JPH10303228A - Compressively bonded semiconductor device - Google Patents

Compressively bonded semiconductor device

Info

Publication number
JPH10303228A
JPH10303228A JP9105722A JP10572297A JPH10303228A JP H10303228 A JPH10303228 A JP H10303228A JP 9105722 A JP9105722 A JP 9105722A JP 10572297 A JP10572297 A JP 10572297A JP H10303228 A JPH10303228 A JP H10303228A
Authority
JP
Japan
Prior art keywords
main
electrode
layer
contact
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9105722A
Other languages
Japanese (ja)
Inventor
Mitsuo Kato
光雄 加藤
Hironori Kodama
弘則 児玉
Mamoru Sawahata
守 澤畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9105722A priority Critical patent/JPH10303228A/en
Publication of JPH10303228A publication Critical patent/JPH10303228A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PROBLEM TO BE SOLVED: To absorb dispersion in height of a contact surface and reduce heat resistance and electric resistance in a contact interface by applying a metallic powder sintering layer or a metallic flake sintering layer to at least one surface of compressively bonded surfaces in opposition to each of a main electrode board and an intermediate electrode board. SOLUTION: A first main electrode 2 is formed in a first main surface of a wafer 1, a second main electrode 3 is formed in a second main surface, and intermediate electrode boards 4, 5 consisting of Mo and W are arranged in both the electrode surfaces. A pair of main Cu electrode boards 6, 7 are arranged in an outside part of the intermediate electrode boards 4, 5 and pressurized at once, thus bringing each of members into contact with each other. In the state, metallic powder sintering layers or metallic flake sintering layers 8, 9 are applied to at least one surface of compressively bonded surfaces in opposition to the main electrode boards 6, 7 and the intermediate electrode boards 4, 5. When a pressing force is applied in the state, the metallic powder sintering layers or the metallic flake sintering layers 8, 9 are compressed and deformed, and good contact between both the two surfaces is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧接型半導体装置
に係り、特に半導体素子とパッケージ電極間の熱抵抗,
電気抵抗を低減し、均一な接触を確保できる圧接型半導
体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure contact type semiconductor device, and more particularly, to a thermal resistance between a semiconductor element and a package electrode.
The present invention relates to a pressure contact type semiconductor device capable of reducing electric resistance and ensuring uniform contact.

【0002】[0002]

【従来の技術】半導体エレクトロニクスの技術を駆使し
て主回路電流を制御するパワーエレクトロニクスの技術
は、幅広い分野で応用され、さらにその適用拡大がなさ
れつつある。パワー用半導体素子としては、サイリス
タ,光サイリスタ,ゲートターンオフサイリスタ(GT
O)や、MOS制御デバイスである絶縁ゲート型バイポ
ーラトランジスタ(以下IGBTと略す)やMOS型電
界効果トランジスタ(以下MOSFETと略す)などがある。
これらのデバイスでは、主に半導体チップの第一主面上
に主電極(カソード,エミッタ電極)、第二主面側には
もう一方の主電極(アノード,コレクタ電極)が形成さ
れる。
2. Description of the Related Art The technology of power electronics, which controls the main circuit current by making full use of the technology of semiconductor electronics, has been applied in a wide range of fields, and its application is being expanded. Thyristors, optical thyristors, gate turn-off thyristors (GT)
O), an insulated gate bipolar transistor (hereinafter abbreviated as IGBT) or a MOS field effect transistor (hereinafter abbreviated as MOSFET) which are MOS control devices.
In these devices, a main electrode (cathode, emitter electrode) is mainly formed on a first main surface of a semiconductor chip, and another main electrode (anode, collector electrode) is formed on a second main surface side.

【0003】GTO,光サイリスタ等の大電力用の半導
体装置においては、素子を1枚のウエハ毎にパッケージ
ングしている。上記素子の両主電極は、MoまたはWか
らなる熱緩衝用電極板を介してパッケージの一対の外部
主電極により加圧接触される構造となっている。スイッ
チング動作の均一性や大電流の遮断特性の向上等の為に
は、上記素子電極,熱緩衝板,外部主電極間の接触状態
をできるだけ均一化し、かつ接触熱抵抗,電気抵抗を下
げることが重要である。
In a high-power semiconductor device such as a GTO or an optical thyristor, elements are packaged for each wafer. The two main electrodes of the above-mentioned element are structured to be brought into pressure contact with a pair of external main electrodes of the package via a heat buffer electrode plate made of Mo or W. In order to improve the uniformity of the switching operation and the breaking characteristics of large currents, it is necessary to make the contact state between the above-mentioned element electrode, thermal buffer plate and external main electrode as uniform as possible, and to lower the contact thermal resistance and electric resistance. is important.

【0004】この為、一般にはパッケージ部品の加工精
度(平面度,平坦度)を上げて反りやうねりを低減する
対策がとられている。さらに金属間の接触熱抵抗に関し
ては、接触する面の粗さが粗くなるにつれて接触熱抵抗
は大きくなることが知られている。従来は、この観点か
ら接触熱抵抗、及び電気抵抗を下げる方法として表面粗
さをできるだけ小さくする方向で対策が進められてき
た。
For this reason, generally, measures are taken to increase the processing accuracy (flatness, flatness) of package components to reduce warpage and undulation. Further, with respect to the contact thermal resistance between metals, it is known that the contact thermal resistance increases as the roughness of the contact surface increases. Conventionally, from this viewpoint, countermeasures have been promoted as a method of reducing the contact thermal resistance and the electric resistance in a direction of reducing the surface roughness as much as possible.

【0005】一方、IGBT等ではこれまで主にモジュ
ール型構造と呼ばれる、ワイヤによる電極接続方式のパ
ッケージ形態により複数個のチップを実装していた。こ
のようなモジュール型パッケージの場合、素子内部で発
生した熱はパッケージの片面、すなわち金属ベース上に
直接マウントしたコレクタ側のみから逃がすことになる
ため、一般に熱抵抗が大きく、一つのパッケージに実装
できるチップ数(発熱量、または電流容量)に制限があ
った。
On the other hand, in IGBTs and the like, a plurality of chips have been mounted so far mainly in a package form of an electrode connection system using wires, which is called a module type structure. In the case of such a modular package, heat generated inside the element is released only from one side of the package, that is, only from the collector side directly mounted on the metal base, so that the thermal resistance is generally large and can be mounted in one package. The number of chips (calorific value or current capacity) was limited.

【0006】最近、このような問題に対処し大容量化の
要求に応えるため、特開平8−88240号公報等に提案され
ているようなIGBT素子複数個をGTOのパッケージ
に類似した平型のパッケージ内に並列に組み込み、その
主面に形成されたエミッタ電極,コレクタ電極をそれぞ
れパッケージ側に設けた一対の外部主電極板に面接触さ
せて引き出すようにした多チップ並列型加圧接触構造の
半導体装置が注目されている。この多チップ並列型の圧
接型半導体装置では、部材寸法ばらつきに起因するチッ
プ位置毎の高さのばらつきが避けられず、これによりチ
ップ毎に加圧力が異なり均一な接触が得られないという
問題があった。この問題に対して、特開平8−88240号公
報においては、Agなどの延性のある軟金属シートの厚
さ補正板を介在させる方法を開示している。
Recently, in order to cope with such a problem and respond to a demand for a large capacity, a plurality of IGBT elements proposed in Japanese Patent Application Laid-Open No. 8-88240 and the like are formed in a flat type similar to a GTO package. A multi-chip parallel type pressure contact structure in which the emitter electrode and collector electrode formed on the main surface of the package are brought into surface contact with a pair of external main electrode plates provided on the package side, respectively, and pulled out in parallel in the package. Semiconductor devices are receiving attention. In this multi-chip parallel type pressure contact type semiconductor device, there is an unavoidable variation in height at each chip position due to a variation in member dimensions, which results in a problem in that the pressure is different for each chip and uniform contact cannot be obtained. there were. To cope with this problem, Japanese Patent Application Laid-Open No. 8-88240 discloses a method of interposing a thickness correcting plate made of a ductile soft metal sheet such as Ag.

【0007】[0007]

【発明が解決しようとする課題】上記GTO等のパッケ
ージにおいては、今後ますます大容量化のために素子サ
イズ(ウエハサイズ)が大型化し、この大口径化に伴っ
てウエハ、およびパッケージ部品(電極部品)の反りも
大きくなる傾向にある。
In a package such as the above-mentioned GTO, the element size (wafer size) has been increased in order to increase the capacity in the future. Parts) tend to increase.

【0008】前述のようなパッケージ部品の加工精度
(平面度,平坦度)を上げて反りやうねりを低減し、さ
らに表面粗さを小さくするという対策には加工上の限界
があり、また加工コスト面での問題も大きい。従って素
子サイズ(ウエハサイズ)全面にわたって、ウエハ及び
パッケージ部品(電極)間の均一な接触を確保し、熱抵
抗,電気抵抗を低減することがますます困難になってき
ている。
[0008] There is a limit in the processing to increase the processing accuracy (flatness, flatness) of the package parts as described above to reduce warpage and undulation, and to further reduce the surface roughness. The problem in terms of aspect is also great. Therefore, it has become increasingly difficult to ensure uniform contact between the wafer and package components (electrodes) over the entire element size (wafer size), and to reduce thermal resistance and electrical resistance.

【0009】一方、多チップ並列型の圧接型半導体装置
におけるチップ間の均一接触の問題に対処する方法とし
て開示されている前述の軟金属シートをはさむ方法は、
本発明者らの検討によると、少なくとも半導体チップを
破壊しない実用の圧力範囲ではその変形量がごくわずか
(弾性変形による変形のみ)であり、チップ間の高さ
(及びチップを挟む中間電極部材を含めた高さ)のばら
つきが大きい場合にはその厚さばらつき吸収能が不十分
であることが明らかとなった。軟質金属シート面に厚さ
方向の圧力を加えて、横方向へ塑性変形させようとした
場合、軟質金属シートを挟む電極部材との界面で発生す
る摩擦力(摩擦抵抗)のため、軟金属材料の横方向への
変形抵抗が非常に大きくなってしまうことによると考え
られる。変形させるために加圧力を上げても、摩擦力も
圧力に比例して大きくなるので塑性変形は容易には起こ
らない。特にシート形状のような抵抗を受ける面積に比
べて厚さが非常に小さい場合には、この表面に発生する
摩擦力の影響が支配的となるため、一般に知られている
材料の降伏応力を超える圧力を加えても実際には実質的
な塑性変形(流動)が起こらず、軟金属シートの厚さは
ほとんど変わらない。本発明は、上記のようなウエハの
大口径化によるパッケージの大型化や、大容量化に対応
する素子の多チップ並列化に伴って、ますます困難にな
る大面積での均一な圧接状態を確保する方法、すなわち
接触面の高さのばらつき(反り,うねり,部材寸法ばら
つき等による)を吸収し、かつ接触界面での熱抵抗,電
気抵抗を低減できる方法を提供するものである。
On the other hand, the above-described method of sandwiching a soft metal sheet disclosed as a method for coping with the problem of uniform contact between chips in a multi-chip parallel type pressure contact type semiconductor device is as follows.
According to the study of the present inventors, at least in a practical pressure range where the semiconductor chip is not destroyed, the deformation amount is very small (only deformation due to elastic deformation), and the height between the chips (and the intermediate electrode member sandwiching the chip is reduced). It was found that when the variation in height included was large, the thickness variation absorption capacity was insufficient. When applying pressure in the thickness direction to the soft metal sheet surface to cause plastic deformation in the horizontal direction, the frictional force (friction resistance) generated at the interface between the soft metal sheet and the electrode member sandwiches the soft metal material. Is considered to be due to the fact that the deformation resistance in the lateral direction becomes extremely large. Even if the pressing force is increased for deformation, the plastic deformation does not easily occur because the frictional force also increases in proportion to the pressure. Especially when the thickness is very small compared to the area receiving the resistance like the sheet shape, the influence of the frictional force generated on this surface becomes dominant, so it exceeds the yield stress of commonly known materials Even if pressure is applied, practically no plastic deformation (flow) occurs, and the thickness of the soft metal sheet hardly changes. With the present invention, as described above, with the enlargement of the package due to the increase in the diameter of the wafer, and the parallelization of multiple chips of elements corresponding to the increase in capacity, the uniform pressure contact state in a large area, which becomes increasingly difficult An object of the present invention is to provide a method for securing, that is, a method capable of absorbing variations in the height of the contact surface (due to warpage, undulation, variations in member dimensions, etc.) and reducing thermal resistance and electrical resistance at the contact interface.

【0010】[0010]

【課題を解決するための手段】上記課題は、少なくとも
第一主面に第一の主電極,第二主面に第二の主電極を有
する半導体素子の各主面上に中間電極を配置し、さらに
これらを一対の主電極板の間に組み込んだ圧接型半導体
装置において、上記主電極板と中間電極板が対向する面
の少なくとも一面、または上記中間電極板の対向して圧
接される2つの主面の少なくとも一方に、金属粉末焼結
層または金属フレーク焼結層を施すことにより実現でき
る。
SUMMARY OF THE INVENTION The object of the present invention is to provide a semiconductor device having a first main electrode on at least a first main surface and a second main electrode on a second main surface. Further, in a pressure-contact type semiconductor device in which these are incorporated between a pair of main electrode plates, at least one surface of the main electrode plate and the intermediate electrode plate facing each other, or two main surfaces of the intermediate electrode plate pressed against each other. Can be realized by applying a metal powder sintered layer or a metal flake sintered layer to at least one of the above.

【0011】[0011]

【発明の実施の形態】本発明の実施の代表的な形態を図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described with reference to the drawings.

【0012】図1に圧接型半導体装置の基本構成に対し
て本発明を適用した例を示す。圧接型の半導体装置にお
いては、半導体チップ、またはウエハ1の第一主面に第
一の主電極2,第二主面に第二の主電極3が形成され、
この両電極面にMoやWからなる中間電極板4,5が配
置される。さらにこの中間電極板の外側部分に一対のC
uの主電極板6,7が配置されて、一括に加圧されて各
部材間が接触される。本発明では、この形態において形
成される界面のうち、上記主電極板6,7と中間電極板
4,5のそれぞれ対向して圧接される面の少なくとも一
面に、金属粉末焼結層または金属フレーク焼結層8,9
を施すことを特徴とする。
FIG. 1 shows an example in which the present invention is applied to the basic structure of a press contact type semiconductor device. In a pressure-contact type semiconductor device, a first main electrode 2 is formed on a first main surface of a semiconductor chip or a wafer 1, and a second main electrode 3 is formed on a second main surface.
Intermediate electrode plates 4 and 5 made of Mo or W are arranged on these two electrode surfaces. Further, a pair of C is provided on the outer portion of the intermediate electrode plate.
The main electrode plates 6 and 7 of u are arranged and pressurized at once to bring the members into contact with each other. In the present invention, among the interfaces formed in this mode, at least one of the surfaces of the main electrode plates 6 and 7 and the intermediate electrode plates 4 and 5 pressed against each other is provided with a metal powder sintered layer or a metal flake. Sintered layers 8, 9
Is performed.

【0013】図1には、上側の主電極6と中間電極4の
界面では、中間電極4の表面にのみ金属粉末焼結層また
は金属フレーク焼結層8が施され、下側の主電極7と中
間電極5の界面では、金属粉末焼結層または金属フレー
ク焼結層9が施された例を示している。
In FIG. 1, at the interface between the upper main electrode 6 and the intermediate electrode 4, a metal powder sintered layer or a metal flake sintered layer 8 is applied only to the surface of the intermediate electrode 4, and the lower main electrode 7 An example in which a metal powder sintering layer or a metal flake sintering layer 9 is provided at the interface between the metal electrode and the intermediate electrode 5 is shown.

【0014】この状態で加圧力が加えられると(下
図)、上記中間電極板4,5の金属粉末焼結層または金
属フレーク焼結層8,9が圧縮変形し、上記主電極板
6,7の表面と接触し、2面間の良好なコンタクトが完
了する。
When a pressing force is applied in this state (shown below), the metal powder sintered layers or metal flake sintered layers 8, 9 of the intermediate electrode plates 4, 5 are compressed and deformed, and the main electrode plates 6, 7 are deformed. And good contact between the two surfaces is completed.

【0015】図2に、金属粉末焼結層または金属フレー
ク焼結層の過程をモデル図として示した。図2では、
(a)は加圧する前の接触状態、(b)は加圧途中の状
態、(c)は加圧され変形が十分に起った状態を示して
いる。
FIG. 2 is a model diagram showing the process of the sintered metal powder layer or the sintered metal flake layer. In FIG.
(A) shows a contact state before pressurization, (b) shows a state in the middle of pressurization, and (c) shows a state in which pressurization has caused sufficient deformation.

【0016】図3には、金属粉末焼結層と主電極板を加
圧接触させた場合の金属粉末焼結層の厚さ方向の変形
量、すなわち高さの変化量及び電気抵抗と加圧力との関
係を示した。
FIG. 3 shows the amount of deformation in the thickness direction of the sintered metal powder layer when the sintered metal powder layer and the main electrode plate are brought into pressure contact, that is, the amount of change in height, electric resistance, and pressing force. The relationship was shown.

【0017】図2,図3によれば、図2,図3(a)に
示すように、金属粉末焼結層または金属フレーク焼結層
8,9と主電極板6,7とが接触している状態である。
この状態では、金属粉末焼結層または金属フレーク焼結
層の厚さ方向の変形量は少なく、電気抵抗も高い。
According to FIGS. 2 and 3, as shown in FIGS. 2 and 3 (a), the metal powder sintered layers or metal flake sintered layers 8, 9 are brought into contact with the main electrode plates 6, 7, respectively. It is in the state that it is.
In this state, the amount of deformation in the thickness direction of the metal powder sintered layer or the metal flake sintered layer is small, and the electric resistance is high.

【0018】金属粉末焼結層または金属フレーク焼結層
8,9と主電極板6,7間に荷重がかけられると、図
2,図3(b)に示すように、主電極板6,7に接して
いる部分に荷重が集中し、圧力が非常に高くなるので金
属粉末焼結層または金属フレーク焼結層8,9が容易に
圧縮変形を始める。これにより圧縮変形を始めた金属粉
末焼結層または金属フレーク焼結層8,9は、金属粉末
焼結層または金属フレーク焼結層8,9内の空隙を埋め
ながら、主電極板6,7との接触界面が増加して行く。
この際にできる接触界面は非常に密接にコンタクトした
状態となっている。この変化とともに両者の距離は接近
し、金属粉末焼結層または金属フレーク焼結層の高さが
減少し、接触界面が増加するため電気抵抗は減少する。
When a load is applied between the sintered metal powder layers or sintered metal flake layers 8 and 9 and the main electrode plates 6 and 7, as shown in FIGS. Since the load concentrates on the portion in contact with 7 and the pressure becomes extremely high, the metal powder sintered layer or the metal flake sintered layers 8 and 9 easily start compressive deformation. As a result, the metal powder sintered layers or metal flake sintered layers 8, 9 which have started to be deformed are filled with the voids in the metal powder sintered layers or metal flake sintered layers 8, 9 while the main electrode plates 6, 7 are being filled. The contact interface with increases.
The contact interface formed at this time is in a state of very close contact. With this change, the distance between the two becomes shorter, the height of the metal powder sintered layer or the metal flake sintered layer decreases, and the contact interface increases, so that the electric resistance decreases.

【0019】最終的には金属粉末焼結層または金属フレ
ーク焼結層の変形が十分に起こって、図2,図3(c)
に示すような状態まで達する。原理的には無限大の荷重
を加えられれば界面が完全に埋る状態まで変形させるこ
とも可能であるが、現実には荷重の制限と金属粉末焼結
層または金属フレーク焼結層が球状やフレーク形状のた
め完全に埋めることは不可能で、未充填部分10が多少
残るが電気抵抗等には問題が生じない。
Ultimately, the metal powder sintered layer or the metal flake sintered layer is sufficiently deformed, and as shown in FIGS.
To reach the state shown in. In principle, if an infinite load is applied, it is possible to deform to a state where the interface is completely buried, but in reality the load is limited and the metal powder sintered layer or metal flake sintered layer is spherical or Because of the flake shape, it cannot be completely filled, and some unfilled portions 10 remain, but there is no problem in electrical resistance and the like.

【0020】また熱抵抗について測定した結果でも、電
気抵抗に対してほぼ同等の挙動を示す。初期状態では、
金属粉末焼結層または金属フレーク焼結層の厚さ方向の
変形量は少なく、熱抵抗も高い。金属粉末焼結層または
金属フレーク焼結層の変形領域では、変形量が大きくな
るに伴って、接触界面が増加すること、及び変形が大き
くなって金属表面の酸化被膜が破られて、新生面での良
好な接触が得られる様になるため、熱抵抗が下がる。金
属粉末焼結層または金属フレーク焼結層の変形が十分に
起こった領域では、熱抵抗の値はほぼ一定の最も低い値
を示した。
Also, the results of measurement of the thermal resistance show almost the same behavior as the electrical resistance. By default,
The amount of deformation in the thickness direction of the metal powder sintered layer or metal flake sintered layer is small, and the thermal resistance is high. In the deformation region of the metal powder sintered layer or metal flake sintered layer, as the amount of deformation increases, the contact interface increases, and the deformation increases and the oxide film on the metal surface is broken, resulting in a new surface. Good contact is obtained, and the thermal resistance is reduced. In a region where the metal powder sintering layer or the metal flake sintering layer was sufficiently deformed, the value of the thermal resistance exhibited the almost constant lowest value.

【0021】上記より、半導体装置の使用形態に応じ
て、熱抵抗,電気抵抗の低減、または変形能の向上のど
ちらを優先するかによって、最適な金属粉末焼結層また
は金属フレーク焼結層の厚さ方向の変形量を選択するの
が好ましい。実際には、電極面全体では反りやうねりが
避けられないので、これらをも含めた形で良好な接触を
確保できるだけの変形能が必要となる。
As described above, the most suitable metal powder sintering layer or metal flake sintering layer is determined depending on whether the thermal resistance, the electrical resistance, or the deformability is to be prioritized, depending on the usage of the semiconductor device. It is preferable to select the amount of deformation in the thickness direction. Actually, since warpage and undulation cannot be avoided on the entire electrode surface, it is necessary to have sufficient deformability to ensure good contact in a form including these.

【0022】金属粉末焼結層または金属フレーク焼結層
を施す面としては、対向する電極面の一方のみでも、ま
た両方でももちろん構わない。
The surface on which the metal powder sintering layer or the metal flake sintering layer is applied may be either one of the opposing electrode surfaces or both.

【0023】図4に、金属粉末焼結層または金属フレー
ク焼結層が接合によって形成された中間電極板を示し
た。金属粉末焼結層または金属フレーク焼結層8が接合
によって中間電極板5に接着することは、金属粉末また
は金属フレーク36の欠落を防止し、短絡をなくすこと
にある。
FIG. 4 shows an intermediate electrode plate having a sintered metal powder layer or a sintered metal flake layer formed by bonding. The adhesion of the metal powder sintering layer or metal flake sintering layer 8 to the intermediate electrode plate 5 by bonding is to prevent the metal powder or metal flakes 36 from dropping and to eliminate short circuits.

【0024】金属粉末焼結層または金属フレーク焼結層
は、必要な熱抵抗,電気抵抗,高さ変化量により最適な
値,方法に決定される。焼結材料は金,銀,銅,アルミ
ニウム、あるいははんだ等の軟質金属よりなっており、
特に変形が起こりやすいので好適である。
The optimum value and method of the sintered metal powder layer or the sintered metal flake layer are determined according to the required thermal resistance, electrical resistance and height change. The sintered material is made of soft metal such as gold, silver, copper, aluminum or solder.
In particular, it is preferable because deformation easily occurs.

【0025】中間電極板に金属粉末焼結層または金属フ
レーク焼結層を施すことは、例えば、前述の圧接型パッ
ケージに複数個の半導体チップを並列に組み込む場合の
ような、特に変形量(高さ変化)を大きくする必要のあ
る場合に好適である。半導体装置の組み立て途中、また
は最終工程において、共通電極板上に半導体チップ、中
間電極板を重ねた状態で、室温もしくは加熱しながら一
括プレスを行えば、チップ位置相互間の高さばらつきを
吸収して各半導体チップの上面が平行、かつ同じ高さに
揃うように金属粉末焼結層または金属フレーク焼結層が
塑性変形し、均一な接触状態が実現できる。この場合、
前記金属粉末焼結層または金属フレーク焼結層の厚さ
は、複数個の半導体チップの位置相互間の高さばらつき
を吸収できる範囲とする必要がある。
Applying a metal powder sintered layer or a metal flake sintered layer to the intermediate electrode plate is particularly effective when a plurality of semiconductor chips are incorporated in parallel in the above-mentioned press-fit type package. This is suitable for the case where it is necessary to increase the change in In the process of assembling the semiconductor device or in the final process, if the semiconductor chip and the intermediate electrode plate are stacked on the common electrode plate and the package is pressed at room temperature or while heating, the height variation between the chip positions can be absorbed. Thus, the metal powder sintered layer or the metal flake sintered layer is plastically deformed such that the upper surfaces of the respective semiconductor chips are parallel and at the same height, and a uniform contact state can be realized. in this case,
The thickness of the metal powder sintering layer or the metal flake sintering layer must be in a range that can absorb the height variation between the positions of the plurality of semiconductor chips.

【0026】図5は、GTOに適用した例を示す。半導
体素子基板10は、シリコン(Si)で構成され、内部に
少なくとも1つのPN接合を有している。半導体素子基
板10は、一方の主面にアルミニウム(Al)で構成さ
れたカソード電極及びゲート電極が形成され、他方の主
面にアルミニウム(Al)で構成されたアノード電極が
形成される。カソード電極、及びアノード電極の上側に
はそれぞれモリブデン(Mo)からなる中間電極板1
1,12を配置した。この中間電極板は、一方にAg粉
末焼結層13,14が厚さ0.3mm 施してある。
FIG. 5 shows an example applied to GTO. The semiconductor element substrate 10 is made of silicon (Si) and has at least one PN junction inside. The semiconductor element substrate 10 has a cathode electrode and a gate electrode made of aluminum (Al) formed on one main surface, and an anode electrode made of aluminum (Al) formed on the other main surface. An intermediate electrode plate 1 made of molybdenum (Mo) is provided above the cathode electrode and the anode electrode, respectively.
1 and 12 were arranged. This intermediate electrode plate is provided with Ag powder sintered layers 13 and 14 on one side with a thickness of 0.3 mm.

【0027】さらにこの中間電極板11,12のAg粉
末焼結層13,14の外側から銅(Cu)の一対の外部
電極15,16を用いて全体を加圧した。半導体素子基
板10の側面にはキャップ材17が配置される。半導体
基板上のゲート電極には、ゲートリード18の一部が接
触配置され、その一部はゲート絶縁体19と皿バネ20
によりゲート電極に圧接されている。上記部分はすべて
絶縁体21,一対の外部電極15,16、及びフランジ
22により囲まれた機密パッケージ内に配置されてい
る。ゲートリード18の他端部はシール構造を介して、
絶縁体21の外部にゲート端子として導出される。
Further, the whole of the intermediate electrode plates 11 and 12 was pressed from outside the Ag powder sintered layers 13 and 14 using a pair of external electrodes 15 and 16 made of copper (Cu). A cap member 17 is disposed on a side surface of the semiconductor element substrate 10. A part of a gate lead 18 is arranged in contact with the gate electrode on the semiconductor substrate, and a part thereof is formed by a gate insulator 19 and a disc spring 20.
Is pressed against the gate electrode. All of the above parts are arranged in a security package surrounded by an insulator 21, a pair of external electrodes 15 and 16, and a flange 22. The other end of the gate lead 18 is provided via a seal structure.
It is led out of the insulator 21 as a gate terminal.

【0028】Ag粉末焼結層14を施した中間電極板1
2と主電極板16間の加圧力が約1kg/mm2の条件でオ
ン電圧を測定した結果、通常のMo中間電極(Rmax
1μm、Ra 0.1μm)を用いた場合に比べて、約4
0%低減することができた。熱抵抗も約30%低減し
た。
Intermediate electrode plate 1 provided with Ag powder sintered layer 14
As a result of measuring the on-voltage under the condition that the pressing force between the electrode 2 and the main electrode plate 16 was about 1 kg / mm 2 , a normal Mo intermediate electrode (Rmax
1 μm, Ra 0.1 μm).
0% could be reduced. Thermal resistance was also reduced by about 30%.

【0029】図6は、IGBT23を用いたスイッチングデバ
イスと逆並列に接続したフライホイールダイオード(F
WD)24を組み込んだ逆導通型スイッチングデバイス
に適用した例を示したものである。図5には、右端の圧
接型半導体装置の最外部から中央に向かった途中までの
一部断面を示している。IGBTチップ23には上面側
の第一主面のほぼ全面にエミッタ電極、下面側の第二主
面にはコレクタ電極が形成されており、さらに第一主面
には制御用電極(ゲート電極)が形成されている。
FIG. 6 shows a flywheel diode (F) connected in anti-parallel with a switching device using IGBT23.
This shows an example in which the present invention is applied to a reverse conduction type switching device incorporating WD) 24. FIG. 5 shows a partial cross section from the outermost part of the press-contact type semiconductor device at the right end to the middle toward the center. The IGBT chip 23 has an emitter electrode formed on almost the entire first main surface on the upper surface side and a collector electrode on the second main surface on the lower surface side, and further has a control electrode (gate electrode) on the first main surface. Are formed.

【0030】また、FWD24には、シリコン基板の上
面側にアノード電極,下面側にカソード電極が形成され
ている。これらの各半導体チップには、放熱と電気的接
続を兼ねたMoからなる中間電極25,26がチップ上
の各主電極と接する形で固定されており、これらがさら
に第1の共通主電極板27(Cu)と第2の共通主電極
板28(Cu)に挟まれている。中間電極26の共通主
電極28と接する面はAg粉末焼結層35が施されてい
る。ちなみに共通主電極27の中間電極25と接する面
はRmax 1μmの加工が施されている。上記半導体チッ
プ、及び中間電極はテフロン枠29により互いに固定さ
れている。また、IGBTチップ23のゲート電極から
はワイヤボンド30により配線が引き出され、さらに共
通主電極28上に形成されたゲート電極配線板31に接
続される。本実施例のほかにゲート配線形成にスプリン
グピン等を用いることももちろん可能である。上記一対
の共通主電極板27,28の間は、セラミック製等の絶
縁性の外筒32により外部絶縁され、さらに共通主電極
板27,28と絶縁外筒32の間をフランジ33により
パッケージ内部をシール封止したハーメチック構造とな
っている。ゲート電極配線は外筒32を貫通するシール
された配線34によりパッケージ外に引き出される。
In the FWD 24, an anode electrode is formed on the upper surface side of the silicon substrate, and a cathode electrode is formed on the lower surface side. On each of these semiconductor chips, intermediate electrodes 25 and 26 made of Mo for both heat dissipation and electrical connection are fixed in contact with each main electrode on the chip, and these are further connected to a first common main electrode plate. 27 (Cu) and the second common main electrode plate 28 (Cu). The surface in contact with the common main electrode 28 of the intermediate electrode 26 is provided with an Ag powder sintered layer 35. Incidentally, the surface of the common main electrode 27 which is in contact with the intermediate electrode 25 is processed with Rmax of 1 μm. The semiconductor chip and the intermediate electrode are fixed to each other by a Teflon frame 29. A wire is drawn out from the gate electrode of the IGBT chip 23 by a wire bond 30, and further connected to a gate electrode wiring board 31 formed on the common main electrode 28. In addition to this embodiment, it is of course possible to use a spring pin or the like for forming the gate wiring. The space between the pair of common main electrode plates 27 and 28 is externally insulated by an insulating outer cylinder 32 made of ceramic or the like, and the space between the common main electrode plates 27 and 28 and the insulating outer cylinder 32 is inside the package by a flange 33. Is hermetically sealed. The gate electrode wiring is drawn out of the package by a sealed wiring 34 penetrating the outer cylinder 32.

【0031】そこで中間電極板と主電極板間の加圧力を
1kg/mm2 にしてオン電圧を測定した結果、Ag粉末焼
結層14が施されている中間電極を用いた場合に比べて
約30%低減することができた。熱抵抗も約20%低減
した。
Then, the ON voltage was measured with the applied pressure between the intermediate electrode plate and the main electrode plate being 1 kg / mm 2 , and as a result, it was found that the ON voltage was smaller than the case where the intermediate electrode provided with the Ag powder sintered layer 14 was used. A 30% reduction was achieved. Thermal resistance was also reduced by about 20%.

【0032】上記中間電極の材料としては、熱膨張係数
がSiと外部主電極材料の中間で、熱伝導性,電気伝導
性の良好な材料が用いられる。具体的にはタングステン
(W)やモリブデン(Mo)等の単体金属、またはそれら
を主たる構成材料とするCu−W,Ag−W,Cu−M
o,Ag−Mo,Cu−FeNi等の複合材料または合
金、さらには金属とセラミックスやカーボンとの複合材
料、たとえばCu/SiC,Cu/C,Al/SiC,
Al/AlN等が好ましい。
As the material for the intermediate electrode, a material having a thermal expansion coefficient between that of Si and the external main electrode material and having good thermal conductivity and electric conductivity is used. Specifically, tungsten
Metal such as (W) and molybdenum (Mo), or Cu-W, Ag-W, Cu-M using them as main constituent materials
o, Ag-Mo, Cu-FeNi or other composite materials or alloys, and further, composite materials of metals and ceramics or carbon, such as Cu / SiC, Cu / C, Al / SiC,
Al / AlN and the like are preferable.

【0033】中間電極上に形成される金属粉末焼結層ま
たは金属フレーク焼結層は、必要な熱抵抗,電気抵抗,
高さ変化量により最適な値,方法に決定される。焼結材
料は金,銀,銅,アルミニウム、あるいははんだ等の軟
質金属よりなっており、特に変形が起こりやすいので好
適である。
The sintered metal powder layer or the sintered metal flake layer formed on the intermediate electrode has a required thermal resistance, electrical resistance,
The optimum value and method are determined according to the height change amount. The sintering material is made of a soft metal such as gold, silver, copper, aluminum, or solder, and is particularly preferable because it easily deforms.

【0034】一方、主電極には電気伝導性で熱伝導性の
良い銅やアルミニウム、またはそれらを含む前述のよう
な合金または複合材料を使用するのが好ましい。また金
属粉末焼結層または金属フレーク焼結層と接触する主電
極面を荒らすと、主電極と金属粉末焼結層または金属フ
レーク焼結層の接触がさらに改善され、熱抵抗,電気抵
抗が小さくなる。
On the other hand, it is preferable to use copper or aluminum having good electrical conductivity and thermal conductivity, or the above-mentioned alloy or composite material containing them for the main electrode. If the surface of the main electrode in contact with the metal powder sintered layer or metal flake sintered layer is roughened, the contact between the main electrode and the metal powder sintered layer or metal flake sintered layer is further improved, and the thermal resistance and electric resistance are reduced. Become.

【0035】本発明では、中間電極上に金属粉末焼結層
または金属フレーク焼結層は、中間電極上に金属粉末ま
たは金属フレークを含んだペーストを塗布し、乾燥後、
金属粉末または金属フレークを潰さない範囲内で熱圧着
を行い、金属粉末または金属フレーク同士、中間電極と
金属粉末または金属フレークを接合して形成する。
In the present invention, the metal powder sintered layer or the metal flake sintered layer is formed on the intermediate electrode by applying a paste containing the metal powder or the metal flake on the intermediate electrode and drying the paste.
The thermocompression bonding is performed within a range where the metal powder or the metal flakes are not crushed, and the metal powder or the metal flakes are joined together, and the intermediate electrode and the metal powder or the metal flakes are joined.

【0036】本発明では、中間電極全面に金属粉末焼結
層または金属フレーク焼結層を形成するだけでなく、必
要な熱抵抗,電気抵抗,高さ変化量により、いろんな形
状のパターニングされた金属粉末焼結層または金属フレ
ーク焼結層を形成することができる。
In the present invention, not only a metal powder sintering layer or a metal flake sintering layer is formed on the entire surface of the intermediate electrode, but also a patterned metal having various shapes depending on necessary heat resistance, electric resistance and height change. A powder sinter layer or a metal flake sinter layer can be formed.

【0037】本発明の実装方式は、もちろんダイオード
を含まないIGBT等のスイッチング半導体のみからな
る圧接型半導体装置にも用いることができる他、例えば
ダイオードチップのみを多数個上記の方法で圧接型パッ
ケージに実装することももちろん有効である。また、上
記実施例では、制御電極付き半導体素子としてGTO,
IGBTを用いて説明したが、本発明は少なくとも第一
主面に第一の主電極と第二主面に第二の主電極を有する
半導体素子全般を対象としており、IGBT以外の絶縁
ゲート形トランジスタ(MOSトランジスタ)や、IG
CT(InsulatedGate Controlled Thyristor)などを含む
絶縁ゲート形サイリスタ(MOS制御サイリスタ)など
の制御電極付き半導体素子、及びダイオードなどに対し
ても同様に実施できる。また、Si素子以外のSiC,
GaNなどの化合物半導体素子に対しても同様に有効で
ある。
The mounting method of the present invention can of course be used for a pressure contact type semiconductor device consisting of only a switching semiconductor such as an IGBT without a diode. For example, a large number of diode chips alone can be used in a pressure contact type package by the above method. Implementation is of course also effective. In the above embodiment, GTO,
Although the present invention has been described using an IGBT, the present invention is intended for general semiconductor devices having at least a first main electrode on a first main surface and a second main electrode on a second main surface, and is an insulated gate transistor other than an IGBT. (MOS transistor), IG
The present invention can be similarly applied to a semiconductor element with a control electrode such as an insulated gate thyristor (MOS controlled thyristor) including a CT (Insulated Gate Controlled Thyristor) and a diode. In addition, SiC other than the Si element,
It is similarly effective for compound semiconductor devices such as GaN.

【0038】本発明の圧接型半導体装置では、大型化し
ても安定した電極間の接触界面が得られるため、電気抵
抗,熱抵抗の小さな半導体装置が得られる。従って、こ
の圧接型半導体装置を用いることにより、変換器容積、
及びコストを大幅に削減した大容量変換器が実現できる
ようになる。また本発明によれば、従来より低い加圧力
でも均一な接触が得られるので、上記スタック構造等を
簡略化できるという効果もある。
In the pressure contact type semiconductor device of the present invention, a stable contact interface between the electrodes can be obtained even when the size is increased, so that a semiconductor device having a small electric resistance and a small thermal resistance can be obtained. Therefore, by using this press-contact type semiconductor device, the converter volume,
In addition, a large-capacity converter whose cost is greatly reduced can be realized. Further, according to the present invention, uniform contact can be obtained even with a lower pressing force than in the prior art, so that the stack structure and the like can be simplified.

【0039】本発明の圧接型半導体装置は、上記の例に
限らず電力系統に用いられる自励式大容量変換器やミル
用変換器として用いられる大容量変換器に特に好適で、
可変速揚水発電,ビル内変電所設備,電鉄用変電設備,
ナトリウム硫黄(NaS)電池システム,車両等の変換
器にも用いることができる。
The pressure-contact type semiconductor device of the present invention is not particularly limited to the above example, and is particularly suitable for a self-excited large-capacity converter used in a power system and a large-capacity converter used as a converter for a mill.
Variable speed pumped storage power generation, substation facilities in buildings, substation facilities for railways,
It can also be used in converters for sodium-sulfur (NaS) battery systems and vehicles.

【0040】[0040]

【発明の効果】本発明によれば、ウエハの大口径化によ
るパッケージの大型化や、大容量化に対応する素子の多
チップ並列化に伴って、ますます困難になる大面積域で
の均一圧接を比較的低圧力で簡単に実現することができ
る、すなわち接触面の高さのばらつきを十分に吸収し、
かつ接触界面での熱抵抗,電気抵抗を低減できる。
According to the present invention, uniformity over a large area becomes increasingly difficult with the increase in the size of the package due to the increase in the diameter of the wafer and the parallelization of elements corresponding to the increase in the capacity. Pressure welding can be easily realized with relatively low pressure, that is, it absorbs variations in the height of the contact surface sufficiently,
In addition, the thermal resistance and electric resistance at the contact interface can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示す断面図。FIG. 1 is a sectional view showing a basic configuration of the present invention.

【図2】電極界面の微視的な形状を示す断面モデル図。FIG. 2 is a cross-sectional model diagram showing a microscopic shape of an electrode interface.

【図3】金属粉末焼結層の厚さ方向の変形量及び電気抵
抗と加圧力との関係を説明する図。
FIG. 3 is a view for explaining the relationship between the amount of deformation in the thickness direction of the sintered metal powder layer and the electrical resistance and the pressing force.

【図4】GTOに適用した本発明の実施例を示す図。FIG. 4 is a diagram showing an embodiment of the present invention applied to a GTO.

【図5】IGBTに適用した本発明の実施例を示す図。FIG. 5 is a diagram showing an embodiment of the present invention applied to an IGBT.

【図6】逆導通型スイッチングデバイスに適用した本発
明の実施例を示す図。
FIG. 6 is a diagram showing an embodiment of the present invention applied to a reverse conduction type switching device.

【符号の説明】[Explanation of symbols]

1…半導体チップ、またはウエハ、2,3…主電極、
4,5,11,12,25,26…中間電極板、6,7
…主電極板、8,9,13,14,35…金属粉末焼結
層、10…半導体素子基板、15,16…外部電極、1
7…キャップ材、18…ゲートリード、19…ゲート絶
縁体、20…皿バネ、21…絶縁体、22,33…フラ
ンジ、23…IGBT、24…フライホイールダイオー
ド、27,28…共通主電極板、29…テフロン枠、3
0…ワイヤボンド、31…ゲート電極配線板、32…絶
縁外筒、34…気密貫通配線、36…金属粉末、37…
空孔。
1. Semiconductor chip or wafer, 2, 3 ... Main electrode,
4, 5, 11, 12, 25, 26 ... intermediate electrode plate, 6, 7
... Main electrode plate, 8, 9, 13, 14, 35 ... Metal powder sintered layer, 10 ... Semiconductor element substrate, 15, 16 ... External electrode, 1
7 cap material, 18 gate lead, 19 gate insulator, 20 disc spring, 21 insulator, 22, 33 flange, 23 IGBT, 24 flywheel diode, 27, 28 common main electrode plate , 29 ... Teflon frame, 3
0: wire bond, 31: gate electrode wiring board, 32: insulating outer cylinder, 34: airtight through wiring, 36: metal powder, 37 ...
Vacancy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 29/78 652Q ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 29/78 652Q

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第一主面に第一の主電極、第二主面に第二
の主電極を有する半導体素子の各主面上に中間電極板を
配置し、さらにこれらが一対の主電極板の間に組み込ま
れた圧接型半導体装置において、該主電極板と該中間電
極板の対向して圧接される面の少なくとも一面に、金属
粉末焼結層または金属フレーク焼結層が施されたことを
特徴とする圧接型半導体装置。
An intermediate electrode plate is disposed on each of the main surfaces of a semiconductor device having a first main electrode on a first main surface and a second main electrode on a second main surface. In the pressure-contact type semiconductor device incorporated between the plates, at least one surface of the main electrode plate and the intermediate electrode plate that are pressed against each other is provided with a metal powder sintered layer or a metal flake sintered layer. A pressure-contact type semiconductor device.
【請求項2】第一主面に第一の主電極、第二主面に第二
の主電極を有する半導体素子の各主面上に中間電極板を
配置し、さらにこれらが一対の主電極板の間に組み込ま
れた圧接型半導体装置において、中間電極板の2つの主
面のうち少なくとも一方に、金属粉末焼結層または金属
フレーク焼結層が施されたことを特徴とする圧接型半導
体装置。
2. An intermediate electrode plate is disposed on each main surface of a semiconductor device having a first main electrode on a first main surface and a second main electrode on a second main surface. A press-contact type semiconductor device incorporated between plates, wherein at least one of two main surfaces of the intermediate electrode plate is provided with a metal powder sintered layer or a metal flake sintered layer.
【請求項3】前記中間電極板は金属粉末焼結層または金
属フレーク焼結層が中間電極板上に接合された複合材料
であることを特徴とする請求項1または2記載の圧接型
半導体装置。
3. The pressure-contact type semiconductor device according to claim 1, wherein the intermediate electrode plate is a composite material in which a sintered metal powder layer or a sintered metal flake layer is bonded onto the intermediate electrode plate. .
JP9105722A 1997-04-23 1997-04-23 Compressively bonded semiconductor device Pending JPH10303228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9105722A JPH10303228A (en) 1997-04-23 1997-04-23 Compressively bonded semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9105722A JPH10303228A (en) 1997-04-23 1997-04-23 Compressively bonded semiconductor device

Publications (1)

Publication Number Publication Date
JPH10303228A true JPH10303228A (en) 1998-11-13

Family

ID=14415225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9105722A Pending JPH10303228A (en) 1997-04-23 1997-04-23 Compressively bonded semiconductor device

Country Status (1)

Country Link
JP (1) JPH10303228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135239A1 (en) * 2017-01-19 2018-07-26 株式会社 日立パワーデバイス Semiconductor device and power conversion apparatus
WO2022049641A1 (en) * 2020-09-01 2022-03-10 サンケン電気株式会社 Method for manufacturing dual side cooling power module, and dual side cooling power module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135239A1 (en) * 2017-01-19 2018-07-26 株式会社 日立パワーデバイス Semiconductor device and power conversion apparatus
JP2018117054A (en) * 2017-01-19 2018-07-26 株式会社 日立パワーデバイス Semiconductor device and power conversion device
US10763346B2 (en) 2017-01-19 2020-09-01 Hitachi Power Semiconductor Device, Ltd. Semiconductor device and power conversion apparatus
WO2022049641A1 (en) * 2020-09-01 2022-03-10 サンケン電気株式会社 Method for manufacturing dual side cooling power module, and dual side cooling power module

Similar Documents

Publication Publication Date Title
US6998707B2 (en) Semiconductor device having radiation structure
EP1596434B1 (en) Semiconductor device
US7557434B2 (en) Power electronic package having two substrates with multiple electronic components
KR19990067924A (en) Press contact type semiconductor device, and converter using same
JP2001102400A (en) Electronic device and manufacturing method therefor
WO2005119896A1 (en) Inverter device
JP3617306B2 (en) Pressurized contact semiconductor device and converter using the same
WO2018194153A1 (en) Power semiconductor module, electronic component and method for producing power semiconductor module
US20220302072A1 (en) Semiconductor module comprising a semiconductor and comprising a shaped metal body that is electrically contacted by the semiconductor
JP2013149762A (en) Semiconductor module
JPH10303228A (en) Compressively bonded semiconductor device
JP3721795B2 (en) Pressure contact type semiconductor device and converter using the same
JPH10290000A (en) Pressure-connected semiconductor device
WO2020241239A1 (en) Semiconductor device
JPH1197463A (en) Pressure joint semiconductor device
JP2015026667A (en) Semiconductor module
JP3226088B2 (en) Semiconductor device
JP5724415B2 (en) Semiconductor module
JPH11186299A (en) Pressure-contact semiconductor device and power converter provided therewith
JP3394000B2 (en) Modular semiconductor device and power conversion device using the same
JP2000068297A (en) Press-contact type semiconductor device and converter using the same
JP3307145B2 (en) Power chip carrier and power semiconductor device using the same
JPH11186471A (en) Multiple chips parallel mounting-type semiconductor device
KR20230159286A (en) Semiconductor device arrangement with compressible adhesive
CN111952272A (en) Semiconductor package and method of forming the same