エレクトロニクスの技術を駆使し
て主回路電流を制御するパワーエレクトロニクスの技術
は、幅広い分野で応用され、さらにその適用拡大がなさ
れつつある。パワー用半導体素子としては、サイリス
タ,光サイリスタ,ゲートターンオフサイリスタ(GT
O)や、MOS制御デバイスである絶縁ゲート型バイポ
ーラトランジスタ(以下IGBTと略す)やMOS型電
界効果トランジスタ(以下MOSFETと略す)などが
ある。これらのデバイスでは、主に半導体チップの第一
主面上に主電極(カソード,エミッタ)、第二主面側に
はもう一方の主電極(アノード,コレクタ)が形成され
る。
2. Description of the Related Art The technology of power electronics, which controls the main circuit current by making full use of the technology of semiconductor electronics, has been applied in a wide range of fields, and its application is being expanded. Thyristors, optical thyristors, gate turn-off thyristors (GT)
O), an insulated gate bipolar transistor (hereinafter abbreviated as IGBT) or a MOS field effect transistor (hereinafter abbreviated as MOSFET) which is a MOS control device. In these devices, a main electrode (cathode, emitter) is formed mainly on a first main surface of a semiconductor chip, and another main electrode (anode, collector) is formed on a second main surface side.

【0003】GTO,光サイリスタ等の大電力用の半導
体装置においては、素子を1枚のウエハ毎にパッケージ
ングしている。上記素子の両主電極は、MoまたはWか
らなる熱緩衝用電極板(中間電極板)を介してパッケー
ジの一対の外部主電極により加圧接触される構造となっ
ている。スイッチング動作の均一性や大電流の遮断特性
の向上等のためには、上記素子電極,熱緩衝板,外部主
電極間の接触状態をできるだけ均一化し、かつ接触熱抵
抗,電気抵抗を下げることが重要である。このため、こ
れまではパッケージ部品の加工精度(平面度,平坦度)
を上げて反りやうねりを低減する対策がとられてきた。
In a high-power semiconductor device such as a GTO or an optical thyristor, elements are packaged for each wafer. Both main electrodes of the above-mentioned element are structured to be brought into pressure contact with a pair of external main electrodes of the package via a heat buffering electrode plate (intermediate electrode plate) made of Mo or W. In order to improve the uniformity of the switching operation and the breaking characteristics of large currents, it is necessary to make the contact state between the above-mentioned element electrode, thermal buffer plate and external main electrode as uniform as possible and to reduce the contact thermal resistance and electric resistance. is important. For this reason, the processing accuracy of package components (flatness, flatness)
Measures have been taken to reduce warpage and swell by raising the pressure.

【0004】一方、IGBT等ではこれまで主にモジュ
ール型構造と呼ばれる、ワイヤによる電極接続方式のパ
ッケージ形態により複数個のチップを実装していた。こ
のようなモジュール型パッケージの場合、素子内部で発
生した熱はパッケージの片面(ワイヤ接続しない面)、
すなわちベース基板上に直接マウントした電極側のみか
ら逃がすことになるため、一般に熱抵抗が大きく、一つ
のパッケージに実装できるチップ数(発熱量,電流容
量、または実装密度)に制限があった。
On the other hand, in IGBTs and the like, a plurality of chips have been mounted so far mainly in a package form of an electrode connection system using wires, which is called a module type structure. In the case of such a modular package, heat generated inside the element is transferred to one side of the package (the side not connected to wires),
That is, since the heat is released only from the side of the electrode directly mounted on the base substrate, the thermal resistance is generally large, and the number of chips (heat generation, current capacity, or mounting density) that can be mounted on one package is limited.

【0005】最近、このような問題に対処し、さらに大
容量化の要求に応えるため、多数のIGBTチップを圧
接型のパッケージ内に組み込み、その主面に形成された
エミッタ電極,コレクタ電極をそれぞれパッケージ側に
設けた一対の外部電極板に面接触させて引き出すように
した多チップ並列型加圧接触構造の半導体装置が注目さ
れている。この圧接型パッケージ構造によれば、上記の
モジュール型パッケージに比べて、1)半導体チップを
両面から冷却ができるので冷却効率を上げることができ
る、2)接続導体のインダクタンス、及び抵抗が小さく
なる、3)主電極の接続がワイヤボンドでなくなるため
に接続信頼性が向上する、等の改善がはかれる。ところ
がこの多チップ並列型の圧接型半導体装置では、部材寸
法ばらつきに起因するチップ位置毎の高さのばらつきや
電極板のそりやうねりによる場所毎のばらつきが避けら
れず、これによりチップ毎に加圧力が異なり均一な接触
が得られない、すなわち熱抵抗,電気抵抗がチップ位置
毎の大きく異なり、全体としての素子特性が安定しない
という大きな問題があった。最も単純には、寸法の厳密
に揃った部材を用いることで対処できるが、部品のコス
ト、および選別のコスト等のアップが避けられない。こ
の問題に対して、特開平8−88240号公報においては、A
gなどの延性のある軟金属シートを厚さ補正板として介
在させる方法を開示している。
Recently, in order to cope with such a problem and to meet a demand for a larger capacity, a large number of IGBT chips are incorporated in a press-contact type package, and an emitter electrode and a collector electrode formed on the main surface thereof are respectively provided. Attention has been paid to a semiconductor device having a multi-chip parallel type pressure contact structure in which a pair of external electrode plates provided on the package side are brought into surface contact with each other and pulled out. According to this press-fit type package structure, 1) the semiconductor chip can be cooled from both sides, so that the cooling efficiency can be increased, and 2) the inductance and resistance of the connection conductor can be reduced as compared with the above-mentioned module type package. 3) Connection reliability of the main electrode is improved because the connection of the main electrode is no longer a wire bond. However, in this multi-chip parallel type pressure contact type semiconductor device, variations in height at each chip position due to variations in member dimensions and variations in locations due to warpage or undulation of the electrode plate are inevitable. There is a great problem that uniform contact cannot be obtained due to different pressures, that is, thermal resistance and electric resistance vary greatly from chip position to chip position, and element characteristics as a whole are not stable. In the simplest case, it is possible to cope with the problem by using members having strictly uniform dimensions. However, it is unavoidable to increase the cost of parts and the cost of sorting. To solve this problem, JP-A-8-88240 discloses that
A method of interposing a ductile soft metal sheet such as g as a thickness correction plate is disclosed.

【0006】[0006]

【発明が解決しようとする課題】上記GTO等のパッケ
ージにおいては、今後ますます大容量化のために素子サ
イズ(ウエハサイズ)が大型化し、この大口径化に伴っ
てパッケージ部品(電極部品)の反り、うねり等も大き
くなる傾向にある。前述のようなパッケージ部品の加工
精度(平面度,平坦度)を上げて反りやうねりを低減す
るという対策には加工上の限界があり、また加工コスト
面での問題も大きい。従って素子サイズ(ウエハサイ
ズ)全面にわたって、ウエハ及びパッケージ部品(電
極)間の均一な接触を確保し、熱抵抗,電気抵抗を低減
することがますます困難になってきている。
In the package of the above-mentioned GTO and the like, the element size (wafer size) is increased in order to further increase the capacity in the future. Warpage, undulation, and the like also tend to increase. There is a limit in the processing for reducing the warpage and undulation by increasing the processing accuracy (flatness, flatness) of the package component as described above, and there is a large problem in the processing cost. Therefore, it has become increasingly difficult to ensure uniform contact between the wafer and package components (electrodes) over the entire element size (wafer size), and to reduce thermal resistance and electrical resistance.

【0007】一方、多チップ並列型の加圧接触型半導体
装置におけるチップ間の均一接触の問題に対処する方法
として開示されている前述の軟金属シートをはさむ方法
は、本発明者らの検討によると、少なくとも半導体チッ
プを破壊しない実用の圧力範囲ではその変形量がごくわ
ずか(弾性変形による変形のみ)であり、チップ位置毎
の高さ(及びチップを挟む中間電極部材等を含めた高
さ)のばらつきが大きい場合にはその変形量が不十分
で、均一な接触を確保できないことが明らかとなった。
この原因は図13に模式図で示したように軟質金属シー
ト面に厚さ方向に圧力を加えて横方向へ塑性変形させよ
うとした場合にも、軟質金属シート43を挟む電極部材
44,45との界面で発生する摩擦力(摩擦抵抗)46
のため、軟金属材料といえども横方向への変形抵抗が非
常に大きくなってしまうことによると考えられる。変形
させるために加圧力を上げても、摩擦力も圧力に比例し
て大きくなるので塑性変形は容易には起こらない。特に
シート形状のような抵抗を受ける面積に比べて厚さが非
常に小さい場合には、この表面に発生する摩擦力の影響
が支配的となるため、一般に知られている材料の降伏応
力を超える圧力を加えても実際には実質的な塑性変形
(流動)が起こらず、軟金属シートの厚さは加圧の前後
でほとんど変わらない。この摩擦抵抗を下げるために、
電極部材表面の粗さを小さくする方法が考えられるが、
ラップ仕上げ等で得られる現実的な加工粗さの範囲(R
max1〜0.5μm、Ra0.05〜0.03μm)では大
きな変形は起こらない。
On the other hand, the method of sandwiching a soft metal sheet disclosed above as a method for coping with the problem of uniform contact between chips in a multi-chip parallel type pressure contact type semiconductor device is based on studies by the present inventors. And at least in the practical pressure range where the semiconductor chip is not destroyed, the amount of deformation is negligible (only deformation due to elastic deformation), and the height at each chip position (and the height including the intermediate electrode members sandwiching the chip) It was found that when the variation in the size was large, the amount of deformation was insufficient and uniform contact could not be ensured.
This is because the electrode members 44 and 45 sandwiching the soft metal sheet 43 also cause the plastic deformation in the horizontal direction by applying pressure in the thickness direction to the soft metal sheet surface as shown in the schematic diagram of FIG. (Frictional resistance) 46 generated at the interface with
Therefore, it is considered that the deformation resistance in the lateral direction becomes extremely large even with a soft metal material. Even if the pressing force is increased for deformation, the plastic deformation does not easily occur because the frictional force also increases in proportion to the pressure. Especially when the thickness is very small compared to the area receiving the resistance like the sheet shape, the influence of the frictional force generated on this surface becomes dominant, so it exceeds the yield stress of commonly known materials Even if pressure is applied, practically no substantial plastic deformation (flow) occurs, and the thickness of the soft metal sheet hardly changes before and after pressing. To lower this frictional resistance,
A method of reducing the roughness of the electrode member surface is considered,
Realistic processing roughness range (R
(max1 to 0.5 μm, Ra 0.05 to 0.03 μm), no large deformation occurs.

【0008】本発明は、上記のようなウエハの大口径化
によるパッケージの大型化や、大容量化に対応する素子
の多チップ並列化に伴って、ますます困難になる大面積
領域での均一な加圧接触状態を確保する方法、すなわち
接触面の高さのばらつき(反り,うねり,部材寸法ばら
つき等による)を吸収し、かつ接触界面での熱抵抗,電
気抵抗を低減できる方法を提供するものである。また第
2の目的は上記により得られる半導体装置を用いること
により、特に大容量のシステムに好適な変換器を提供す
ることにある。
According to the present invention, the uniformity in a large area area becomes more and more difficult with the increase in the size of the package due to the increase in the diameter of the wafer as described above and the parallelization of the elements corresponding to the increase in the capacity. To provide a method of ensuring a stable pressurized contact state, that is, a method capable of absorbing variations in the height of the contact surface (due to warpage, undulation, variations in member dimensions, etc.) and reducing thermal resistance and electrical resistance at the contact interface. Things. A second object is to provide a converter particularly suitable for a large-capacity system by using the semiconductor device obtained as described above.

【0009】[0009]

【課題を解決するための手段】上記課題は、少なくとも
第一主面に第一の主電極,第二主面に第二の主電極を有
する半導体素子を一対の電極板の間に組み込んだ加圧接
触型半導体装置において、該半導体素子と電極板との間
に多孔質の金属板を配置することにより解決できる。よ
り好ましくは、上記多孔質金属板の表面に該多孔質金属
と同じかより軟質、または耐酸化性の良い緻密な金属層
を形成するか、該多孔質金属板に対向する電極面に軟質
金属膜を形成する。
The object of the present invention is to provide a pressure contact device in which a semiconductor element having at least a first main electrode on a first main surface and a second main electrode on a second main surface is incorporated between a pair of electrode plates. The problem can be solved by disposing a porous metal plate between the semiconductor element and the electrode plate in the semiconductor device. More preferably, a dense metal layer is formed on the surface of the porous metal plate, which is the same or softer than the porous metal, or has good oxidation resistance, or a soft metal is formed on the electrode surface facing the porous metal plate. Form a film.

【0010】[0010]

【発明の実施の形態】本発明の実施の代表的な形態を図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described with reference to the drawings.

【0011】図1に本発明の基本的な適用形態を示す。
半導体素子1の第一主面には少なくとも第一の主電極、
第二主面には第二の主電極が形成されている。この両主
電極面上にMoやW等からなる中間電極板2,3が配置
され、さらにこの中間電極板の外側部分に一対のCuな
どからなる共通電極板(主電極板)4,5が配置され
る。中間電極板3と主電極板5の間には多孔質の金属板
6が挟まれており、全体が一括に加圧されて各部材間が
接触されている。図1では(a),(b),(c)位置で部
品1,2,3の厚さの合計が順に厚くなるケースを示し
ている。これらの高さの差に対応して、加圧接触させる
前には一定の厚さを持っていた多孔質金属板6の厚さ
が、加圧接触後には(a),(b),(c)の順に薄くなっ
ている。すなわち、多孔質金属の高さを含めた全体とし
ての高さ(部品1,2,3,6の厚さの合計)が
(a),(b),(c)位置で同じになるように多孔質金属
板の厚さが変化している。これにより、上記部材1,
2,3に各々厚さばらつきがあったり、主電極板4,5
にそりやうねりがある場合でも複数のチップ位置
(a),(b),(c)間で良好な加圧接触状態を確保し
て半導体素子を実装でき、従って熱抵抗,電気抵抗のば
らつきの少ない半導体装置が実現できる。図1では主電
極板5と中間電極板3の対向して圧接される面に多孔質
金属板6を挟んだ例を示したが、この位置はもちろん他
の接触面、すなわち主電極板4と中間電極板2の間や素
子1と中間電極板2,3の間でも良く、また複数の界面
に対して同時に適用しても構わない。また電極間ごとに
異なる材質の多孔質金属板を配置してもよい。
FIG. 1 shows a basic application form of the present invention.
At least a first main electrode on a first main surface of the semiconductor element 1;
A second main electrode is formed on the second main surface. Intermediate electrode plates 2 and 3 made of Mo, W, or the like are arranged on both main electrode surfaces, and a pair of common electrode plates (main electrode plates) 4 and 5 made of Cu or the like are provided on outer portions of the intermediate electrode plates. Be placed. A porous metal plate 6 is sandwiched between the intermediate electrode plate 3 and the main electrode plate 5, and the whole is pressurized at once and the members are in contact with each other. FIG. 1 shows a case where the sum of the thicknesses of the components 1, 2, and 3 increases in order at the positions (a), (b), and (c). Corresponding to the difference between these heights, the thickness of the porous metal plate 6 having a constant thickness before the pressure contact is increased, and the thickness of the porous metal plate 6 after the pressure contact is changed to (a), (b), ( It becomes thinner in the order of c). That is, the total height including the height of the porous metal (the sum of the thicknesses of the components 1, 2, 3, and 6) is the same at the positions (a), (b), and (c). The thickness of the porous metal plate has changed. Thereby, the members 1,
2 and 3 have thickness variations, and the main electrode plates 4 and 5
Even when there is warpage or undulation, a semiconductor element can be mounted while maintaining a good pressure contact state between a plurality of chip positions (a), (b), and (c), and therefore, variations in thermal resistance and electric resistance can be reduced. A small number of semiconductor devices can be realized. FIG. 1 shows an example in which the porous metal plate 6 is interposed between the surfaces of the main electrode plate 5 and the intermediate electrode plate 3 which are pressed against each other. It may be between the intermediate electrode plates 2 or between the element 1 and the intermediate electrode plates 2 and 3, or may be applied to a plurality of interfaces at the same time. Further, a porous metal plate of a different material may be arranged for each electrode.

【0012】本発明で言うところの多孔質金属とは、一
般に金属板,金属箔,金属シートと言えば実質的に緻密
なものを指すのに対して、空孔を多く含んだ金属材料を
指しており、三次元のランダムな網目状の金属連続部分
が形成された微細構造を有する。発泡金属,スポンジ金
属,ポーラスメタル,フォームメタルなどと種々呼ばれ
ているものもこれに属する。本発明の目的には、銅,ア
ルミニウム,銀,金等の軟質で電気抵抗,熱抵抗の小さ
な金属やニッケル,SUSなどの廉価で耐酸化性の優れ
た材質のものが特に好ましく、適用対象に最も適した特
性を有する材料を選択できる。
The term "porous metal" as used in the present invention generally refers to a substantially dense metal plate, metal foil, or metal sheet, whereas it refers to a metal material containing many pores. And has a fine structure in which a three-dimensional random mesh-like metal continuous portion is formed. What is variously called foam metal, sponge metal, porous metal, foam metal, etc. also belongs to this. For the purpose of the present invention, soft metals having low electric resistance and thermal resistance such as copper, aluminum, silver, and gold, and inexpensive materials having excellent oxidation resistance such as nickel and SUS are particularly preferable. The material with the most suitable properties can be selected.

【0013】図2には、代表例として、多孔質金属板と
して多孔質Cu板(発泡金属銅板)を用いて測定した厚
さ方向の加圧力に対する変形量(板厚の変化量)と電気
抵抗の関係を示す。比較例として通常の緻密なCu薄板
を用いた場合の例もあわせて示す。この発泡金属銅板
は、発泡ウレタンの空隙表面に乾式の接着法により銅粉
の被膜を形成した後、熱処理してウレタン部分を消失さ
せ、さらに銅粉を還元雰囲気中で焼結して作製した三次
元網目状の銅の骨格を有する多孔質の金属銅板である。
同様なものに湿式めっき法により発泡樹脂表面にCuの
被膜を形成する方法もある。この多孔質Cu板では圧力
の増加にともなって、板厚は減少し、ある特定領域
(0.5〜2kg/mm2付近)で大きく変形し、その後密度
が増加するにつれて変形量は少なくなる。電気抵抗は圧
力を増加すると減少し、多孔質板の変形が大きい領域で
大きく変化する。これに対して、Cu薄板の場合には前
述したように(図13)、降伏応力を越える圧力を加え
ても塑性変形による大きな変形は起こらず、弾性変形分
の小さな変形が起こるだけである。電気抵抗は、測定電
極との接触抵抗が加圧力を大きくするにつれて減少する
ため、少しずつ減少する。熱抵抗についても上記の電気
抵抗と同じ挙動を示した。
FIG. 2 shows, as a representative example, a deformation amount (a change amount of the plate thickness) and an electric resistance with respect to a pressing force in a thickness direction measured using a porous Cu plate (foamed metal copper plate) as a porous metal plate. Shows the relationship. As a comparative example, an example in which a normal dense Cu thin plate is used is also shown. This foamed metal copper plate is formed by forming a copper powder film on the void surface of urethane foam by a dry bonding method, heat-treating to eliminate the urethane portion, and sintering the copper powder in a reducing atmosphere. It is a porous metal copper plate having an original mesh-like copper skeleton.
Similarly, there is a method of forming a Cu film on the foamed resin surface by a wet plating method. In this porous Cu plate, the plate thickness decreases with an increase in pressure, and the plate is largely deformed in a specific region (around 0.5 to 2 kg / mm 2 ), and thereafter, the deformation amount decreases as the density increases. The electric resistance decreases as the pressure increases, and changes greatly in a region where the deformation of the porous plate is large. On the other hand, in the case of a Cu thin plate, as described above (FIG. 13), even if a pressure exceeding the yield stress is applied, large deformation due to plastic deformation does not occur, but only small deformation corresponding to elastic deformation occurs. The electric resistance gradually decreases because the contact resistance with the measurement electrode decreases as the pressure increases. The thermal resistance also showed the same behavior as the above electrical resistance.

【0014】このような多孔質金属の場合には、前述の
緻密な金属箔(薄板)の場合(図13)と異なり、自身
の内部に空隙を有し、ミクロにはこの部分に変形する力
を受けた材料が容易に移動できるため、比較的小さな圧
力で大きな変形が得られる。また、自分の内部に材料の
変形を吸収する空隙を有していること、および接触面で
の横方向への摩擦力による変形抵抗から、変形は実質的
に板厚方向(加圧される方向)のみに起こる。これによ
り変形後の多孔質金属は初期に比べて空隙率が減少し緻
密になっており、空隙の形状も厚さ方向につぶれた形状
になってくる。上記の様に、本材料は加圧変形により横
方向に比べて板厚方向に特に金属のチャネル部分が増加
するという特徴を有するため、板厚方向への大きな変形
能を確保しながら効果的に電気抵抗,熱抵抗を低減する
ことが可能となっている。また、通常の緻密な材料で大
きく変形(板厚を減少)させた場合には、体積変化した
分の材料が横方向に塑性流動し側面が大きくふくらんで
くるといった現象がみられるが、この多孔質金属では自
分自身の内部に材料の変形を吸収する空隙を十分に有し
ていることにより、大きく変形(板厚を減少)させた場
合でも側面がふくらむことがほとんどないので、隣接す
る材料との接触等の問題が起こらず、高密度実装には好
適である。
In the case of such a porous metal, unlike the case of the above-described dense metal foil (thin plate) (FIG. 13), there is a void inside itself, and microscopically, the force deforming to this portion Because the material subjected to the movement can be easily moved, a large deformation can be obtained with a relatively small pressure. In addition, due to the presence of a void inside the material to absorb the deformation of the material and the deformation resistance due to the frictional force in the lateral direction at the contact surface, the deformation is substantially in the thickness direction (the direction in which the material is pressed). Only happens). As a result, the porous metal after the deformation has a reduced porosity compared to the initial stage and is denser, and the shape of the voids becomes a shape that is crushed in the thickness direction. As described above, this material has the characteristic that the metal channel portion increases in the thickness direction compared to the horizontal direction due to the pressure deformation, so it effectively secures large deformability in the thickness direction. It is possible to reduce electric resistance and thermal resistance. In addition, when a normal dense material is greatly deformed (reduced in plate thickness), a phenomenon in which the material whose volume has changed plastically flows in the lateral direction and the side surface bulges greatly is observed. Since a high quality metal has enough voids in itself to absorb the deformation of the material, even if it is greatly deformed (reduced thickness), the sides hardly bulge. It does not cause a problem such as contact with the device and is suitable for high-density mounting.

【0015】これらの材料は弾塑性変形能を有するた
め、変形後に除荷すると弾性変形分の戻りが見られる
が、ほぼ実装部品間の高さのばらつきに対応した塑成変
形分は保持される。再度加圧する場合には、この弾性変
形分を利用して同じ圧力で十分な接触が確保できる。さ
らに通常の緻密な材料に比べて気孔が存在することによ
りみかけの弾性係数が低くなっているので、この弾性変
形量が大きく、確実な接触を保持する上でも好適であ
る。この変形が起こる圧力、および弾塑性変形挙動は、
三次元に形成された金属の連続部分の太さや、密度(空
隙率)、または材質によりコントロールすることが可能
で、使用状況に応じた最適な圧力で変形が起こるように
選択することができる。
Since these materials have elasto-plastic deformability, when the load is removed after the deformation, the elastic deformation returns, but the plastic deformation corresponding to the height variation between the mounted components is maintained. . When pressurizing again, sufficient contact can be ensured at the same pressure by utilizing this elastic deformation. Further, since the apparent elastic coefficient is lower due to the presence of the pores as compared with a normal dense material, the amount of elastic deformation is large, which is suitable for maintaining reliable contact. The pressure at which this deformation occurs and the elasto-plastic deformation behavior are
It can be controlled by the thickness, density (porosity), or material of the continuous portion of the metal formed three-dimensionally, and can be selected so that deformation occurs at an optimal pressure according to the use situation.

【0016】変形量を大きく確保したい場合には、変形
前の多孔質金属板の空隙率は大きい方が好ましく、50
%より大きいのが好ましく、特に60〜80%が好まし
い。ただし、用途に応じて作業性等の面から変形量を過
大に大きくしたくない場合等には、あらかじめ所定の圧
力までプレス成形を行って空孔率を低減(緻密化)し、
用途に応じた最適な変形量,熱抵抗,電気抵抗を有する
多孔質板に調整することが好ましい。
When it is desired to secure a large amount of deformation, it is preferable that the porosity of the porous metal plate before deformation is large.
%, More preferably 60-80%. However, if you do not want to increase the amount of deformation excessively from the viewpoint of workability, etc., depending on the application, press molding to a predetermined pressure in advance to reduce the porosity (densification),
It is preferable to adjust the porous plate to have the optimal deformation, heat resistance and electric resistance according to the application.

【0017】図2の例でも示したように、実際に使用す
る条件では多孔質金属板を挟む電極との界面の接触抵抗
(電気,熱)も重要な要素となる。接触抵抗をより小さ
くするためには、この多孔質金属板を挟む電極との界面
の接触抵抗を小さくすることも重要である。このための
多孔質金属板の最表面のミクロな形状としては、図3
(a)に示したような接触表面に垂直な柱状金属7が多
数突き出ている構造より、接触表面に平行に近い末端、
または傾斜角度のできるだけ大きな末端8を多数有する
構造(図3(b))がより好ましい。
As shown in the example of FIG. 2, the contact resistance (electricity, heat) at the interface with the electrode sandwiching the porous metal plate is also an important factor under the actual use conditions. In order to further reduce the contact resistance, it is also important to reduce the contact resistance at the interface between the porous metal plate and the electrode. The microstructure of the outermost surface of the porous metal plate for this purpose is shown in FIG.
As shown in (a), the end near the parallel to the contact surface,
Alternatively, a structure having a large number of ends 8 having the largest possible inclination angle (FIG. 3B) is more preferable.

【0018】多孔質金属板とそれを挟む電極材料との接
触抵抗を低減するための多孔質金属板の別の形態として
は、多孔質金属板の表面を内部より緻密にし、電極材料
とのミクロな接触面積を増加することが有効である。例
を図4,図5に示す。図4は、多孔質金属板6の表面に
多孔質金属材料より軟質、または耐酸化性の良い金属層
9を印刷,めっき等の方法により形成したものである。
例えば、Niの多孔質板にAgやAuの軟質膜を形成し
たものや、CuやAlの多孔質板にAgやAuの表面酸
化防止膜を形成したものが用いられる。図5(a)は多
孔質金属板6の表面に緻密な金属箔10を配置して一体
に成形したものである。この金属箔には、多孔質金属材
料と同じ材料が用いられるほかに、より軟質、または耐
酸化性の良い金属箔を用いたものがより有効である。例
えば、CuやAlの多孔質板表面にCu,Al,Ag,
Au等の箔を形成したものが用いられる。図5(b)
は、(a)の材料をさらにプレスで打抜いた板の断面を
示す。プレス時に端面が押しつぶされるため、側面まで
表面の箔で覆われた形となっており、多孔質板の側面も
緻密な膜で保護したい場合の簡便な方法である。さらに
別の方法として、多孔質板を短時間高温にさらすことに
より、表面部分のみ密度を上げる方法を用いることもで
きる。
Another form of the porous metal plate for reducing the contact resistance between the porous metal plate and the electrode material sandwiching the porous metal plate is as follows. It is effective to increase the contact area. Examples are shown in FIGS. FIG. 4 shows a structure in which a metal layer 9 which is softer or has better oxidation resistance than the porous metal material is formed on the surface of the porous metal plate 6 by printing, plating or the like.
For example, a material in which a soft film of Ag or Au is formed on a porous plate of Ni, or a material in which a surface oxidation preventing film of Ag or Au is formed on a porous plate of Cu or Al are used. FIG. 5A shows a structure in which a dense metal foil 10 is arranged on the surface of a porous metal plate 6 and is integrally formed. As the metal foil, the same material as the porous metal material is used, and a material using a softer or better oxidation-resistant metal foil is more effective. For example, Cu, Al, Ag,
What formed foil, such as Au, is used. FIG. 5 (b)
Shows a cross section of a plate obtained by further punching the material of (a) by pressing. Since the end face is crushed at the time of pressing, the side face is covered with foil on the surface, and this is a simple method when the side face of the porous plate is desired to be protected with a dense film. As still another method, a method in which the density of only the surface portion is increased by exposing the porous plate to a high temperature for a short time can be used.

【0019】図6は、IGBT11を用いたスイッチン
グデバイスと逆並列に接続したフライホイールダイオー
ド(FWD)12を組み込んだ逆導通型スイッチングデ
バイスに適用した例を示したものである。図には、右端
の圧接型半導体装置の最外部から中央に向かった途中ま
での一部断面を示している。IGBTチップ11には上
面側の第一主面のほぼ全面にエミッタ電極,下面側の第
二主面にはコレクタ電極が形成されており、さらに第一
主面には制御用電極(ゲート電極)が形成されている。
また、FWD12には、シリコン基板の上面側にアノー
ド電極,下面側にカソード電極が形成されている。これ
らの各半導体チップは、放熱と電気的接続を兼ねたMo
からなる一体型の中間電極板14の上に配置され、さら
にチップごとに個別の中間電極板13によりチップ上の
各主電極と接する形で配置される。これらがさらに第1
の共通主電極板(Cu)4と第2の共通主電極板(C
u)5に挟まれている。さらにこの中間電極板13と共
通主電極板4との間には、多孔質の銅板17が挟まれて
いる。中間電極の表面にはAuめっき膜15が3〜5μ
m形成され、共通電極板の表面にはNiめっき膜16が
1〜3μm形成されている。上記半導体チップ、及び中
間電極はテフロン製の枠24により互いに固定されてい
る。また、IGBTチップ11のゲート電極18からは
ワイヤボンド19により配線が引き出され、さらに中間
電極板14上に形成されたゲート電極配線板20に接続
される。上記一対の共通主電極板4,5の間は、セラミ
ック製等の絶縁性の外筒21により外部絶縁され、さら
に共通主電極板と絶縁外筒の間を金属板22によりパッ
ケージ内部をシール封止したハーメチック構造となって
いる。ゲート電極配線は外筒21を貫通するシールされ
た配線23によりパッケージ外に引き出されている。
FIG. 6 shows an example in which the present invention is applied to a reverse conduction type switching device incorporating a flywheel diode (FWD) 12 connected in anti-parallel with a switching device using an IGBT 11. The figure shows a partial cross section from the outermost part of the press-contact type semiconductor device at the right end to the middle part toward the center. The IGBT chip 11 has an emitter electrode formed on almost the entire first main surface on the upper surface side and a collector electrode on the second main surface on the lower surface side, and further has a control electrode (gate electrode) on the first main surface. Are formed.
In the FWD 12, an anode electrode is formed on the upper surface side of the silicon substrate, and a cathode electrode is formed on the lower surface side. Each of these semiconductor chips is composed of Mo which has both heat dissipation and electrical connection.
Are arranged on an integral type intermediate electrode plate 14 made of, and are arranged in contact with each main electrode on the chip by an individual intermediate electrode plate 13 for each chip. These are the first
Common main electrode plate (Cu) 4 and second common main electrode plate (C
u) 5 Further, a porous copper plate 17 is sandwiched between the intermediate electrode plate 13 and the common main electrode plate 4. Au plating film 15 is 3 to 5 μm on the surface of the intermediate electrode.
m, and a Ni plating film 16 is formed on the surface of the common electrode plate at 1 to 3 μm. The semiconductor chip and the intermediate electrode are fixed to each other by a frame 24 made of Teflon. Further, a wire is drawn out from a gate electrode 18 of the IGBT chip 11 by a wire bond 19, and further connected to a gate electrode wiring board 20 formed on the intermediate electrode plate 14. The space between the pair of common main electrode plates 4 and 5 is externally insulated by an insulating outer cylinder 21 made of ceramic or the like. It has a stopped hermetic structure. The gate electrode wiring is drawn out of the package by a sealed wiring 23 penetrating the outer cylinder 21.

【0020】上記の多孔質の銅板は、Cuの粉末のスラ
リーをドクターブレード法によりシート化し、これを焼
成して有機バインダ成分を焼失させた後、さらに高温で
Cu粉末を気孔が残るよう還元,仮焼結したものであ
る。初期の気孔率は60%、平均穴径は30μm、厚さ
150μmであった。本実施例で実装された中間電極板
の厚さばらつきは最大50μmあったが、中間電極板1
4とチップ11,12間に感圧紙を挟んで圧力分布を測
定した結果、圧力差は小さく、ほぼ均一に加圧されてい
ることがわかった。
The above-mentioned porous copper plate is formed by sheeting a slurry of Cu powder by a doctor blade method, burning it to burn out the organic binder component, and further reducing the Cu powder at high temperature so that pores remain. It is temporarily sintered. The initial porosity was 60%, the average hole diameter was 30 μm, and the thickness was 150 μm. Although the variation in the thickness of the intermediate electrode plate mounted in this example was 50 μm at the maximum,
As a result of measuring the pressure distribution with pressure-sensitive paper sandwiched between No. 4 and the chips 11 and 12, it was found that the pressure difference was small and the pressure was almost uniformly applied.

【0021】図7は、MOS制御型スイッチングデバイ
ス11とフライホイールダイオード12を組み込んだ逆
導通型スイッチングデバイスに適用した例を示したもの
である。これらの各半導体チップの下側の主電極(コレ
クタ,カソード)はAuとし、あらかじめAgめっき膜
15が2〜3μm形成された中間電極板14と加熱加圧
接着されている。一方、各半導体チップの上側の主電極
(エミッタ,アノード)はAlとし、あらかじめAuめっ
き膜15が2〜3μm形成された中間電極板13と接合
されている。本実施例では、表面にAgめっき膜16が
2〜4μm形成された第1の共通主電極板(Cu)4と
第2の共通主電極板(Cu)5の間に上記の中間電極と
半導体チップが一体化したものを並列に配置する。この
際、中間電極板14と共通主電極板5との間に、一体の
多孔質Ni板17を挟んで、両共通主電極板4,5によ
り全体を加圧した。
FIG. 7 shows an example in which the present invention is applied to a reverse conduction type switching device incorporating a MOS control type switching device 11 and a flywheel diode 12. The lower main electrode (collector, cathode) of each of these semiconductor chips is made of Au, and is heated and pressed and bonded to the intermediate electrode plate 14 on which an Ag plating film 15 is formed in a thickness of 2 to 3 μm in advance. On the other hand, the upper main electrode of each semiconductor chip
(Emitter, anode) is made of Al, and is joined to the intermediate electrode plate 13 on which the Au plating film 15 is formed in advance by 2 to 3 μm. In the present embodiment, the intermediate electrode and the semiconductor are interposed between the first common main electrode plate (Cu) 4 and the second common main electrode plate (Cu) 5 each having the Ag plating film 16 formed on the surface at 2 to 4 μm. The integrated chips are arranged in parallel. At this time, the entire body was pressurized by the two common main electrode plates 4 and 5 with the integrated porous Ni plate 17 interposed between the intermediate electrode plate 14 and the common main electrode plate 5.

【0022】上記で用いた多孔質のNi板は、発泡樹脂
に導電処理を施した後、電気Niめっきを施し、その後
熱処理により樹脂成分を焼失させて得られたものであ
る。これをさらに加圧成形して気孔径約0.2mm 、セル
数は60ケ/インチ,金属チャネル部太さ40〜80μ
m,厚さ0.6mm 、気孔率約80%の板材とした。本実
施例ではNi多孔質板を挟む両面の電極板14,5の表
面が共にAgめっき処理されていることによりNi多孔
質板と上記電極との接触抵抗も大幅に低減されている。
本実施例で実装されたチップ位置毎の厚さばらつきは最
大100μmあったが、中間電極板13と共通主電極板
4間に感圧紙を挟んで圧力分布を測定した結果、圧力差
は小さく、ほぼ均一に加圧されていることがわかった。
The porous Ni plate used above is obtained by subjecting a foamed resin to a conductive treatment, then to an electric Ni plating, and then burning off the resin component by heat treatment. This was further molded under pressure to a pore diameter of about 0.2 mm, the number of cells was 60 cells / inch, and the metal channel thickness was 40 to 80 μm.
m, a thickness of 0.6 mm, and a porosity of about 80%. In this embodiment, the contact resistance between the Ni porous plate and the above-mentioned electrode is greatly reduced because both surfaces of the electrode plates 14 and 5 sandwiching the Ni porous plate are subjected to Ag plating.
Although the thickness variation at each chip position mounted in the present example was 100 μm at the maximum, the pressure distribution was measured with the pressure-sensitive paper sandwiched between the intermediate electrode plate 13 and the common main electrode plate 4, and as a result, the pressure difference was small. It was found that the pressure was almost uniformly applied.

【0023】高さの補正と電気抵抗,熱抵抗の低減を最
適に実現するために、電極間に多孔質金属板だけでな
く、軟質の金属箔と同時に配置してもよい。例えば、上
側の主電極板と中間電極板の間にはAu箔を挿入し、下
側の主電極板と中間電極板の間にはNiの多孔質板を挿
入して、接触面積が異なる場合にも同じ荷重でほぼ同等
の変形量を確保する方法も有効である。
In order to optimally realize the height correction and the reduction of electric resistance and thermal resistance, not only a porous metal plate but also a soft metal foil may be arranged between the electrodes. For example, an Au foil is inserted between the upper main electrode plate and the intermediate electrode plate, a Ni porous plate is inserted between the lower main electrode plate and the intermediate electrode plate, and the same load is applied even when the contact area is different. It is also effective to secure a substantially equal deformation amount.

【0024】図8はゲート制御電極をチップから取り出
すためのピン25がチップの中央に形成された実装形態
の例を示している。図6と同様にIGBT11を用いた
スイッチングデバイスと逆並列に接続したフライホイー
ルダイオード(FWD)12を組み込んだ逆導通型スイ
ッチングデバイスに適用した例を示した。これらの各半
導体チップの下側の主電極(コレクタ,カソード)はA
u電極とし、あらかじめAgめっき膜が2〜3μm形成
された中間電極板14と加熱加圧接着されている。一
方、中間電極板13の表面にはAuめっき膜15が2〜
3μm形成され、各半導体チップと加圧接触されてい
る。これらがさらに表面にAgめっき膜が2〜4μm形
成されている第1の共通主電極板(Cu)4と第2の共
通主電極板(Cu)5に挟まれている。高さばらつきを
吸収するための多孔質銅板17が、中央に穴のあいた形
状に加工されて、中間電極板13と共通電極板4の間
の、上記ピン25、およびピンの絶縁用部材26の周り
に配置される。この方法では個別の多孔質金属板17は
中央のピンの絶縁用部材26によりその位置ずれを防止
できるので、組立作業性等がよい。ゲート配線27は、
第1の共通主電極板(Cu)4に設けられた溝28に収
納されてパッケージの外周部に引き出され、さらに配線
29,23によりパッケージ外部に取り出されている。
接触抵抗をより一層低減するために、本実施例では多孔
質銅板として図5に示したような多孔質板の表面に緻密
な銅箔を一体化した複合多孔質銅板を利用した。これに
より多孔質金属と中間電極板、および共通電極板との間
の接触抵抗を大幅に低減することができた。加圧力の小
さい領域において、特にこの効果が顕著で、接触抵抗を
1/5から1/10に低減できた。本実施例で実装した
チップ位置毎の厚さばらつきを最大200μmとした
が、中間電極板14と共通主電極板5間に感圧紙を挟ん
で圧力分布を測定した結果、圧力差は小さく、ほぼ均一
に加圧されていることがわかった。
FIG. 8 shows an example of a mounting form in which a pin 25 for taking out a gate control electrode from a chip is formed at the center of the chip. An example in which the present invention is applied to a reverse conducting switching device incorporating a flywheel diode (FWD) 12 connected in anti-parallel with a switching device using an IGBT 11 as in FIG. 6 is shown. The main electrodes (collector, cathode) on the lower side of each of these semiconductor chips are A
A u-electrode is bonded to the intermediate electrode plate 14 on which an Ag plating film is formed in advance by 2 to 3 μm by heating and pressing. On the other hand, the Au plating film 15 is
It is formed in a thickness of 3 μm and is in pressure contact with each semiconductor chip. These are further sandwiched between a first common main electrode plate (Cu) 4 and a second common main electrode plate (Cu) 5 each having an Ag plating film formed on the surface at 2 to 4 μm. A porous copper plate 17 for absorbing height variations is machined into a shape with a hole in the center, and the pin 25 and the pin insulating member 26 between the intermediate electrode plate 13 and the common electrode plate 4 are formed. Placed around. In this method, the position of the individual porous metal plate 17 can be prevented by the insulating member 26 of the center pin, so that the assembling workability and the like are good. The gate wiring 27
It is housed in a groove 28 provided in the first common main electrode plate (Cu) 4 and drawn out to the outer peripheral portion of the package, and further drawn out of the package by wirings 29 and 23.
In order to further reduce the contact resistance, in this embodiment, a composite porous copper plate in which a dense copper foil was integrated on the surface of the porous plate as shown in FIG. 5 was used as the porous copper plate. As a result, the contact resistance between the porous metal, the intermediate electrode plate, and the common electrode plate could be significantly reduced. This effect was particularly remarkable in the region where the pressing force was small, and the contact resistance could be reduced from 1/5 to 1/10. Although the thickness variation at each chip position mounted in the present embodiment was set to a maximum of 200 μm, as a result of measuring the pressure distribution with the pressure-sensitive paper sandwiched between the intermediate electrode plate 14 and the common main electrode plate 5, the pressure difference was small and almost It was found that the pressure was uniformly applied.

【0025】上記の様に種類の異なる半導体チップを一
つのパッケージ内に並列実装する場合で、種類毎にその
厚さが大きく異なる場合には、チップ種に応じて中間電
極板の平均厚さを変えたものを準備しチップ厚さの大き
な違いを調整し、さらに本発明の多孔質金属板による変
形を主に中間電極板および半導体チップの厚さのばらつ
きの吸収に用いる方法も有効である。
In the case where different types of semiconductor chips are mounted in parallel in one package as described above, and if the thickness of each type is greatly different, the average thickness of the intermediate electrode plate is changed according to the type of chip. It is also effective to prepare a changed one, adjust a large difference in chip thickness, and use the deformation caused by the porous metal plate of the present invention mainly for absorbing thickness variations of the intermediate electrode plate and the semiconductor chip.

【0026】図9は、表面にAgの緻密な薄膜層33を
一体に形成した多孔質銅板30をウエハサイズの半導体
素子31のカソード電極側と中間電極板32の間に配置
した例を示している。半導体素子31のアノード電極側
と共通電極板5の間にはそれぞれAgめっきを施したM
oの金属箔34、および中間電極板35を配置した。気
孔径約0.1mm ,セル数は40ケ/mm2 ,金属チャネル
部太さ30〜50μm,厚さ0.8mm ,気孔率約75%
の板材とした。多孔質銅板30により高さばらつきを吸
収し、かつ多孔質金属表面の気孔に基づくコンタクト面
積の低下を補って、接触抵抗を下げることができる。
FIG. 9 shows an example in which a porous copper plate 30 integrally formed with a dense thin film layer 33 of Ag is disposed between the cathode electrode side of a wafer-sized semiconductor element 31 and an intermediate electrode plate 32. I have. Ag plated between the anode electrode side of the semiconductor element 31 and the common electrode plate 5
o, a metal foil 34 and an intermediate electrode plate 35 were arranged. The pore diameter is about 0.1 mm, the number of cells is 40 / mm 2 , the metal channel part thickness is 30 to 50 μm, the thickness is 0.8 mm, and the porosity is about 75%.
Plate material. The porous copper plate 30 absorbs height variations and compensates for a decrease in contact area due to pores on the surface of the porous metal, thereby reducing contact resistance.

【0027】図10は半導体チップ1のコレクタ側電極
と共通電極板との間に中間電極がない場合の例を示して
いる。半導体素子の加圧による破壊を防止するため、コ
レクタ側の中間電極板をなくして共通電極板5と半導体
素子1の間に多孔質電極板を挟む場合には、エミッタ側
の被加圧部分、すなわち表面に軟質金属膜38を施した
中間電極板2の形状と同じかこれより小さい領域内に多
孔質金属板36を配置することが重要である。本実施例
では接触抵抗のより一層の低減、及びチップ保護のため
にチップ主電極と多孔質金属板との間に軟質金属の箔3
7を挿入してある。
FIG. 10 shows an example in which there is no intermediate electrode between the collector electrode of the semiconductor chip 1 and the common electrode plate. When the porous electrode plate is sandwiched between the common electrode plate 5 and the semiconductor device 1 without the intermediate electrode plate on the collector side in order to prevent the destruction of the semiconductor device due to pressurization, the pressed portion on the emitter side, That is, it is important to arrange the porous metal plate 36 in a region that is the same as or smaller than the shape of the intermediate electrode plate 2 having the soft metal film 38 formed on the surface. In this embodiment, a soft metal foil 3 is provided between the chip main electrode and the porous metal plate to further reduce contact resistance and protect the chip.
7 is inserted.

【0028】従来、一般に共通電極板、及び中間電極板
の表面は接触抵抗を低減するためにその表面粗さ(Rma
x)を1μm以下に仕上げることが必要だったが、上記
多孔質金属板,軟質金属箔等を挟む共通電極板、及び中
間電極板の表面は最大表面粗さ(Rmax)1μmを越える
粗い凹凸状態でも、材料が表面凹凸にあわせて変形し、
接触面積がミクロに増大して接触抵抗を低減できるの
で、加工コストの低減が図れる。
Conventionally, the surface of the common electrode plate and the surface of the intermediate electrode plate are generally provided with a surface roughness (Rma) to reduce contact resistance.
x) had to be finished to 1 μm or less, but the surface of the above-mentioned porous metal plate, common electrode plate sandwiching the soft metal foil, etc., and the intermediate electrode plate had rough irregularities exceeding the maximum surface roughness (Rmax) of 1 μm. But the material is deformed according to the surface irregularities,
Since the contact area can be microscopically increased and the contact resistance can be reduced, the processing cost can be reduced.

【0029】上記多孔質金属板の材料としては、主とし
てCu,Al,Ag,AuまたはNi等の金属、または
それらの合金を使用するのが好ましい。半導体装置の使
用形態に応じて、熱抵抗,電気抵抗の低減、または変形
能の向上のどちらを優先するかによって最適な材質,表
面処理を選択するのが好ましい。
As the material of the porous metal plate, it is preferable to use mainly metals such as Cu, Al, Ag, Au or Ni, or alloys thereof. It is preferable to select the most suitable material and surface treatment depending on whether heat resistance, electric resistance reduction, or improvement in deformability is prioritized, depending on the usage mode of the semiconductor device.

【0030】上記中間電極の材料としては、熱膨張係数
がSiと外部主電極材料の中間で、熱伝導性,電気伝導
性の良好な材料が用いられる。具体的にはタングステン
(W)やモリブデン(Mo)等の単体金属、またはそれら
を主たる構成材料とするCu−W,Ag−W,Cu−M
o,Ag−Mo,Cu−FeNi等の複合材料または合
金、さらには金属とセラミックスやカーボンとの複合材
料、たとえばCu/SiC,Cu/C,Al/SiC,
Al/AlN等が好ましい。一方、主電極には電気伝導
性で熱伝導性の良い銅やアルミニウム、またはそれらを
含む前述のような合金または複合材料を使用するのが好
ましい。
As a material for the intermediate electrode, a material having a thermal expansion coefficient between Si and the external main electrode material and having good thermal conductivity and electric conductivity is used. Specifically, tungsten
Metal such as (W) and molybdenum (Mo), or Cu-W, Ag-W, Cu-M using them as main constituent materials
o, Ag-Mo, Cu-FeNi or other composite materials or alloys, and further, composite materials of metals and ceramics or carbon, such as Cu / SiC, Cu / C, Al / SiC,
Al / AlN and the like are preferable. On the other hand, for the main electrode, it is preferable to use copper or aluminum having good electrical conductivity and thermal conductivity, or the above-mentioned alloy or composite material containing them.

【0031】本発明の実装方式は、もちろんダイオード
を含まないIGBT等のスイッチング半導体のみからな
る圧接型半導体装置にも用いることができる他、例えば
ダイオードチップのみを多数個上記の方法で圧接型パッ
ケージに実装することももちろん有効である。また、上
記実施例では、主としてIGBTを用いて説明したが、
本発明は少なくとも第一主面に第一の主電極と第二主面
に第二の主電極を有する半導体素子全般を対象としてお
り、IGBT以外の絶縁ゲート形トランジスタ(MOS
トランジスタ)や、IGCT(Insulated Gate Controll
ed Thyristor)などを含む絶縁ゲート形サイリスタ(M
OS制御サイリスタ)や、GTO,サイリスタ、及びダ
イオードなどに対しても同様に実施できる。また、Si
素子以外のSiC,GaNなどの化合物半導体素子に対
しても同様に有効である。
The mounting method of the present invention can of course be used for a pressure contact type semiconductor device comprising only a switching semiconductor such as an IGBT which does not include a diode. For example, a large number of diode chips alone can be used in a pressure contact type package by the above method. Implementation is of course also effective. Further, in the above embodiment, the description has been made mainly using the IGBT.
The present invention is directed to a general semiconductor device having at least a first main electrode on a first main surface and a second main electrode on a second main surface, and uses an insulated gate transistor (MOS) other than an IGBT.
Transistor), IGCT (Insulated Gate Controll)
ed Thyristor) and other insulated gate thyristors (M
An OS control thyristor), a GTO, a thyristor, a diode, and the like can be similarly implemented. In addition, Si
The present invention is similarly effective for compound semiconductor devices such as SiC and GaN other than the device.

【0032】本発明の圧接型半導体装置では、大型化
(大容量化)しても安定した電極間の接触状態が得られ
るため、電気抵抗,熱抵抗の小さな半導体装置が得られ
る。従って、この圧接型半導体装置を用いることによ
り、変換器容積、及びコストを大幅に削減した大容量変
換器が実現できるようになる。図11に本発明によるIG
BTの圧接型半導体装置を主変換素子として電力用変換器
に応用した場合の1ブリッジ分の構成回路図を示す。主
変換素子となるIGBT素子40とダイオード素子41
が逆並列に配置され、これらがn個直列に接続された構
成となっている。これらIGBTとダイオードは、本発
明による多数の半導体チップを並列実装した圧接型半導
体装置を示している。上記図6〜図8の実施例の逆導通
型IGBT圧接型半導体装置の場合には図中のIGBT
チップとダイオードチップがまとめて一つのパッケージ
に収められた形となる。これにスナバ回路42、及び限
流回路が設けてある。図12は、図11の3相ブリッジ
を4多重した自励式変換器の構成を示したものである。
本発明の圧接型半導体装置は、複数個をその主電極板外
側と面接触する形で水冷電極を挟んで直列接続するスタ
ック構造と呼ぶ形に実装され、スタック全体を一括で加
圧する。本発明によれば、従来より低い加圧力でも均一
な接触が得られるので、上記スタック構造等を簡略化で
きるという効果もある。
In the press-contact type semiconductor device of the present invention, a stable contact state between the electrodes can be obtained even when the size (capacity) is increased, so that a semiconductor device having a small electric resistance and a small thermal resistance can be obtained. Therefore, by using this press-contact type semiconductor device, it becomes possible to realize a large-capacity converter in which the volume and cost of the converter are greatly reduced. FIG. 11 shows an IG according to the present invention.
FIG. 3 is a circuit diagram of a configuration for one bridge when a pressure contact type semiconductor device of BT is applied to a power converter as a main conversion element. IGBT element 40 and diode element 41 serving as main conversion elements
Are arranged in antiparallel, and n pieces are connected in series. These IGBTs and diodes represent a press-contact type semiconductor device in which a number of semiconductor chips according to the present invention are mounted in parallel. In the case of the reverse conducting IGBT pressure contact type semiconductor device of the embodiment of FIGS.
The chip and the diode chip are put together in one package. This is provided with a snubber circuit 42 and a current limiting circuit. FIG. 12 shows a configuration of a self-excited converter in which the three-phase bridge of FIG. 11 is multiplexed by four.
The press-contact type semiconductor device of the present invention is mounted in a so-called stack structure in which a plurality of the press-contact semiconductor devices are connected in series with a water-cooled electrode interposed therebetween so as to make surface contact with the outside of the main electrode plate, and pressurize the entire stack at once. According to the present invention, uniform contact can be obtained even with a lower pressing force than in the past, so that the stack structure and the like can be simplified.

【0033】本発明の圧接型半導体装置は、上記の例に
限らず電力系統に用いられる自励式大容量変換器やミル
用変換器として用いられる大容量変換器に特に好適で、
可変速揚水発電,ビル内変電所設備,電鉄用変電設備,
ナトリウム硫黄(NaS)電池システム,車両等の変換
器にも用いることができる。
The press-contact type semiconductor device of the present invention is not particularly limited to the above example, and is particularly suitable for a self-excited large-capacity converter used in a power system or a large-capacity converter used as a mill converter.
Variable speed pumped storage power generation, substation facilities in buildings, substation facilities for railways,
It can also be used in converters for sodium-sulfur (NaS) battery systems and vehicles.

【0034】[0034]

【発明の効果】本発明によれば、ウエハの大口径化によ
るパッケージの大型化や、大容量化に対応する素子の多
チップ並列化に伴って、ますます困難になる大面積域で
の均一圧接を比較的低圧力で簡単に実現することができ
る、すなわち接触面の高さのばらつきを十分に吸収し、
かつ接触界面での熱抵抗,電気抵抗を低減できる。
According to the present invention, uniformity over a large area becomes increasingly difficult with the increase in the size of the package due to the increase in the diameter of the wafer and the parallelization of elements corresponding to the increase in the capacity. Pressure welding can be easily realized with relatively low pressure, that is, it absorbs variations in the height of the contact surface sufficiently,
In addition, the thermal resistance and electric resistance at the contact interface can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示す断面図。FIG. 1 is a sectional view showing a basic configuration of the present invention.

【図2】加圧力と多孔質金属板の厚さ変化量、および電
気抵抗の関係を示す図。
FIG. 2 is a diagram showing a relationship between a pressing force, a thickness change amount of a porous metal plate, and electric resistance.

【図3】多孔質金属材料の表面微構造を示す拡大図。FIG. 3 is an enlarged view showing a surface microstructure of a porous metal material.

【図4】表面に緻密な金属層を形成した多孔質金属材料
の断面構造を示す図。
FIG. 4 is a diagram showing a cross-sectional structure of a porous metal material having a dense metal layer formed on the surface.

【図5】表面に緻密な金属層を形成した多孔質金属材料
の断面構造を示す図。
FIG. 5 is a diagram showing a cross-sectional structure of a porous metal material having a dense metal layer formed on the surface.

【図6】IGBTに適用した本発明の実施例を示す図。FIG. 6 is a diagram showing an embodiment of the present invention applied to an IGBT.

【図7】IGBTに適用した本発明の実施例を示す図。FIG. 7 is a diagram showing an embodiment of the present invention applied to an IGBT.

【図8】IGBTに適用した本発明の実施例を示す図。FIG. 8 is a diagram showing an embodiment of the present invention applied to an IGBT.

【図9】ウエハサイズ半導体素子に適用した本発明の実
施例を示す図。
FIG. 9 is a diagram showing an embodiment of the present invention applied to a wafer size semiconductor device.

【図10】本発明の実施例を示す図。FIG. 10 is a diagram showing an embodiment of the present invention.

【図11】本発明の半導体装置を用いた1ブリッジ分の
構成回路図。
FIG. 11 is a configuration circuit diagram of one bridge using the semiconductor device of the present invention.

【図12】図11の3相ブリッジを4多重した自励式変
換器の構成図。
12 is a configuration diagram of a self-excited converter in which the three-phase bridge of FIG. 11 is multiplexed by four.

【図13】従来方式で加圧した場合の軟質金属の変形挙
動を説明する図。
FIG. 13 is a diagram illustrating the deformation behavior of a soft metal when pressurized by a conventional method.

【符号の説明】[Explanation of symbols]

1…半導体素子、2,3…中間電極板、4,5…共通電
極板、6,17,30,36…多孔質金属板、7…柱状
金属突起、8…柱状金属末端、9…金属層、10…緻密
金属箔、11…IGBT、12…フライホイールダイオ
ード、13,14…中間電極板、15,16…金属めっ
き膜、18…ゲート電極、19…ワイヤボンド、20…
ゲート電極配線板、21…絶縁性外筒、22…金属板、
23…気密貫通配線、24…枠、25…ピン、26…絶
縁用部材、27…ゲート配線、28…溝、29…配線、
31…ウエハサイズ半導体素子、32,35…中間電極
板、33…緻密な薄膜層、34…金属箔、37…軟質金
属箔、38…軟質金属膜、40…IGBT素子、41…
ダイオード素子、42…スナバ回路、43…軟質金属シ
ート、44,45…電極部材、46…摩擦力(摩擦抵
抗)。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2, 3 ... Intermediate electrode plate, 4, 5 ... Common electrode plate, 6, 17, 30, 36 ... Porous metal plate, 7 ... Columnar metal protrusion, 8 ... Columnar metal terminal, 9 ... Metal layer Reference numeral 10: dense metal foil, 11: IGBT, 12: flywheel diode, 13, 14: intermediate electrode plate, 15, 16: metal plating film, 18: gate electrode, 19: wire bond, 20 ...
Gate electrode wiring board, 21: insulating outer cylinder, 22: metal plate,
23 ... airtight through wiring, 24 ... frame, 25 ... pin, 26 ... insulating member, 27 ... gate wiring, 28 ... groove, 29 ... wiring,
31: Wafer size semiconductor element, 32, 35: Intermediate electrode plate, 33: Dense thin film layer, 34: Metal foil, 37: Soft metal foil, 38: Soft metal film, 40: IGBT element, 41:
Diode element, 42 snubber circuit, 43 soft metal sheet, 44, 45 electrode member, 46 frictional force (frictional resistance).

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】両面に露出する一対の電極板の間を絶縁性
の外筒により外部絶縁した平型パッケージの中に、第一
主面に少なくとも第一の主電極、第二主面に第二の主電
極を有する少なくとも一つ以上の半導体素子を組み込ん
だ半導体装置であって、該半導体素子と電極板との間に
多孔質の金属板を配置したことを特徴とする加圧接触型
半導体装置。
1. A flat package in which a pair of electrode plates exposed on both sides is externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface and a second main surface on a second main surface. A pressure contact type semiconductor device, comprising a semiconductor device incorporating at least one semiconductor element having a main electrode, wherein a porous metal plate is arranged between the semiconductor element and an electrode plate.
【請求項2】両面に露出する一対の電極板の間を絶縁性
の外筒により外部絶縁した平型パッケージの中に、第一
主面に少なくとも第一の主電極、第二主面に第二の主電
極を有する少なくとも一つ以上の半導体素子を組み込ん
だ半導体装置であって、各半導体素子の主電極とこれに
対向する電極板との間に導電、及び放熱を兼ねた中間電
極板を介装し、さらに少なくとも一方の該中間電極板と
これに対向する電極板間に多孔質金属板を配置したこと
を特徴とする加圧接触型半導体装置。
2. A flat package in which a pair of electrode plates exposed on both sides are externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface and a second main electrode on a second main surface. A semiconductor device incorporating at least one or more semiconductor elements having a main electrode, wherein an intermediate electrode plate having both conductivity and heat radiation is interposed between a main electrode of each semiconductor element and an electrode plate opposed thereto. And a porous metal plate disposed between at least one of the intermediate electrode plates and an electrode plate facing the intermediate electrode plate.
【請求項3】前記多孔質金属板が主としてCu,Al,
Ag,AuまたはNiからなることを特徴とする請求項
1及び2記載の加圧接触型半導体装置。
3. The method according to claim 1, wherein the porous metal plate is mainly made of Cu, Al,
3. A pressure contact type semiconductor device according to claim 1, wherein said semiconductor device is made of Ag, Au or Ni.
【請求項4】前記多孔質金属板の少なくとも一方の表面
に、多孔質金属材料と同じかより軟質、または耐酸化性
の良い緻密な金属層が形成されていることを特徴とする
請求項1乃至3記載の加圧接触型半導体装置。
4. A dense metal layer, which is the same as or more soft than the porous metal material or has good oxidation resistance, is formed on at least one surface of the porous metal plate. 4. The pressure contact type semiconductor device according to any one of items 3 to 3.
【請求項5】前記各半導体素子の主電極,中間電極板、
及び電極板のうち互いに対向する少なくとも一つの接触
面間に、さらに軟質金属箔を介装することを特徴とする
請求項1乃至4記載の加圧接触型半導体装置。
5. A main electrode, an intermediate electrode plate of each of said semiconductor elements,
5. The pressure contact type semiconductor device according to claim 1, further comprising a soft metal foil interposed between at least one contact surface of the electrode plate and the electrode plate facing each other.
【請求項6】前記中間電極、または電極板の少なくとも
一方の面に、軟質金属膜を形成することを特徴とする請
求項1乃至5記載の加圧接触型半導体装置。
6. A pressure contact type semiconductor device according to claim 1, wherein a soft metal film is formed on at least one surface of said intermediate electrode or said electrode plate.
【請求項7】前記電極板、及び中間電極板の少なくとも
一面が最大表面粗さ(Rmax)1μmを越える粗い凹凸加
工がなされていることを特徴とする請求項1乃至6記載
の加圧接触型半導体装置。
7. The pressure contact type according to claim 1, wherein at least one surface of said electrode plate and said intermediate electrode plate is roughened to have a maximum surface roughness (Rmax) exceeding 1 μm. Semiconductor device.
【請求項8】前記半導体素子が第一主面に第一主電極と
制御電極、第二主面に第二主電極を有する絶縁ゲート形
素子であり、さらに同一の圧接型パッケージ内には第一
主面に第一主電極、第二主面に第二主電極を有するフラ
イホイールダイオードを、上記絶縁ゲート形素子と逆並
列に各々複数個ずつ並置して組み込んだことを特徴とす
る請求項1乃至7記載の加圧接触型半導体装置。
8. The semiconductor device is an insulated gate device having a first main electrode and a control electrode on a first main surface and a second main electrode on a second main surface. A flywheel diode having a first main electrode on one main surface and a second main electrode on a second main surface, a plurality of flywheel diodes each being incorporated in parallel in anti-parallel with the insulated gate element. A pressure contact type semiconductor device according to any one of claims 1 to 7.
【請求項9】前記半導体素子が、少なくとも一つのPN
接合を有する1枚の半導体素子基板であることを特徴と
する請求項1乃至7記載の加圧接触型半導体装置。
9. The semiconductor device according to claim 1, wherein said semiconductor element comprises at least one PN.
8. The pressure contact type semiconductor device according to claim 1, wherein the semiconductor device is a single semiconductor element substrate having a junction.
【請求項10】両面に露出する一対の電極板の間を絶縁
性の外筒により外部絶縁した平型パッケージの中に、第
一主面に少なくとも第一の主電極、第二主面に第二の主
電極を有する少なくとも一つ以上の半導体素子を組み込
み、さらに該半導体素子と電極板の間に多孔質金属板を
配置した加圧接触型半導体装置を主変換素子として用い
たことを特徴とする電力変換器。
10. A flat package in which a pair of electrode plates exposed on both sides are externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface and a second main surface on a second main surface. A power converter, wherein at least one semiconductor element having a main electrode is incorporated, and a pressure contact type semiconductor device in which a porous metal plate is arranged between the semiconductor element and an electrode plate is used as a main conversion element. .
【請求項11】両面に露出する一対の電極板の間を絶縁
性の外筒により外部絶縁した平型パッケージの中に、第
一主面に少なくとも第一の主電極、第二主面に第二の主
電極を有する少なくとも一つ以上の半導体素子を組み込
み、かつ各半導体素子の主電極とこれに対向する電極板
との間に導電、及び放熱を兼ねた中間電極板を介装し、
さらに該中間電極板とこれに対向する電極板間の少なく
とも一方に多孔質金属板を配置した加圧接触型半導体装
置を主変換素子として用いたことを特徴とする電力変換
器。
11. A flat package in which a pair of electrode plates exposed on both surfaces are externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface and a second main surface on a second main surface. At least one or more semiconductor elements having a main electrode are incorporated, and between the main electrode of each semiconductor element and an electrode plate facing the same, an intermediate electrode plate serving as both heat and heat radiation is interposed,
A power converter characterized in that a pressure contact type semiconductor device in which a porous metal plate is disposed on at least one of the intermediate electrode plate and an electrode plate facing the intermediate electrode plate is used as a main conversion element.
JP10434498A 1998-01-15 1998-04-15 Pressurized contact semiconductor device and converter using the same Expired - Fee Related JP3617306B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10434498A JP3617306B2 (en) 1998-04-15 1998-04-15 Pressurized contact semiconductor device and converter using the same
CN99100892A CN1236982A (en) 1998-01-22 1999-01-12 Press contact type semiconductor device, and converter using same
KR1019990001060A KR19990067924A (en) 1998-01-22 1999-01-15 Press contact type semiconductor device, and converter using same
EP99100944A EP0932201A3 (en) 1998-01-22 1999-01-20 Press contact type semiconductor device and converter using same
CA002259846A CA2259846A1 (en) 1998-01-22 1999-01-21 Press contact type semiconductor device, and converter using same
US09/235,384 US6495924B2 (en) 1998-01-22 1999-01-22 Semiconductor device, including an arrangement to provide a uniform press contact and converter using same
US10/231,271 US6686658B2 (en) 1998-01-15 2002-08-30 Semiconductor device, including an arrangement to provide a uniform press contact and converter using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10434498A JP3617306B2 (en) 1998-04-15 1998-04-15 Pressurized contact semiconductor device and converter using the same

Publications (2)

Publication Number Publication Date
JPH11297929A true JPH11297929A (en) 1999-10-29
JP3617306B2 JP3617306B2 (en) 2005-02-02

Family

ID=14378296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10434498A Expired - Fee Related JP3617306B2 (en) 1998-01-15 1998-04-15 Pressurized contact semiconductor device and converter using the same

Country Status (1)

Country Link
JP (1) JP3617306B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080400A (en) * 2004-09-10 2006-03-23 Toshiba Corp Semiconductor device and its manufacturing method
JP2006352080A (en) * 2005-05-16 2006-12-28 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2010267747A (en) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd Laminated structure using metal matrix composite material
JP2011014566A (en) * 2009-06-30 2011-01-20 Toshiba Corp Polymer arrester
JP2012089893A (en) * 2006-03-15 2012-05-10 Hitachi Ltd Power semiconductor device
WO2012172991A1 (en) * 2011-06-16 2012-12-20 富士電機株式会社 Semiconductor unit and semiconductor device using same
WO2013105161A1 (en) * 2012-01-11 2013-07-18 パナソニック株式会社 Pressure contact type semiconductor device and method for fabricating same
JP2014053440A (en) * 2012-09-07 2014-03-20 Meidensha Corp Semiconductor module and semiconductor module manufacturing method
WO2014054212A1 (en) * 2012-10-01 2014-04-10 富士電機株式会社 Semiconductor device and manufacturing method therefor
JP2014127536A (en) * 2012-12-26 2014-07-07 Hitachi Power Semiconductor Device Ltd Semiconductor device including plurality of semiconductor elements
JP2014127535A (en) * 2012-12-26 2014-07-07 Hitachi Power Semiconductor Device Ltd Semiconductor module and method for manufacturing the same
JP2014531133A (en) * 2011-10-21 2014-11-20 アーベーベーテクノロジーアクチエンゲゼルシャフトABB Technology AG Power semiconductor module and power semiconductor module assembly comprising a plurality of power semiconductor modules
JP2016025237A (en) * 2014-07-22 2016-02-08 日産自動車株式会社 Power semiconductor module and mounting method thereof
JPWO2015060346A1 (en) * 2013-10-23 2017-03-09 日立化成株式会社 Die bond sheet and semiconductor device manufacturing method
JP2017073529A (en) * 2015-10-09 2017-04-13 三菱電機株式会社 Semiconductor device
JP2017524231A (en) * 2014-08-06 2017-08-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrical fuse apparatus having a metal foam material and method for interrupting current with the fuse apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080400A (en) * 2004-09-10 2006-03-23 Toshiba Corp Semiconductor device and its manufacturing method
JP2006352080A (en) * 2005-05-16 2006-12-28 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2012089893A (en) * 2006-03-15 2012-05-10 Hitachi Ltd Power semiconductor device
JP2010267747A (en) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd Laminated structure using metal matrix composite material
JP2011014566A (en) * 2009-06-30 2011-01-20 Toshiba Corp Polymer arrester
US9165871B2 (en) 2011-06-16 2015-10-20 Fuji Electric Co., Ltd. Semiconductor unit and semiconductor device using the same
WO2012172991A1 (en) * 2011-06-16 2012-12-20 富士電機株式会社 Semiconductor unit and semiconductor device using same
JPWO2012172991A1 (en) * 2011-06-16 2015-02-23 富士電機株式会社 Semiconductor unit and semiconductor device using the same
JP2014531133A (en) * 2011-10-21 2014-11-20 アーベーベーテクノロジーアクチエンゲゼルシャフトABB Technology AG Power semiconductor module and power semiconductor module assembly comprising a plurality of power semiconductor modules
JP5662565B2 (en) * 2012-01-11 2015-02-04 パナソニックIpマネジメント株式会社 Pressure contact type semiconductor device and manufacturing method thereof
WO2013105161A1 (en) * 2012-01-11 2013-07-18 パナソニック株式会社 Pressure contact type semiconductor device and method for fabricating same
US9018035B2 (en) 2012-01-11 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Pressed-contact type semiconductor device and method for manufacturing the same
JP2014053440A (en) * 2012-09-07 2014-03-20 Meidensha Corp Semiconductor module and semiconductor module manufacturing method
WO2014054212A1 (en) * 2012-10-01 2014-04-10 富士電機株式会社 Semiconductor device and manufacturing method therefor
US9953961B2 (en) 2012-10-01 2018-04-24 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
JP2014127535A (en) * 2012-12-26 2014-07-07 Hitachi Power Semiconductor Device Ltd Semiconductor module and method for manufacturing the same
JP2014127536A (en) * 2012-12-26 2014-07-07 Hitachi Power Semiconductor Device Ltd Semiconductor device including plurality of semiconductor elements
JPWO2015060346A1 (en) * 2013-10-23 2017-03-09 日立化成株式会社 Die bond sheet and semiconductor device manufacturing method
JP2016025237A (en) * 2014-07-22 2016-02-08 日産自動車株式会社 Power semiconductor module and mounting method thereof
JP2017524231A (en) * 2014-08-06 2017-08-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electrical fuse apparatus having a metal foam material and method for interrupting current with the fuse apparatus
JP2017073529A (en) * 2015-10-09 2017-04-13 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3617306B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
KR19990067924A (en) Press contact type semiconductor device, and converter using same
JP3617306B2 (en) Pressurized contact semiconductor device and converter using the same
US6812559B2 (en) Power module with improved transient thermal impedance
JP4664816B2 (en) Ceramic circuit board, manufacturing method thereof and power module
JP6755386B2 (en) Manufacturing method of power semiconductor module and power semiconductor module
EP3352213B1 (en) Semiconductor power module comprising graphene
CN100385652C (en) Semiconductor device
WO2017183580A1 (en) Semiconductor device, power module, and method for manufacturing same
CN115700012A (en) Ceramic circuit board for double-sided cooling type power module, method for manufacturing same, and double-sided cooling type power module provided with same
JP2002237556A (en) Power semiconductor device
US20090166893A1 (en) Semiconductor device
He et al. Thermal design and measurements of IGBT power modules: transient and steady state
JP5899952B2 (en) Semiconductor module
JP3721795B2 (en) Pressure contact type semiconductor device and converter using the same
EP2528092A1 (en) Semiconductor device
JP2000068297A (en) Press-contact type semiconductor device and converter using the same
JP2005209784A (en) Pressure contact semiconductor device and converter using same
JPH10290000A (en) Pressure-connected semiconductor device
WO2022213013A1 (en) Double-side cooled power modules with sintered-silver interposers
JP2005005400A (en) Semiconductor device
JPH11186299A (en) Pressure-contact semiconductor device and power converter provided therewith
CN112038245A (en) Connection process of internal binding line of power module
JPH09237868A (en) Semiconductor module
JPH10303228A (en) Compressively bonded semiconductor device
JP3307145B2 (en) Power chip carrier and power semiconductor device using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees