JP2010267747A - Laminated structure using metal matrix composite material - Google Patents

Laminated structure using metal matrix composite material Download PDF

Info

Publication number
JP2010267747A
JP2010267747A JP2009116988A JP2009116988A JP2010267747A JP 2010267747 A JP2010267747 A JP 2010267747A JP 2009116988 A JP2009116988 A JP 2009116988A JP 2009116988 A JP2009116988 A JP 2009116988A JP 2010267747 A JP2010267747 A JP 2010267747A
Authority
JP
Japan
Prior art keywords
linear expansion
state
laminated structure
expansion coefficient
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009116988A
Other languages
Japanese (ja)
Other versions
JP5010640B2 (en
Inventor
Chika Yamamoto
千花 山本
Kenji Miyamoto
健二 宮本
Toshikazu Nanbu
俊和 南部
Masamoto Suganuma
雅資 菅沼
Tomoyuki Sato
智之 佐藤
Tomonori Karasawa
友則 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissan Motor Co Ltd
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nissei Plastic Industrial Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009116988A priority Critical patent/JP5010640B2/en
Publication of JP2010267747A publication Critical patent/JP2010267747A/en
Application granted granted Critical
Publication of JP5010640B2 publication Critical patent/JP5010640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated structure using a metal matrix composite material which effectively relaxes thermal stress of upper and lower laminated members even in a higher temperature environment without using solder. <P>SOLUTION: The laminated structure 10 includes a material A1, a material B5, and a material C4 sandwiched between the material A1 and material B5. Coefficients of linear expansion of the material A1 and material B5 satisfy relationship of α<SB>a</SB><α<SB>b</SB>(in this case, α<SB>a</SB>expresses the coefficient of linear expansion of the material A1 and α<SB>b</SB>expresses the coefficient of linear expansion of the material B). The material C4 contains matrix material formed of two elements and fine particles, includes a dense state 2 and porous state 3. The material C4 on a side contacting with the material A1 is in the dense state 2, and a side contacting with the material B5 is in the porous state 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体素子などを搭載した積層構造体に関し、特に、上下の層の部材の熱応力を効果的に緩和しうる金属基複合材料を使用した積層構造体に関する。   The present invention relates to a laminated structure on which a semiconductor element or the like is mounted, and particularly relates to a laminated structure using a metal matrix composite material that can effectively relieve thermal stress of members in upper and lower layers.

従来、半導体素子を基板に搭載する際には、安定した動作のために、素子の発熱が引き起こす影響を低減するように工夫がされている。例えば、半導体素子の発生する熱を効率よく放熱するという観点から、はんだの高い熱伝導率に着目し、炭素焼結体にはんだを含浸させた放熱部材が提案されている(下記特許文献1参照)。このような部材は、半導体素子とパッケージの間に双方に接触させて配置され、半導体素子からの熱を放出する役割を果たす。はんだは熱伝導性に優れ、放熱部材としての使用は物性の点からは適当であるが、環境に有害な鉛を含んでいる。そのため、近年では環境への影響に配慮し、はんだを使用せずにすむよう代替材料が求められている。   Conventionally, when a semiconductor element is mounted on a substrate, it has been devised to reduce the influence caused by the heat generation of the element for stable operation. For example, from the viewpoint of efficiently dissipating heat generated by a semiconductor element, a heat dissipating member in which a carbon sintered body is impregnated with solder has been proposed from the viewpoint of high thermal conductivity of solder (see Patent Document 1 below). ). Such a member is disposed between the semiconductor element and the package in contact with each other, and plays a role of releasing heat from the semiconductor element. Solder is excellent in thermal conductivity, and its use as a heat radiating member is appropriate in terms of physical properties, but contains lead harmful to the environment. Therefore, in recent years, alternative materials have been demanded so as to avoid the use of solder in consideration of environmental impact.

一方で、自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に注目が集まっている。このような電気自動車の制御用等にも半導体素子は使用されているが、半導体素子や周辺デバイスは300℃程度と従来よりも高温の使用環境となるために、これらもより耐熱性を高めることが求められている。そのため、使用される半導体材料としては、従来のシリコンからより耐熱性に優れるシリコンカーバイド(SiC)へと変化してきている。SiCはシリコンに比べ、耐熱性に優れるだけでなく、高電圧・高電流を流すことができるために、エネルギー効率向上および素子の小型化に対応できるという側面からも好適な材料である。   On the other hand, in the automobile industry, attention has been focused on reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV). Although semiconductor elements are also used for control of such electric vehicles, since the semiconductor elements and peripheral devices are used at a temperature higher than the conventional temperature of about 300 ° C., these also increase heat resistance. Is required. For this reason, the semiconductor material used has changed from conventional silicon to silicon carbide (SiC), which has better heat resistance. SiC is not only superior in heat resistance compared to silicon, but also can flow a high voltage and high current, and therefore is a suitable material from the viewpoint of improving energy efficiency and reducing the size of the device.

特開2007−12830号公報JP 2007-12830 A

上記のように、半導体材料としてSiCが使用されるようになり、半導体素子はより高温で過酷な環境で使用されるようになってきている。それゆえ、熱による新たな問題も生じている。対処の必要なそのような問題の一つとして、熱による材料のひずみ、熱応力が挙げられる。高温の環境で使用されるため、またSiCを使用した半導体素子は発熱量が増加するために、周辺部材との間に大きな熱応力が発生することがある。そのため、半導体素子と周辺の部材との間で生ずる熱応力を緩和させる手段が必要となる。   As described above, SiC has been used as a semiconductor material, and semiconductor elements have been used in harsh environments at higher temperatures. Therefore, new problems due to heat have also arisen. One such problem that needs to be addressed is material distortion and thermal stress due to heat. Since the semiconductor element using SiC is used in a high temperature environment and the calorific value is increased, a large thermal stress may be generated between the peripheral members. Therefore, a means for relaxing the thermal stress generated between the semiconductor element and peripheral members is required.

上記従来技術のはんだを含浸させた炭素焼結体は、熱応力緩和の能力はあるものの、鉛を含むことから環境問題のために使用することが好ましくない。のみならず、はんだは通常250℃以上では融点を超えてしまうため、300℃程度の高温の使用環境では使用することができない。   The carbon sintered body impregnated with the above-mentioned conventional solder is not preferable for use due to environmental problems because it contains lead, although it has the ability to relax thermal stress. Not only that, the solder usually exceeds the melting point at 250 ° C. or higher, so it cannot be used in a high temperature usage environment of about 300 ° C.

このような実情に鑑み、本発明では、はんだを使用せずに、より高温の環境においても積層される上下の部材の熱応力を効果的に緩和することのできる積層構造体を提供することを目的とする。   In view of such circumstances, the present invention provides a laminated structure that can effectively relieve the thermal stress of the upper and lower members laminated in a higher temperature environment without using solder. Objective.

上記の課題を解決するために、本発明の提供する積層構造体は、材料Aと、材料Bと、材料Aと材料Bとの間に挟まれた材料Cとからなり、材料Aおよび材料Bの線膨張係数が、α<αの関係を満たしている。ここで、αは材料Aの線膨張係数を表し、αは材料Bの線膨張係数を表わす。材料Cは2元素からなるマトリックス材および微粒子を含み、緻密状態および多孔質状態を含み、材料Cの材料Aに接する側が緻密状態であり、材料Bに接する側が多孔質状態であることを特徴とする。 In order to solve the above problems, the laminated structure provided by the present invention includes a material A, a material B, and a material C sandwiched between the material A and the material B. The material A and the material B The linear expansion coefficient satisfies the relationship of α ab . Here, α a represents the linear expansion coefficient of the material A, and α b represents the linear expansion coefficient of the material B. The material C includes a matrix material composed of two elements and fine particles, includes a dense state and a porous state, the side of the material C in contact with the material A is in a dense state, and the side in contact with the material B is in a porous state To do.

本発明の積層構造体は、材料Cが2元素からなるマトリックス材および微粒子で構成される緻密状態と多孔質状態とを含んでおり、多孔質状態が低弾性を示し、緻密状態は低線膨張性を示す。このことにより、材料Aと材料Bとの間の熱応力を効果的に緩和でき、材料Bが熱により変形した場合に、その変形に追随しないことに起因する材料Aの損傷を防止できる。   The laminated structure of the present invention includes a dense state and a porous state in which the material C is composed of a matrix material composed of two elements and fine particles, and the porous state exhibits low elasticity, and the dense state has a low linear expansion. Showing gender. Thereby, the thermal stress between the material A and the material B can be effectively relieved, and when the material B is deformed by heat, damage to the material A due to not following the deformation can be prevented.

本発明の一実施形態による積層構造体を示す断面図である。It is sectional drawing which shows the laminated structure by one Embodiment of this invention. NiCu−CNT複合材料の断面の元素分析の結果を示すグラフである。It is a graph which shows the result of the elemental analysis of the cross section of a NiCu-CNT composite material. 本発明の一実施形態による材料Cの断面を走査型電子顕微鏡(SEM)によって観察した像を示す図である。It is a figure which shows the image which observed the cross section of the material C by one Embodiment of this invention with the scanning electron microscope (SEM). 図3を拡大した図である。FIG. 4 is an enlarged view of FIG. 3. 図4に示す断面の多孔質状態の部分を拡大した図である。It is the figure which expanded the part of the porous state of the cross section shown in FIG. 図4に示す断面の緻密状態の部分を拡大した図である。It is the figure which expanded the part of the dense state of the cross section shown in FIG. 多孔質状態の構造を模式的に示した図である。It is the figure which showed the structure of the porous state typically.

以下、本発明の積層構造体について詳細に説明する。   Hereinafter, the laminated structure of the present invention will be described in detail.

本発明の積層構造体は、線膨張係数が、α<αの関係を満たす材料Aと材料Bとの間に、材料Cを挟んで構成される。ここで、αは材料Aの線膨張係数を表し、αは材料Bの線膨張係数を表わす。すなわち、発熱などの温度変化が生じたときに、材料Aは線膨張係数が小さく伸びにくい、すなわち変形しにくく、材料Bは線膨張係数が大きく伸びやすい、すなわち変形しやすい素材である。材料Cは、この材料Aと材料Cとの間の熱応力を緩和するために挿入され、2元素からなるマトリックス材および微粒子を含み、緻密状態および多孔質状態を含み、材料Aに接する側が緻密状態であり、材料Bに接する側が多孔質状態である。 The laminated structure of the present invention is configured by sandwiching the material C between the material A and the material B having a linear expansion coefficient satisfying the relationship of α ab . Here, α a represents the linear expansion coefficient of the material A, and α b represents the linear expansion coefficient of the material B. That is, when a temperature change such as heat generation occurs, the material A is a material that has a small coefficient of linear expansion and is not easily stretched, that is, is not easily deformed, and the material B is a material that has a large coefficient of linear expansion and is easily stretched. The material C is inserted to relieve the thermal stress between the material A and the material C, includes a matrix material and fine particles composed of two elements, includes a dense state and a porous state, and a side in contact with the material A is dense. In this state, the side in contact with the material B is in a porous state.

材料Cの緻密状態は、マトリックス材と微粒子とが互いに強固に密着して構成され、それゆえに緻密状態部分は低線膨張性を示す。この性質は、線膨張係数の小さい材料Aに近いものである。したがって、熱変形しにくい材料Aと接する側に材料Cの緻密状態を配置することにより、高温の環境で材料Aが線膨張係数の大きい材料Bと接したための熱応力によって損傷することを防止できる。   The dense state of the material C is configured such that the matrix material and the fine particles are firmly adhered to each other, and therefore the dense state portion exhibits low linear expansion. This property is close to that of the material A having a small linear expansion coefficient. Therefore, by arranging the dense state of the material C on the side in contact with the material A that is hardly thermally deformed, it is possible to prevent the material A from being damaged by thermal stress due to contact with the material B having a large linear expansion coefficient in a high temperature environment. .

一方、材料Cの多孔質状態は、マトリックス材と微粒子との間に空隙が生じて多孔質となっており、同一の材料で多孔質ではないものよりも見かけの弾性が低下し、変形しやすい。したがって、線膨張係数の大きい材料Bと接する側に材料Cの多孔質状態を配置することにより、材料Cは材料Bの伸びに合わせて変形する。したがって、材料Bの熱変形が材料Aに影響することを防止する。すなわち、材料Cは、材料Aと材料Bとの間の熱応力緩和層として機能する。   On the other hand, the porous state of the material C is porous with voids formed between the matrix material and the fine particles, and the apparent elasticity is lower than that of the same material that is not porous, and is easily deformed. . Therefore, the material C is deformed in accordance with the elongation of the material B by disposing the porous state of the material C on the side in contact with the material B having a large linear expansion coefficient. Therefore, the thermal deformation of the material B is prevented from affecting the material A. That is, the material C functions as a thermal stress relaxation layer between the material A and the material B.

次に本発明の好ましい実施形態について説明する。図1は、本発明の好ましい実施形態の積層構造体を示した断面図である。図1中、本実施形態の積層構造体10は、材料AとしてSiCを使用した半導体素子1と、材料Bとして電子部品の配線に広く使用される銅を使用した配線電極5との間に、材料Cを挟んでいる。SiCの線膨張係数は4.5×10−6/K、銅の線膨張係数は16.6×10−6/Kであり、両者の線膨張係数は大きく異なる。そのまま積層すると、半導体素子に接している配線電極は熱変形しやすく、SiCが熱によって変形しにくいために、熱応力によって半導体素子にクラックが入ってしまう。材料Cは、ニッケルおよび銅の2元素からなるマトリックス材中に、微粒子としてカーボンナノチューブを含んだ金属基複合材料(以下、NiCu−CNT複合材料と称する)の薄膜である。NiCu−CNT複合材料4中には、緻密状態2および多孔質状態3がそれぞれの薄層を互いに重ねたような状態で含まれており、それぞれ半導体素子1および配線電極5に接している。緻密状態2は低線膨張性を示し、多孔質状態3は低弾性を示す。なお、後述するように緻密状態2と多孔質状態3とは相互に混じり合って連続しているが、図1においては、説明のために緻密状態2と多孔質状態3を区分して示した。 Next, a preferred embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a laminated structure according to a preferred embodiment of the present invention. In FIG. 1, the laminated structure 10 of this embodiment includes a semiconductor element 1 that uses SiC as the material A and a wiring electrode 5 that uses copper widely used for wiring electronic components as the material B. The material C is sandwiched. The linear expansion coefficient of SiC is 4.5 × 10 −6 / K, and the linear expansion coefficient of copper is 16.6 × 10 −6 / K. If the layers are stacked as they are, the wiring electrode in contact with the semiconductor element is easily deformed by heat, and SiC is not easily deformed by heat, so that the semiconductor element is cracked by thermal stress. Material C is a thin film of a metal matrix composite material (hereinafter referred to as NiCu-CNT composite material) containing carbon nanotubes as fine particles in a matrix material composed of two elements of nickel and copper. In the NiCu—CNT composite material 4, the dense state 2 and the porous state 3 are included in a state where the respective thin layers are overlapped with each other, and are in contact with the semiconductor element 1 and the wiring electrode 5, respectively. The dense state 2 shows low linear expansion, and the porous state 3 shows low elasticity. As will be described later, the dense state 2 and the porous state 3 are mixed and continuous with each other, but in FIG. 1, the dense state 2 and the porous state 3 are shown separately for the sake of explanation. .

ニッケルと銅は全率で固溶体を形成するが、NiCu−CNT複合材料4中、マトリックス材としてのニッケルと銅とには濃度勾配がある。図2は、NiCu−CNT複合材料4の断面を厚み方向に元素分析した結果を示すグラフである。図2において、横軸は厚み方向の距離であり、0は半導体素子1に接する表面で右端は配線電極5に接する表面である。半導体素子1に近い部分、すなわち緻密状態2はニッケルがリッチであるのに対して、Bに近い部分の多孔質状態3は銅がリッチになっている。このマトリックス材の2元素の濃度勾配により、緻密状態2と多孔質状態3とが形成される。   Nickel and copper form a solid solution at a total rate, but in the NiCu-CNT composite material 4, there is a concentration gradient between nickel and copper as the matrix material. FIG. 2 is a graph showing the result of elemental analysis of the cross section of the NiCu—CNT composite material 4 in the thickness direction. In FIG. 2, the horizontal axis is the distance in the thickness direction, 0 is the surface in contact with the semiconductor element 1, and the right end is the surface in contact with the wiring electrode 5. The portion close to the semiconductor element 1, that is, the dense state 2 is rich in nickel, while the porous state 3 in the portion close to B is rich in copper. A dense state 2 and a porous state 3 are formed by the concentration gradient of the two elements of the matrix material.

NiCu−CNT複合材料4は、上記のように緻密状態と多孔質状態を含むことにより、全体としては、ヤング率が小さく線膨張係数が小さいという性質を有する。すなわち、低弾性であり外的な力による変形に追随しやすく、かつ、熱による変形もしにくい。特に、明確に区分することは難しいが、NiCu−CNT複合材料4のうち緻密状態2の側では低線膨張性が、多孔質状態3の側では低弾性が、より顕著に現れる。それぞれの特性は薄膜の表面に近くなるほど顕著である。したがって、高温の環境において、電極が熱変形した場合には、配線電極5に接する多孔質状態3がその変形に追随して変形する。一方の半導体素子1に接する緻密状態2は半導体素子1と共に形を維持したままとなる。NiCu−CNT複合材料4は、機能的な面からは、低線膨張性の層と低弾性の層とが積層されているとも言える。このように本実施形態の積層構造体は、NiCu−CNT複合材料4が熱応力緩和層としての機能を発揮し、半導体素子の実装に好適である。高温の環境や素子の発熱による熱応力に起因する半導体素子1のクラックを防止でき、信頼性の高い半導体デバイスを提供できるためである。   The NiCu-CNT composite material 4 has the property that the Young's modulus is small and the linear expansion coefficient is small as a whole by including the dense state and the porous state as described above. That is, it is low in elasticity, easily follows deformation due to external force, and hardly deforms due to heat. In particular, although it is difficult to distinguish clearly, in the NiCu-CNT composite material 4, the low linear expansion property appears on the dense state 2 side, and the low elasticity on the porous state 3 side appears more prominently. Each characteristic becomes more prominent the closer to the surface of the thin film. Therefore, when the electrode is thermally deformed in a high temperature environment, the porous state 3 in contact with the wiring electrode 5 is deformed following the deformation. The dense state 2 in contact with one semiconductor element 1 remains in shape with the semiconductor element 1. It can be said that the NiCu-CNT composite material 4 has a low linear expansion layer and a low elasticity layer laminated from the functional aspect. Thus, in the laminated structure of the present embodiment, the NiCu—CNT composite material 4 exhibits a function as a thermal stress relaxation layer and is suitable for mounting a semiconductor element. This is because cracks of the semiconductor element 1 due to a high temperature environment and thermal stress due to heat generation of the element can be prevented, and a highly reliable semiconductor device can be provided.

NiCu−CNT複合材料4が緻密状態と多孔質状態とで構成されていることは、上記のように低線膨張性および低弾性という物性に反映され、断面を観察することと共に、ヤング率および線膨張係数の測定によって知ることができる。本発明において、緻密状態と多孔質状態とを含むとは、材料Cは線膨張係数が10〜20×10−6/Kおよびヤング率が50〜125GPaを示す。より好ましくは、線膨張係数が12〜18×10−6/K、ヤング率が50〜100GPaであり、さらに好ましくは、線膨張係数が16.5〜17.6×10−6/K、ヤング率が64〜72.1GPaである。 The fact that the NiCu-CNT composite material 4 is composed of a dense state and a porous state is reflected in the physical properties of low linear expansion and low elasticity as described above. This can be determined by measuring the expansion coefficient. In the present invention, “comprising a dense state and a porous state” means that the material C has a linear expansion coefficient of 10 to 20 × 10 −6 / K and a Young's modulus of 50 to 125 GPa. More preferably, the linear expansion coefficient is 12 to 18 × 10 −6 / K and the Young's modulus is 50 to 100 GPa, and still more preferably, the linear expansion coefficient is 16.5 to 17.6 × 10 −6 / K, Young The rate is 64-72.1 GPa.

NiCu−CNT複合材料4は、その断面を走査型電子顕微鏡(SEM)で観察すると、緻密状態および多孔質状態を確認することができる。図3は、本実施形態のNiCu−CNT複合材料4の断面をSEMにて1000倍で観察した像を示す図であり、多孔質状態3は上側、緻密状態2は下側である。図4は、図3の拡大図であり、4000倍での観察像である。   When the cross section of the NiCu-CNT composite material 4 is observed with a scanning electron microscope (SEM), a dense state and a porous state can be confirmed. FIG. 3 is a diagram showing an image obtained by observing a cross section of the NiCu—CNT composite material 4 of the present embodiment at 1000 times with an SEM. The porous state 3 is on the upper side and the dense state 2 is on the lower side. FIG. 4 is an enlarged view of FIG. 3 and is an observation image at 4000 times.

図5は、図4の多孔質状態3を拡大し、10000倍で観察した像である。観察像のほぼ全域にわたり空隙が観察され、特に膜表面近くの断面において、多数の細かい空孔を確認することができる。一方図6は、図4の緻密状態2を拡大し、10000倍で観察した像である。多孔質状態3に比較して空隙が少なく全体に滑らかであり、特に下側の膜表面近くの断面は空隙がなくとても滑らかであることが観察される。このように、緻密状態と多孔質状態とは、SEMにて1000〜10000倍で断面を観察することにより互いに区別される。本実施形態においては、膜の断面を上記のように観察したときにこのように状態に明確な相違が認められること、および、膜全体について上記のような物性を示すことが確認されれば、狙いとする熱応力緩和の効果が得られる。   FIG. 5 is an image obtained by magnifying the porous state 3 of FIG. Voids are observed over almost the entire area of the observed image, and many fine pores can be confirmed, particularly in the cross section near the film surface. On the other hand, FIG. 6 is an image obtained by magnifying the dense state 2 of FIG. It is observed that there are few voids compared to the porous state 3 and the whole is smooth, and in particular, the cross section near the lower film surface is very smooth without voids. Thus, the dense state and the porous state are distinguished from each other by observing the cross section at 1000 to 10000 times with an SEM. In the present embodiment, if it is confirmed that a clear difference is observed in the state as described above when the cross section of the film is observed as described above, and that the physical properties as described above are shown for the entire film, The targeted thermal stress relaxation effect can be obtained.

緻密状態2と多孔質状態3との比率は、本発明の効果を十分に発揮するためには、図3のSEMにより観察した断面において、それぞれの厚み方向の長さを計測した場合に、緻密状態:多孔質状態が5:5〜3:7である。より好ましくは4:6〜3:7である。本実施形態においては、最も好ましい比率は3:7である。   The ratio between the dense state 2 and the porous state 3 is such that, in order to fully exhibit the effects of the present invention, the length in the thickness direction is measured in the cross section observed with the SEM in FIG. State: The porous state is 5: 5 to 3: 7. More preferably, it is 4: 6-3: 7. In the present embodiment, the most preferable ratio is 3: 7.

NiCu−CNT複合材料4はそれ自身の放熱性や導電性にも優れている。したがって、半導体素子1の発生する熱を吸収することもでき、配線電極5と半導体素子1との間を電気的に接続する役割も果たしている。NiCu−CNT複合材料4が導電性を有することにより、半導体素子の動作に影響することなく、半導体実装に好適である。   The NiCu—CNT composite material 4 is excellent in its heat dissipation and conductivity. Therefore, the heat generated by the semiconductor element 1 can be absorbed, and the wiring electrode 5 and the semiconductor element 1 are also electrically connected. Since the NiCu—CNT composite material 4 has conductivity, it is suitable for semiconductor mounting without affecting the operation of the semiconductor element.

本実施形態におけるNiCu−CNT複合材料4の全体の厚さは、熱応力を効果的に緩和するために、10〜300μmであることが好ましく、より好ましくは50〜200μmである。   The total thickness of the NiCu—CNT composite material 4 in the present embodiment is preferably 10 to 300 μm, more preferably 50 to 200 μm, in order to effectively relieve thermal stress.

NiCu−CNT複合材料4が緻密状態および多孔質状態を含んで構成されるのは、マトリックス材であるニッケルまたは銅と微粒子であるカーボンナノチューブと濡れ性の相違による。ニッケルとカーボンナノチューブとは濡れ性がよく、製造工程において互いに強固に密着するため、緻密状態となり低線膨張性を示す。一方、銅とカーボンナノチューブとは濡れ性が悪く、そのために製造工程においてカーボンナノチューブが銅をはじき、両者の界面に空孔が生じ、全体が多孔質状態となる。また、それゆえに低弾性を示す。   The NiCu—CNT composite material 4 is configured to include a dense state and a porous state due to the difference in wettability between nickel or copper as a matrix material and carbon nanotubes as a fine particle. Nickel and carbon nanotubes have good wettability and firmly adhere to each other in the manufacturing process, so that they become dense and show low linear expansion. On the other hand, copper and carbon nanotubes have poor wettability, so that the carbon nanotubes repel copper in the manufacturing process, resulting in pores at the interface between them, and the whole becomes a porous state. Therefore, it exhibits low elasticity.

図7は、多孔質状態3中の空孔の様子を模式的に示した図である。図2に示すように、マトリックス材6中にはカーボンナノチューブ7が含まれている。マトリックス材6とカーボンナノチューブ7との濡れ性の悪さから、両者の界面には、製造工程において生じた空孔8が多数存在している。   FIG. 7 is a diagram schematically showing the state of pores in the porous state 3. As shown in FIG. 2, the matrix material 6 includes carbon nanotubes 7. Due to the poor wettability between the matrix material 6 and the carbon nanotubes 7, there are a large number of pores 8 generated in the manufacturing process at the interface between them.

NiCu−CNT複合材料4は、電解めっき方法によって製造することができる。例えば、銅イオンおよびニッケルイオンを含むめっき液に、カーボンナノチューブ、光沢剤および界面活性剤を混合して複合めっき液を調製し、この複合めっき液に金属電極を投入して、電解めっきを施す。その後、得られためっき膜を金属電極からはがし、NiCu−CNT複合材料の薄膜を得る。より詳細には、特開2008−163376号公報に記載の複合めっき方法を用いることができる。したがって、本実施形態のNiCu−CNT複合材料4には、電解めっきの際に使用される微量の光沢剤や滑剤が含まれていてもよい。また、カーボンナノチューブはシリコン等で被覆されていてもよい。   The NiCu-CNT composite material 4 can be manufactured by an electrolytic plating method. For example, a carbon nanotube, a brightener, and a surfactant are mixed with a plating solution containing copper ions and nickel ions to prepare a composite plating solution, and a metal electrode is added to the composite plating solution to perform electrolytic plating. Thereafter, the obtained plating film is peeled off from the metal electrode to obtain a thin film of NiCu-CNT composite material. More specifically, the composite plating method described in Japanese Patent Application Laid-Open No. 2008-163376 can be used. Therefore, the NiCu—CNT composite material 4 of the present embodiment may contain a slight amount of brightener or lubricant used during electrolytic plating. The carbon nanotubes may be covered with silicon or the like.

本実施形態に好適なNiCu−CNT複合材料を得るには、直径0.4〜150nm、より好ましくは10〜150nm、さらに好ましくは50〜150nmのカーボンナノチューブを使用する。カーボンナノチューブの直径は、透過型電子顕微鏡(TEM)または原子間力電子顕微鏡(AFM)を用いて測定するものとする。カーボンナノチューブの長さとしては、通常数μm〜100μmである。カーボンナノチューブの添加量としては0.001〜10質量%、より好ましくは0.001〜1質量%、さらに好ましくは0.5〜1質量%である。この範囲の添加量であれば、上記の物性を示す緻密状態および多孔質状態を含むNiCu−CNT複合材料4を製造するのに適している。   In order to obtain a NiCu—CNT composite material suitable for this embodiment, carbon nanotubes having a diameter of 0.4 to 150 nm, more preferably 10 to 150 nm, and still more preferably 50 to 150 nm are used. The diameter of the carbon nanotube is measured using a transmission electron microscope (TEM) or an atomic force electron microscope (AFM). The length of the carbon nanotube is usually several μm to 100 μm. The amount of carbon nanotube added is 0.001 to 10% by mass, more preferably 0.001 to 1% by mass, and still more preferably 0.5 to 1% by mass. If the addition amount is within this range, it is suitable for producing the NiCu—CNT composite material 4 including the dense state and the porous state exhibiting the above physical properties.

NiCu−CNT複合材料を半導体素子および配線電極と積層するには、接合剤として銀ナノペーストを使用する。銀ナノペーストは接合剤の一種であり、粒径が約10nmの銀のナノ粒子を有機保護膜でコーティングしたものを、溶媒に分散しペースト状にしたものである。銀ナノペーストが加熱により一定温度に達すると、溶媒や有機保護膜は分解して揮発し、超微粒子の銀が露出する。露出した銀ナノ粒子は互いに焼結し、接合剤として機能するものである。本実施形態では、半導体素子とNiCu−CNT複合材料との間、およびNiCu−CNT複合材料と配線電極との間に、銀ナノペーストを10〜100μmの範囲の厚さで塗布し、2つの部材を接合する。   In order to laminate the NiCu—CNT composite material with the semiconductor element and the wiring electrode, a silver nano paste is used as a bonding agent. Silver nanopaste is a kind of bonding agent, which is obtained by dispersing silver nanoparticles having a particle size of about 10 nm with an organic protective film and dispersing them in a solvent. When the silver nanopaste reaches a certain temperature by heating, the solvent and the organic protective film are decomposed and volatilized, and ultrafine silver is exposed. The exposed silver nanoparticles are sintered together and function as a bonding agent. In this embodiment, silver nanopaste is applied between the semiconductor element and the NiCu-CNT composite material, and between the NiCu-CNT composite material and the wiring electrode, with a thickness in the range of 10 to 100 μm. Join.

上記のとおり、本発明の好ましい実施形態を説明してきたが、本発明は上記の実施形態に制限されない。図1では、半導体素子1がNiCu−CNT複合材料4と接する面積は、NiCu−CNT複合材料4が配線電極5と接する面積より小さく描かれているが、逆であってもよい。また半導体素子1、NiCu−CNT複合材料4および配線電極5がすべて同じ大きさであってもよい。要は、半導体素子1と配線電極5との間の熱応力を十分緩和できる程度に、NiCu−CNT複合材料4の少なくとも一部が両者に接触していればよい。   As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to the above embodiments. In FIG. 1, the area in which the semiconductor element 1 is in contact with the NiCu—CNT composite material 4 is drawn smaller than the area in which the NiCu—CNT composite material 4 is in contact with the wiring electrode 5, but may be reversed. The semiconductor element 1, the NiCu—CNT composite material 4, and the wiring electrode 5 may all be the same size. In short, it is sufficient that at least a part of the NiCu—CNT composite material 4 is in contact with both of them so that the thermal stress between the semiconductor element 1 and the wiring electrode 5 can be sufficiently relaxed.

材料Aの半導体素子としては、SiCを使用したものに限られず、GaAs、Si等従来公知の素材の素子に本発明は適用できる。また、材料Aとしては、半導体素子(半導体チップ)以外にも、種々の表面実装素子(チップ部品)、例えば赤外線受光素子、側面発光ダイオード、水晶発振子なども利用可能である。そして、材料Aの好適な線膨張係数としては、2.6×10−6/K〜8×10−6/K、好ましくは、2.6×10−6/K〜6.8×10−6/K、より好ましくは、2.6×10−6/K〜4.5×10−6/Kの範囲にあることが望ましい。材料Aの好適な線膨張係数が上記範囲内であれば、半導体素子(半導体チップ)などの材料Aと材料Bとの間に、後述する材料Cを介在させることにより、高温動作される半導体素子の材料Aにより材料Bが変形することで発生する熱応力を、当該材料Cにより緩和することができる。その結果、積層構造体の熱応力による損傷等を防止でき、耐久信頼性を向上することができる。材料Bの配線電極材料としては、銅に限られず、アルミニウム、銅、銀、金およびモリブデン並びにこれらの合金から選ばれた少なくとも一種に本発明は適用できる。この場合、5.1×10−6/K〜23.5×10−6/Kの線膨張係数を有することが望ましい。 The semiconductor element made of material A is not limited to one using SiC, and the present invention can be applied to elements of a conventionally known material such as GaAs and Si. In addition to the semiconductor element (semiconductor chip), various surface mount elements (chip components) such as an infrared light receiving element, a side light emitting diode, and a crystal oscillator can be used as the material A. And, suitable linear expansion coefficient of the material A, 2.6 × 10 -6 / K~8 × 10 -6 / K, preferably, 2.6 × 10 -6 /K~6.8×10 - 6 / K, more preferably, it is preferably in the range of 2.6 × 10 -6 /K~4.5×10 -6 / K . If the suitable linear expansion coefficient of the material A is within the above range, a semiconductor element that is operated at a high temperature by interposing a material C, which will be described later, between the material A such as a semiconductor element (semiconductor chip) and the material B. The material C can relieve the thermal stress generated when the material B is deformed by the material A. As a result, damage to the laminated structure due to thermal stress can be prevented, and durability reliability can be improved. The wiring electrode material of the material B is not limited to copper, and the present invention can be applied to at least one selected from aluminum, copper, silver, gold, molybdenum, and alloys thereof. In this case, it is desirable to have a linear expansion coefficient of 5.1 × 10 -6 /K~23.5×10 -6 / K .

材料Bの好適な線膨張係数が上記範囲内であれば、相対的に小さい線膨張係数を有する半導体素子(半導体チップ)などの材料Aと、相対的に大きな線膨張係数を有する配線電極(金属材料)の材料Bとの間に、後述する材料Cを介在させることができる。これによって、材料Cの材料Bに接している側においても材料Bにより材料Cの変形が抑えられ、あまり変形せず、材料Aに加わる熱応力を材料Bにより緩和できるためである。その結果、材料Aと材料Bとの間の熱応力を緩和することができ、積層構造体の熱応力による損傷等を防止でき、耐久信頼性を向上することができる。   If the suitable linear expansion coefficient of the material B is within the above range, the material A such as a semiconductor element (semiconductor chip) having a relatively small linear expansion coefficient and a wiring electrode (metal) having a relatively large linear expansion coefficient The material C described later can be interposed between the material B and the material B. This is because the deformation of the material C is suppressed by the material B even on the side of the material C in contact with the material B, and the thermal stress applied to the material A can be relaxed by the material B without much deformation. As a result, the thermal stress between the material A and the material B can be relaxed, damage to the laminated structure due to the thermal stress, and the like can be prevented, and durability reliability can be improved.

また、材料Cの好適な線膨張係数としては、12×10−6/K以上、22×10−6/K未満の範囲であり、好ましくは、12×10−6/K〜20×10−6/K、より好ましくは、16×10−6/K〜18×10−6/Kの低線膨張係数を有することが望ましい。 Also, suitable linear expansion coefficient of the material C, 12 × 10 -6 / K or more, a range of less than 22 × 10 -6 / K, preferably, 12 × 10 -6 / K~20 × 10 - 6 / K, more preferably, it is desirable to have a low coefficient of linear expansion of 16 × 10 -6 / K~18 × 10 -6 / K.

材料Cの好適な線膨張係数が上記範囲内であれば、材料Aと材料Bとの間に、上記範囲の低線膨張係数の材料Cを介在させることにより、熱応力の発生を緩和することができる。その結果、積層構造体の熱応力による損傷等を防止でき、耐久信頼性を向上することができる。   If the suitable linear expansion coefficient of the material C is within the above range, the material C having the low linear expansion coefficient within the above range is interposed between the material A and the material B, thereby reducing the occurrence of thermal stress. Can do. As a result, damage to the laminated structure due to thermal stress can be prevented, and durability reliability can be improved.

材料Cの好適なヤング率としては、50〜90GPa、好ましくは60〜80GPa、より好ましくは64〜73GPaを有することが望ましい。   As a suitable Young's modulus of the material C, it is desirable to have 50 to 90 GPa, preferably 60 to 80 GPa, more preferably 64 to 73 GPa.

材料Cの好適なヤング率が上記範囲内であれば、材料Aと材料Bとの間に、上記範囲の低線膨張係数かつ高ヤング率の材料Cを介在させることにより、材料Cの上下に配置する材料Aないし材料Bに発生する熱応力を緩和することができる。その結果、積層構造体の熱応力による損傷等を防止でき、耐久信頼性を向上することができる。   If the suitable Young's modulus of the material C is within the above range, the material C having a low linear expansion coefficient and a high Young's modulus within the above range is interposed between the material A and the material B, so that The thermal stress generated in the material A or material B to be arranged can be relaxed. As a result, damage to the laminated structure due to thermal stress can be prevented, and durability reliability can be improved.

緻密状態および多孔質状態を形成するのに好ましい微粒子の例としては、カーボンナノチューブに限られず、ニッケルおよび銅との濡れ性の関係から、以下のものが挙げられる。すなわち、カーボンナノチューブ、フラーレン、カーボン繊維およびセラミックの少なくとも一種を使用することができる。しかし、2元素からなるマトリックス材と微粒子との互いの濡れ性の関係から緻密状態および多孔質状態を形成でき、低線膨張性と低弾性を実現できれば、マトリックス材および微粒子は上記のものに限られない。   Examples of preferable fine particles for forming a dense state and a porous state are not limited to carbon nanotubes, and the following may be mentioned from the viewpoint of wettability with nickel and copper. That is, at least one of carbon nanotubes, fullerenes, carbon fibers, and ceramics can be used. However, if a dense state and a porous state can be formed from the mutual wettability relationship between the matrix material composed of two elements and the fine particles, and low linear expansion and low elasticity can be realized, the matrix material and the fine particles are limited to the above. I can't.

また、多孔質体に含まれる微粒子としてカーボンナノチューブ以外の材料、カーボン繊維、フラーレン等の添加量については、添加量としては0.001〜10質量%、より好ましくは0.001〜1質量%、さらに好ましくは0.1〜1質量%である。   Moreover, about addition amount of materials other than carbon nanotube, carbon fiber, fullerene, etc. as fine particles contained in the porous body, the addition amount is 0.001 to 10% by mass, more preferably 0.001 to 1% by mass, More preferably, it is 0.1-1 mass%.

また、材料Aと材料Bとがα<αの関係を満たしていれば、本発明の用途は半導体デバイスに限られない。例えば、樹脂製の部品を金属板の上に固定するなど、温度変化が想定される環境で、線膨張係数差が大きい材料同士を接合する場合にも本発明は適用できる。 If the material A and the material B satisfy the relationship of α ab , the application of the present invention is not limited to the semiconductor device. For example, the present invention can be applied to a case where materials having a large difference in linear expansion coefficient are joined in an environment where temperature change is assumed, such as fixing a resin part on a metal plate.

また、材料Cが導電性を有するとは、上記の好ましい実施形態での配線電極と半導体素子のように電気によって駆動させる通常の用途において、配線と同等の導電性を有していることを意味する。   In addition, the material C having conductivity means that the material C has conductivity equivalent to that of the wiring in a normal application such as the wiring electrode and the semiconductor element in the preferred embodiment that is driven by electricity. To do.

以上説明してきたように、本発明は、以下のような効果を示す。
(a)緻密状態および多孔質状態を含む材料Cを、線膨張係数差のある材料AおよびBの間に挿入し、緻密状態の示す低線膨張性および多孔質状態の示す低弾性により、高温の環境においても材料AB間の熱応力を効果的に緩和できる。
(b)材料Aとして半導体素子、材料Bとして配線電極を選択すれば、半導体素子と配線電極間の熱応力を効果的に緩和できるため、高温の環境における半導体素子の損傷を防止でき、信頼性の高い半導体デバイスを実現できる。
(c)マトリックス材が導電性であることにより、半導体素子および配線電極間に本発明を適用した際、素子の動作に影響することなく、半導体実装に好適である。
(d)マトリックス材がニッケルおよび銅であると、微粒子との濡れ性の差があることにより、緻密状態および多孔質状態を含む金属基複合材料が得られる。
(e)微粒子がカーボンナノチューブ、フラーレン、カーボン繊維およびセラミックの少なくとも一種であると、2元素からなるマトリックス材との濡れ性に差があることにより、緻密状態および多孔質状態を含む金属基複合材料が得られる。
(f)電解めっきを用いることにより、熱応力緩和に好適な2元素からなるマトリックス材と微粒子を含む金属基複合材料を製造できる。
As described above, the present invention exhibits the following effects.
(A) A material C including a dense state and a porous state is inserted between materials A and B having a difference in linear expansion coefficient, and the low linear expansion property indicated by the dense state and the low elasticity indicated by the porous state result in high temperature. Even in this environment, the thermal stress between the materials AB can be effectively relieved.
(B) If a semiconductor element is selected as the material A and a wiring electrode is selected as the material B, the thermal stress between the semiconductor element and the wiring electrode can be effectively relieved, so that damage to the semiconductor element in a high-temperature environment can be prevented and reliability is improved. High-semiconductor device can be realized.
(C) Since the matrix material is conductive, when the present invention is applied between the semiconductor element and the wiring electrode, it is suitable for semiconductor mounting without affecting the operation of the element.
(D) When the matrix material is nickel and copper, a metal matrix composite material including a dense state and a porous state is obtained due to a difference in wettability with fine particles.
(E) When the fine particles are at least one of carbon nanotubes, fullerenes, carbon fibers and ceramics, there is a difference in wettability with a matrix material composed of two elements, so that a metal matrix composite material including a dense state and a porous state Is obtained.
(F) By using electrolytic plating, it is possible to produce a metal matrix composite material containing a matrix material composed of two elements suitable for thermal stress relaxation and fine particles.

以下、本発明を実施例および比較例を通して説明する。
(実施例1および2)
後掲の表1に示すように、材料AとしてSiC(大きさ:5mm×5mm×0.3mm)、材料BとしてCu(大きさ:13mm×13mm×0.5mm)を準備した。材料Cとしては、銅・ニッケル合金マトリックス中にそれぞれ表1に示す添加量のマルチウォールカーボンナノチューブ(MWCNT;直径150nm)を含む多孔質体(大きさ:7mm×7mm×0.013mm)を準備した。
Hereinafter, the present invention will be described through examples and comparative examples.
(Examples 1 and 2)
As shown in Table 1 below, SiC (size: 5 mm × 5 mm × 0.3 mm) was prepared as the material A, and Cu (size: 13 mm × 13 mm × 0.5 mm) was prepared as the material B. As the material C, a porous body (size: 7 mm × 7 mm × 0.013 mm) containing multi-wall carbon nanotubes (MWCNT; diameter 150 nm) of the addition amount shown in Table 1 in a copper / nickel alloy matrix was prepared. .

金属基複合材料は、特開2008−163376号公報に記載の電解めっき方法によって製造した。   The metal matrix composite material was manufactured by the electroplating method described in Japanese Patent Application Laid-Open No. 2008-163376.

これらの材料の平均線膨張係数α、αおよびαを、熱機械分析装置(Thermal Mechanical Analysis; TMA)による測定で求めた。昇温、降温速度は5℃/分で、23〜300℃の平均線膨張係数を求めた。 The average linear expansion coefficients α a , α b, and α c of these materials were determined by measurement with a thermomechanical analyzer (TMA). The temperature increase / decrease rate was 5 ° C./min, and an average linear expansion coefficient of 23 to 300 ° C. was obtained.

また、これらの材料のヤング率σ、σおよびσをJIS Z 2280:1993(金属材料の高温ヤング率試験方法)に準じ、但し高精度ビデオ伸び計を用いた引張試験により、試験速度1.0mm/min、票点間距離25mm、室温(25℃)でそれぞれ測定した。 The Young's moduli σ a , σ b and σ c of these materials are in accordance with JIS Z 2280: 1993 (high temperature Young's modulus test method for metal materials), but the test speed is determined by a tensile test using a high-precision video extensometer. The measurement was performed at 1.0 mm / min, a distance between votes of 25 mm, and room temperature (25 ° C.).

測定結果は、材料と共に表1に示す。これらの測定結果を基に、材料A、材料C、材料Bを積層した場合の、材料Cの熱応力緩和層としての効果について後述するように考察した。また、得られた金属基複合材料の断面をSEMにて4000倍で観察したところ、緻密状態と多孔質状態とが形成されていることが確認された。
(比較例1)
従来技術との比較のため、比較例1では材料CとしてSn−37Pbはんだを用いた。それ以外は、実施例1と同様にして、材料A、材料B、材料Cを準備し線膨張係数およびヤング率をそれぞれ測定した。測定結果を表1に示す。
(比較例2)
比較例2では、材料Cとして微粒子を含まないニッケルと銅との合金箔を用いた以外は、実施例1と同様にして、材料A、材料B、材料Cを準備し線膨張係数およびヤング率をそれぞれ測定した。めっき浴は、カーボンナノチューブを添加しなかった以外は、実施例1と同様のものを使用した。測定結果を表1に示す。また、得られた金属基複合材料の断面をSEMにて4000倍で観察したところ、断面は厚み方向に一様であり、緻密状態と多孔質状態とは形成されていなかった。
The measurement results are shown in Table 1 together with the materials. Based on these measurement results, the effect of the material C as a thermal stress relaxation layer when the materials A, C, and B were laminated was considered as described later. Moreover, when the cross section of the obtained metal matrix composite material was observed by SEM at 4000 times, it was confirmed that a dense state and a porous state were formed.
(Comparative Example 1)
For comparison with the prior art, Sn-37Pb solder was used as material C in Comparative Example 1. Other than that was carried out similarly to Example 1, and prepared the material A, the material B, and the material C, and measured the linear expansion coefficient and the Young's modulus, respectively. The measurement results are shown in Table 1.
(Comparative Example 2)
In Comparative Example 2, materials A, B, and C were prepared and linear expansion coefficient and Young's modulus were prepared in the same manner as in Example 1 except that an alloy foil of nickel and copper not containing fine particles was used as material C. Was measured respectively. The same plating bath as in Example 1 was used except that no carbon nanotubes were added. The measurement results are shown in Table 1. Moreover, when the cross section of the obtained metal matrix composite material was observed by SEM at 4000 times, the cross section was uniform in the thickness direction, and a dense state and a porous state were not formed.

表1に示すように、SiCと銅、SiCとアルミニウムでは、SiCの線膨張係数が4.5×10−6/Kに対して、銅が16.6×10−6/K、アルミニウムが23.5×10−6/Kと、線膨張係数差が大きい。そのため、SiCと銅またはアルミニウムを直接積層すると、温度の上昇によってSiCにクラックが入るおそれがある。 As shown in Table 1, in SiC and copper, SiC and aluminum, the linear expansion coefficient of SiC is 4.5 × 10 −6 / K, whereas copper is 16.6 × 10 −6 / K and aluminum is 23 .5 × 10 −6 / K and the difference in linear expansion coefficient is large. Therefore, if SiC and copper or aluminum are directly laminated, there is a risk that cracks will occur in SiC due to an increase in temperature.

実施例1および2の材料Cは、線膨張係数が16.5×10−6/Kおよび17.6×10−6/Kであり、比較例1の従来技術のはんだの線膨張係数23.5×10−6/Kと比較して、低線膨張性が実現されていることが分かる。低線膨張性は、SEMで観察された緻密状態においてより顕著であり、線膨張係数は多孔質状態へと連続的に変化する。そのため、NiCu−CNT複合材料の膜の緻密状態の側をSiCと接するように配置すれば、高温の環境においてSiCが損傷することを防止できる。 The material C of Examples 1 and 2 has a linear expansion coefficient of 16.5 × 10 −6 / K and 17.6 × 10 −6 / K, and the linear expansion coefficient of the prior art solder of Comparative Example 1 is 23.10 . It can be seen that low linear expansion is realized as compared with 5 × 10 −6 / K. Low linear expansion is more prominent in the dense state observed by SEM, and the linear expansion coefficient continuously changes to a porous state. Therefore, if the dense side of the NiCu-CNT composite material film is disposed in contact with SiC, it is possible to prevent SiC from being damaged in a high temperature environment.

実施例1および2のヤング率は64.0GPaおよび72.1GPaであり、例えば銅の120GPaに比較して低弾性を示すことが分かる。低弾性は、SEMで観察された多孔質状態においてより顕著である。そのため、多孔質状態の面を配線電極である銅またはアルミニウムと接するように配置すれば、配線電極の熱変形に追随できる。したがって、実施例1および2の金属基複合材料をSiCと銅またはアルミニウム間に挿入することにより、両者の間の熱応力を緩和できることが分かる。   The Young's moduli of Examples 1 and 2 are 64.0 GPa and 72.1 GPa, and it can be seen that, for example, low elasticity is exhibited as compared with 120 GPa of copper. Low elasticity is more pronounced in the porous state observed with SEM. Therefore, if the porous surface is disposed so as to be in contact with copper or aluminum which is a wiring electrode, it can follow the thermal deformation of the wiring electrode. Therefore, it turns out that the thermal stress between both can be relieved by inserting the metal matrix composites of Examples 1 and 2 between SiC and copper or aluminum.

比較例1では、はんだを使用しているために、ヤング率は小さく最も低弾性であるが、上述のようにはんだは融点が低いため、300℃付近の高温の環境で使用することはできない。また、線膨張係数は大きく、はんだ自身も熱変形するため、SiCとの間に応力が発生し好ましくない。CuNi箔を使用した比較例2では、線膨張係数は小さくなっているものの、ヤング率が115GPaと十分な低弾性を示してはいない。したがって、配線電極が熱により変形した際、Alのようにより線膨張係数の大きい金属の場合には特に、AlとCuNi箔の界面が割れる可能性がある。   In Comparative Example 1, since the solder is used, the Young's modulus is small and the lowest elasticity is obtained. However, since the solder has a low melting point as described above, it cannot be used in a high temperature environment around 300 ° C. Moreover, since the linear expansion coefficient is large and the solder itself is also thermally deformed, stress is generated between it and SiC, which is not preferable. In Comparative Example 2 using CuNi foil, the coefficient of linear expansion is small, but the Young's modulus is 115 GPa and does not show a sufficiently low elasticity. Therefore, when the wiring electrode is deformed by heat, there is a possibility that the interface between Al and CuNi foil is broken particularly in the case of a metal having a large linear expansion coefficient such as Al.

1 半導体素子、
2 緻密状態、
3 多孔質状態、
4 NiCu−CNT複合材料、
5 配線電極、
6 マトリックス材、
7 カーボンナノチューブ、
8 空孔、
10 積層構造体。
1 Semiconductor element,
2 dense state,
3 Porous state,
4 NiCu-CNT composite material,
5 Wiring electrode,
6 Matrix material
7 Carbon nanotube,
8 holes,
10 Laminated structure.

Claims (6)

材料Aと、材料Bと、材料Aと材料Bとの間に挟まれた材料Cとからなり、材料Aおよび材料Bの線膨張係数が、α<αの関係を満たし(ここで、αは材料Aの線膨張係数を表し、αは材料Bの線膨張係数を表わす)、材料Cは2元素からなるマトリックス材および微粒子を含み、緻密状態および多孔質状態を含み、材料Cの材料Aに接する側が緻密状態であり、材料Bに接する側が多孔質状態であることを特徴とする積層構造体。 The material A, the material B, and the material C sandwiched between the material A and the material B, and the linear expansion coefficients of the material A and the material B satisfy the relationship of α ab (where, α a represents the linear expansion coefficient of material A, α b represents the linear expansion coefficient of material B), and material C includes a matrix material and fine particles composed of two elements, including a dense state and a porous state, and material C The laminated structure characterized in that the side in contact with the material A is in a dense state and the side in contact with the material B is in a porous state. 前記材料Aが半導体素子であり、前記材料Bがアルミニウム、銅、銀、金およびモリブデン並びにこれらの合金のいずれか一種からなる配線電極である請求項1に記載の積層構造体。   The laminated structure according to claim 1, wherein the material A is a semiconductor element, and the material B is a wiring electrode made of any one of aluminum, copper, silver, gold, molybdenum, and alloys thereof. 前記材料Cが導電性を有する請求項1または2に記載の積層構造体。   The laminated structure according to claim 1 or 2, wherein the material C has conductivity. 前記マトリックス材がニッケルおよび銅である請求項1〜3のいずれか一項に記載の積層構造体。   The laminated structure according to any one of claims 1 to 3, wherein the matrix material is nickel and copper. 前記微粒子が、カーボンナノチューブ、フラーレン、カーボン繊維およびセラミックからなる群から選ばれた少なくとも一種の材料からなる請求項1〜4のいずれか一項に記載の積層構造体。   The laminated structure according to any one of claims 1 to 4, wherein the fine particles are made of at least one material selected from the group consisting of carbon nanotubes, fullerenes, carbon fibers, and ceramics. 前記材料Cが、電解めっきによって形成されている請求項1〜5のいずれか一項に記載の積層構造体。   The laminated structure according to any one of claims 1 to 5, wherein the material C is formed by electrolytic plating.
JP2009116988A 2009-05-13 2009-05-13 Laminated structure using metal matrix composite Expired - Fee Related JP5010640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116988A JP5010640B2 (en) 2009-05-13 2009-05-13 Laminated structure using metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116988A JP5010640B2 (en) 2009-05-13 2009-05-13 Laminated structure using metal matrix composite

Publications (2)

Publication Number Publication Date
JP2010267747A true JP2010267747A (en) 2010-11-25
JP5010640B2 JP5010640B2 (en) 2012-08-29

Family

ID=43364485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116988A Expired - Fee Related JP5010640B2 (en) 2009-05-13 2009-05-13 Laminated structure using metal matrix composite

Country Status (1)

Country Link
JP (1) JP5010640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187622A (en) * 2017-05-08 2018-11-29 ツィンファ ユニバーシティ Manufacturing method of three-dimensional porous composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297929A (en) * 1998-04-15 1999-10-29 Hitachi Ltd Pressurized contract semiconductor device and converter using the same
JP2002118195A (en) * 2000-10-11 2002-04-19 Toyota Motor Corp Semiconductor module
JP2007208167A (en) * 2006-02-06 2007-08-16 Hitachi Metals Ltd Heat dissipating member and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297929A (en) * 1998-04-15 1999-10-29 Hitachi Ltd Pressurized contract semiconductor device and converter using the same
JP2002118195A (en) * 2000-10-11 2002-04-19 Toyota Motor Corp Semiconductor module
JP2007208167A (en) * 2006-02-06 2007-08-16 Hitachi Metals Ltd Heat dissipating member and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187622A (en) * 2017-05-08 2018-11-29 ツィンファ ユニバーシティ Manufacturing method of three-dimensional porous composite material

Also Published As

Publication number Publication date
JP5010640B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
Zhan et al. Thermal transport in 3D nanostructures
Loeblein et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material
US8206815B2 (en) Metal-based composite material containing both micron-size carbon fiber and nano-size carbon fiber
JP5316602B2 (en) Heat diffusion member joining structure, heating element cooling structure, and heat diffusion member joining method
KR20070027482A (en) System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US20150136360A1 (en) Thermal interface pad and production method thereof, and heat dissipating system
JP2011091106A (en) Thermally conductive member and method of manufacturing the same, heat dissipating component, and semiconductor package
US20140174706A1 (en) Thermal conductive stress relaxation structure
US10403594B2 (en) Hybrid bonding materials comprising ball grid arrays and metal inverse opal bonding layers, and power electronics assemblies incorporating the same
JP7172319B2 (en) Heat dissipation structure, electronic device, and method for manufacturing heat dissipation structure
WO2014204828A2 (en) Thermal interface nanocomposite
Zhang et al. Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module
WO2010087432A1 (en) Heat dissipating base body and electronic device using same
JP5340069B2 (en) Carbon-metal composite and circuit member or heat dissipation member using the same
JP7441046B2 (en) holding device
JP2008198706A (en) Circuit board, method for manufacturing the same, and semiconductor module using the same
US20190078212A1 (en) Transient liquid phase bonding compositions and power electronics assemblies incorporating the same
JP5010640B2 (en) Laminated structure using metal matrix composite
JP5096410B2 (en) Mounting structure
JP2009043672A (en) Conductive carbon composite material mixed with carbon nanotube, metal solder material, conductive material, and semiconductive material
JP2010098035A (en) Thermoelectric conversion element
Noh et al. Printed wire interconnection using Ag sinter paste for wide band gap power semiconductors
Kuang et al. Enhanced interface heat transfer based on gallium-based liquid metal infiltrated into vertically aligned copper nanowire arrays
JP2015185562A (en) Electronic apparatus, assembly method thereof, sheet-like structure, and manufacturing method thereof
JP7238586B2 (en) Conductive heat-dissipating film, method for manufacturing conductive heat-dissipating film, and method for manufacturing electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees